/usr/share/perl5/Math/PlanePath/DekkingCurve.pm is in libmath-planepath-perl 122-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 | # Copyright 2011, 2012, 2013, 2014, 2015 Kevin Ryde
# This file is part of Math-PlanePath.
#
# Math-PlanePath is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by the
# Free Software Foundation; either version 3, or (at your option) any later
# version.
#
# Math-PlanePath is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
# or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
# for more details.
#
# You should have received a copy of the GNU General Public License along
# with Math-PlanePath. If not, see <http://www.gnu.org/licenses/>.
package Math::PlanePath::DekkingCurve;
use 5.004;
use strict;
#use List::Util 'max';
*max = \&Math::PlanePath::_max;
use vars '$VERSION', '@ISA';
$VERSION = 122;
use Math::PlanePath;
use Math::PlanePath::Base::NSEW;
@ISA = ('Math::PlanePath::Base::NSEW',
'Math::PlanePath');
*_divrem = \&Math::PlanePath::_divrem;
*_divrem_mutate = \&Math::PlanePath::_divrem_mutate;
use Math::PlanePath::Base::Generic
'is_infinite',
'round_nearest';
use Math::PlanePath::Base::Digits
'round_up_pow',
'round_down_pow',
'digit_split_lowtohigh',
'digit_join_lowtohigh';
# uncomment this to run the ### lines
# use Smart::Comments;
use constant n_start => 0;
use constant class_x_negative => 1;
use constant class_y_negative => 1;
use constant parameter_info_array => [ { name => 'arms',
share_key => 'arms_4',
display => 'Arms',
type => 'integer',
minimum => 1,
maximum => 4,
default => 1,
width => 1,
description => 'Arms',
} ];
#------------------------------------------------------------------------------
sub x_negative {
my ($self) = @_;
return $self->{'arms'} > 1;
}
{
my @x_negative_at_n = (undef, undef, 5, 2, 2);
sub x_negative_at_n {
my ($self) = @_;
return $x_negative_at_n[$self->{'arms'}];
}
}
sub y_negative {
my ($self) = @_;
return $self->{'arms'} > 2;
}
{
my @y_negative_at_n = (undef, undef, undef, 8, 3);
sub y_negative_at_n {
my ($self) = @_;
return $y_negative_at_n[$self->{'arms'}];
}
}
#------------------------------------------------------------------------------
use Math::PlanePath::DekkingCentres;
use vars '@_next_state','@_digit_to_x','@_digit_to_y','@_yx_to_digit';
BEGIN {
*_next_state = \@Math::PlanePath::DekkingCentres::_next_state;
*_digit_to_x = \@Math::PlanePath::DekkingCentres::_digit_to_x;
*_digit_to_y = \@Math::PlanePath::DekkingCentres::_digit_to_y;
*_yx_to_digit = \@Math::PlanePath::DekkingCentres::_yx_to_digit;
}
sub new {
my $self = shift->SUPER::new(@_);
$self->{'arms'} ||= 1;
return $self;
}
# tables generated by tools/dekking-curve-table.pl
#
my @edge_dx = (0,0,0,1,1, 0,0,1,1,0, 0,0,0,1,0, 0,0,1,0,1, 0,1,0,1,1,
1,1,1,1,1, 1,1,1,0,1, 1,1,0,1,0, 0,0,1,0,0, 0,1,1,0,0,
1,1,1,0,0, 1,1,0,0,1, 1,1,1,0,1, 1,1,0,1,0, 1,0,1,0,0,
0,0,0,0,0, 0,0,0,1,0, 0,0,1,0,1, 1,1,0,1,1, 1,0,0,1,1,
1,1,1,1,1, 1,0,0,0,0, 1,1,1,1,1, 0,0,0,0,1, 1,0,0,1,1,
1,1,1,0,0, 1,1,1,1,1, 0,0,0,1,1, 0,0,1,0,1, 0,1,0,1,1,
0,0,0,0,0, 0,1,1,1,1, 0,0,0,0,0, 1,1,1,1,0, 0,1,1,0,0,
0,0,0,1,1, 0,0,0,0,0, 1,1,1,0,0, 1,1,0,1,0, 1,0,1,0,0);
my @edge_dy = (0,0,0,0,0, 0,0,0,1,0, 0,0,1,0,1, 1,1,0,1,1, 1,0,0,1,1,
0,0,0,1,1, 0,0,1,1,0, 0,0,0,1,0, 0,0,1,0,1, 0,1,0,1,1,
1,1,1,1,1, 1,1,1,0,1, 1,1,0,1,0, 0,0,1,0,0, 0,1,1,0,0,
1,1,1,0,0, 1,1,0,0,1, 1,1,1,0,1, 1,1,0,1,0, 1,0,1,0,0,
0,0,0,1,1, 0,0,0,0,0, 1,1,1,0,0, 1,1,0,1,0, 1,0,1,0,0,
1,1,1,1,1, 1,0,0,0,0, 1,1,1,1,1, 0,0,0,0,1, 1,0,0,1,1,
1,1,1,0,0, 1,1,1,1,1, 0,0,0,1,1, 0,0,1,0,1, 0,1,0,1,1,
0,0,0,0,0, 0,1,1,1,1, 0,0,0,0,0, 1,1,1,1,0, 0,1,1,0,0);
sub n_to_xy {
my ($self, $n) = @_;
### DekkingCurve n_to_xy(): $n
if ($n < 0) { return; }
if (is_infinite($n)) { return ($n,$n); }
my $int = int($n);
$n -= $int; # fraction part
my $arms = $self->{'arms'};
my $arm = _divrem_mutate ($int, $arms);
if ($arm) { $int += 1; }
my @digits = digit_split_lowtohigh($int,25);
my $state = 0;
my @x;
my @y;
foreach my $i (reverse 0 .. $#digits) {
$state += $digits[$i];
$x[$i] = $_digit_to_x[$state];
$y[$i] = $_digit_to_y[$state];
$state = $_next_state[$state];
}
### @x
### @y
### $state
### dx: $_digit_to_x[$state+24] - $_digit_to_x[$state]
### dy: $_digit_to_y[$state+24] - $_digit_to_y[$state]
my $zero = $int * 0;
my $x = ($n * (($_digit_to_x[$state+24] - $_digit_to_x[$state])/4)
+ digit_join_lowtohigh(\@x, 5, $zero)
+ $edge_dx[$state]);
my $y = ($n * (($_digit_to_y[$state+24] - $_digit_to_y[$state])/4)
+ digit_join_lowtohigh(\@y, 5, $zero)
+ $edge_dy[$state]);
if ($arm < 2) {
if ($arm < 1) { return ($x,$y); } # arm==0
return (-$y,$x); # arm==1 rotate +90
}
if ($arm < 3) { return (-$x,-$y); } # arm==2
return ($y,-$x); # arm==3 rotate -90
}
sub xy_to_n {
my ($self, $x, $y) = @_;
### DekkingCurve xy_to_n(): "$x, $y"
$x = round_nearest ($x);
$y = round_nearest ($y);
if (is_infinite($x)) {
return $x;
}
if (is_infinite($y)) {
return $y;
}
my $arms = $self->{'arms'};
if (($arms < 2 && $x < 0) || ($arms < 3 && $y < 0)) {
### X or Y negative, no N value ...
return undef;
}
foreach my $arm (0 .. $arms-1) {
foreach my $xoffset (0,-1) {
foreach my $yoffset (0,-1) {
my @x = digit_split_lowtohigh($x+$xoffset,5);
my @y = digit_split_lowtohigh($y+$yoffset,5);
my $state = 0;
my @n;
foreach my $i (reverse 0 .. max($#x,$#y)) {
my $digit = $n[$i] = $_yx_to_digit[$state + 5*($y[$i]||0) + ($x[$i]||0)];
$state = $_next_state[$state+$digit];
}
my $zero = $x*0*$y;
my $n = digit_join_lowtohigh(\@n, 25, $zero);
$n = $n*$arms;
if (my ($nx,$ny) = $self->n_to_xy($n)) {
if ($nx == $x && $ny == $y) {
return $n + ($arm ? $arm-$arms : $arm);
}
}
}
}
($x,$y) = ($y,-$x); # rotate -90
### rotate to: "$x, $y"
}
return undef;
}
# not exact
sub rect_to_n_range {
my ($self, $x1,$y1, $x2,$y2) = @_;
### DekkingCurve rect_to_n_range(): "$x1,$y1, $x2,$y2"
$x1 = round_nearest ($x1);
$x2 = round_nearest ($x2);
$y1 = round_nearest ($y1);
$y2 = round_nearest ($y2);
if ($x1 > $x2) { ($x1,$x2) = ($x2,$x1); }
if ($y1 > $y2) { ($y1,$y2) = ($y2,$y1); }
my $arms = $self->{'arms'};
if (($arms < 2 && $x2 < 0) || ($arms < 3 && $y2 < 0)) {
### rectangle all negative, no N values ...
return (1, 0);
}
my ($pow) = round_down_pow (max(abs($x1),abs($y1),$x2,$y2) + 1, 5);
### $pow
return (0, 25*$pow*$pow*$arms - 1);
}
#------------------------------------------------------------------------------
sub level_to_n_range {
my ($self, $level) = @_;
return (0, 25**$level * $self->{'arms'});
}
sub n_to_level {
my ($self, $n) = @_;
### n_to_level(): $n
if ($n < 0) { return undef; }
if (is_infinite($n)) { return $n; }
$n = round_nearest($n);
$n += $self->{'arms'}-1; # division rounding up
_divrem_mutate ($n, $self->{'arms'});
my ($pow, $exp) = round_up_pow ($n, 25);
return $exp;
}
#------------------------------------------------------------------------------
# Not taking into account multiple arms ...
# Return true if X axis segment $x to $x+1 is traversed
sub _UNDOCUMENTED__xseg_is_traversed {
my ($self, $x) = @_;
if ($x < 0 || is_infinite($x)) { return 0; }
if ($x == 0) { return 1; }
my $digit = _divrem_mutate($x, 5);
if ($digit) {
return ($digit == 1);
}
# find lowest non-zero
while ($x && ! ($digit = _divrem_mutate($x, 5))) { }
return ($digit == 1 || $digit == 2);
}
# Return true if Y axis segment $y to $y+1 is traversed
sub _UNDOCUMENTED__yseg_is_traversed {
my ($self, $y) = @_;
if ($y < 0 || is_infinite($y)) { return 0; }
my $digit = _divrem_mutate($y, 5);
if ($digit != 4) {
return ($digit == 3);
}
# find lowest non-4
while ($y && ($digit = _divrem_mutate($y, 5)) == 4) { }
return ($digit == 2 || $digit == 3);
}
#------------------------------------------------------------------------------
1;
__END__
=for stopwords eg Ryde ie Math-PlanePath Dekking
=head1 NAME
Math::PlanePath::DekkingCurve -- 5x5 self-similar edge curve
=head1 SYNOPSIS
use Math::PlanePath::DekkingCurve;
my $path = Math::PlanePath::DekkingCurve->new;
my ($x, $y) = $path->n_to_xy (123);
=head1 DESCRIPTION
This is an integer version of a 5x5 self-similar curve per
=over
F. M. Dekking, "Recurrent Sets", Advances in Mathematics, volume 44, 1982,
pages 79-104, section 4.9 "Gosper-Type Curves"
=back
The base pattern is N=0 to N=25. It repeats with rotations or reversals
which make the ends join. For example N=75 to N=100 is the base pattern in
reverse, ie. from N=25 down to N=0. Or N=50 to N=75 is reverse and also
rotate by -90.
=cut
# math-image --path=DekkingCurve --all --output=numbers_dash --size=78x30
=pod
10 | 123-124-125-... 86--85
| | | |
9 | 115-116-117 122-121 90--89--88--87 84
| | | | | |
8 | 114-113 118-119-120 91--92--93 82--83
| | | |
7 | 112 107-106 103-102 95--94 81 78--77
| | | | | | | | | |
6 | 111 108 105-104 101 96--97 80--79 76
| | | | | |
5 | 110-109 14--15 100--99--98 39--40 75 66--65
| | | | | | | |
4 | 10--11--12--13 16 35--36--37--38 41 74 71--70 67 64
| | | | | | | | | |
3 | 9---8---7 18--17 34--33--32 43--42 73--72 69--68 63
| | | | | |
2 | 5---6 19 22--23 30--31 44 47--48 55--56--57 62--61
| | | | | | | | | | | |
1 | 4---3 20--21 24 29--28 45--46 49 54--53 58--59--60
| | | | | |
Y=0| 0---1---2 25--26--27 50--51--52
+----------------------------------------------------------------
X=0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
The curve segments correspond to edges of squares in a 5x5 arrangement.
+- - -+- - -+- - 14----15 ---+
| | | | v |> |
^ ^ <| |
10----11----12----13- - 16 --+
| v |> |
|> ^ ^ |
9-----8-----7 -- 18----17 --+
v | | |> |
| ^ |> | ^
+- - 5-----6 - 19 22----23
| <| | <|
| <| ^ | <| |
+- - 4-----3 20----21 -- 24
| v <|
^ ^ |> | | |
0-----1-----2 -- + -- -+- 25
The little notch marks show which square each edge represents. This is the
side the curve expands into at the next level. For example N=1 to N=2 has
its notch on the left so the next level N=25 to N=50 expands on the left.
All the directions are made by rotating the base pattern. When the
expansion is on the right the segments go in reverse. For example N=2 to
N=3 expands on the right and is made by rotating the base pattern clockwise
90 degrees. This means that N=2 becomes the 25 end, and following the curve
to the 0 start at N=3.
Dekking writes these directions as a sequence of 25 symbols s(i,j) where i=0
for left plain or i=1 for right reverse and j=0,1,2,3 direction j*90 degrees
anti-clockwise so E,N,W,S.
=head2 Arms
The optional C<arms> parameter can give up to four copies of the curve, each
advancing successively. Each copy is in a successive quadrant.
=cut
# math-image --path=DekkingCurve,arms=3 --expression='i<75?i:0' --output=numbers_dash --size=78x24
=pod
arms => 3 |
67-70-73 42-45 5
| | |
43-46-49 64-61 30-33-36-39 48 4
| | | | |
40-37 52-55-58 27-24-21 54-51 3
| | |
34 19-16 7--4 15-18 57 66-69 2
| | | | | | | | |
31 22 13-10 1 12--9 60-63 72 1
| | | |
...--74 28-25 5--2 0--3--6 75-... <-- Y=0
| |
71 62-59 8-11 -1
| | | |
68-65 56 17-14 -2
| |
50-53 20-23-26 -3
| |
47 38-35-32-29 -4
| |
44-41 -5
^
... -5 -4 -3 -2 -1 X=0 1 2 3 4 5 ...
The origin is N=0 and is on the first arm only. The second and subsequent
arms begin 1,2,etc. The curves interleave perfectly on the axes where the
arms meet. The result is that arms=4 fills the plane visiting each integer
X,Y exactly once and not touching or crossing.
=head1 FUNCTIONS
See L<Math::PlanePath/FUNCTIONS> for the behaviour common to all path
classes.
=over 4
=item C<$path = Math::PlanePath::DekkingCurve-E<gt>new ()>
=item C<$path = Math::PlanePath::DekkingCurve-E<gt>new (arms =E<gt> $a)>
Create and return a new path object.
The optional C<arms> parameter gives between 1 and 4 copies of the curve
successively advancing.
=item C<($x,$y) = $path-E<gt>n_to_xy ($n)>
Return the X,Y coordinates of point number C<$n> on the path. Points begin
at 0 and if C<$n E<lt> 0> then the return is an empty list.
=back
=head2 Level Methods
=over
=item C<($n_lo, $n_hi) = $path-E<gt>level_to_n_range($level)>
Return C<(0, 25**$level)>, or for multiple arms return C<(0, $arms *
25**$level)>.
There are 25^level + 1 points in a level, numbered starting from 0. On the
second and third arms the origin is omitted (so as not to repeat that point)
and so just 25^level for them, giving 25^level+1 + (arms-1)*25^level =
arms*25^level + 1 many points starting from 0.
=back
=head1 FORMULAS
=head2 X Axis Segments
In the sample points above there are some line segments on the X axis.
A segment X to X+1 is traversed or not according to
X digits in base 5
traversed if X==0
traversed if low digit 1
not-traversed if low digit 2 or 3 or 4
when low digit == 0
traversed if lowest non-zero 1 or 2
not-traversed if lowest non-zero 3 or 4
In the samples the segments at X=1, X=6 and X=11 segments traversed are low
digit 1. Their preceding X=5 and X=10 segments are low digit==0 and the
lowest non-zero 1 or 2 (respectively). At X=15 however the lowest non-zero
is 3 and so not-traversed there.
In general in groups of 5 there is always X==1 mod 5 traversed but its
preceding X==0 mod 5 is traversed or not according to lowest non-zero 1,2 or
3,4.
This pattern is found by considering how the base pattern expands. The
plain base pattern has its south edge on the X axis. The first two
sub-parts of that south edge are the base pattern unrotated, so the south
edge again, but the other parts rotated. In general the sides are
0 1 2 3 4
S -> S,S,E,N,W
E -> S,S,E,N,N
N -> W,S,E,N,N
W -> W,S,E,N,W
Starting in S and taking digits high to low a segment is traversed when the
final state is S again.
Any digit 1,2,3 goes to S,E,N respectively. If no 1,2,3 at all then S
start. At the lowest 1,2,3 there are only digits 0,4 below. If no such
digits then only digit 1 which is S, or no digits at all for N=0, is
traversed. If one or more 0s below then E goes to S so a lowest non-zero 2
means traversed too. If there is any 4 then it goes to N or W and in those
states both 0,4 stay in N or W so not-traversed.
The transitions from the lowest 1,2,3 can be drawn in a state diagram,
+--+
v |4 base 5 digits of X
North <---+ <-------+ high to low
/ | |
/0 |4 |
/ | |3
+-> v | 2 |
| West East <--- start lowest 1,2,3
+-- ^ | |
0,4 \ | |1
\4 |0 |or no 1,2,3 at all
\ | |
South <---+ <-------+
^ |0
+--+
The full diagram, starting from the top digit, is less clear
+--+
v |3,4
+---> North <---+
3| / | ^ \ |3,4
| /0 1 | 2\ | base 5 digits of X
| / | | \ | high to low
+-> | v | | v | <-+
| West 2---------> East | start in South,
+-- | ^ | | ^ | --+ segment traversed
0,4 | \ | | / | 2 if end in South
| \4 | 3 2/ |
1| \ v | / |0,1
+---> South <---+
^ |0,1
+--+
but allows usual DFA state machine manipulations to reverse to go low to
high.
+---------- start ----------+
| 1 0| 2,3,4 | base 5 digits of X
| | | low to high
v 1,2 v 3,4 v
traversed <------- m1 -------> not-traversed
0| ^
+-+
In state m1 a 0 digit loops back to m1 so finds the lowest non-zero. States
start and m1 are the same except for the behaviour of digit 2 and so in the
rules above the result for digit 2 differs according to whether there are
any low 0s.
=head2 Y Axis Segments
The Y axis can be treated similarly
Y digits in base 5 (with a single 0 digit if Y==0)
traversed if lowest digit 3
not-traversed if lowest digit 0 or 1 or 2
when lowest digit == 4
traversed if lowest non-4 is 2 or 3
not-traversed if lowest non-4 is 0 or 1
The Y axis goes around the base square clockwise, so the digits are reversed
0E<lt>-E<gt>4 from the X axis for the state transitions. The initial state
is W.
0 1 2 3 4
S -> W,N,E,S,S
E -> N,N,E,S,S
N -> N,N,E,S,W
W -> W,N,E,S,W
N and W can be merged as equivalent. Their only difference is digit 0 going
to N or W and both of those are final result not-traversed.
Final state S is reached if the lowest digit is 3, or if state S or E are
reached by digit 2 or 3 and then only 4s below.
=head2 X,Y Axis Interleaving
For arms=2 the second copy of the curve is rotated +90 degrees, and
similarly a third or fourth copy in arms=3 or 4. This means each axis is a
Y axis of the quadrant before and an X axis of the quadrant after. When
this happens the segments do not overlap nor does the curve touch.
This is seen from the digit rules above. The 1 mod 5 segment is always
traversed by X and never by Y. The 2 mod 5 segment is never traversed by
either. The 3 mod 5 segment is always traversed by Y and never by X.
The 0 mod 5 segment is sometimes traversed by X, and never by Y. The 4 mod
5 segment is sometimes traversed by Y, and never by Y.
0 1 2 3 4
*-------*-------*-------*-------*-------*
X X neither Y Y
maybe maybe
A 4 mod 5 segment has one or more trailing 4s and at +1 for the next segment
they become 0s and increment the lowest non-4.
+--------+-----+-------+
| ... | d | 4...4 | N == 4 mod 5 X never
+--------+-----+-------+ Y maybe
+--------+-----+-------+
| ... | d+1 | 0...0 | N+1 == 0 mod 5 X maybe
+--------+-----+-------+ Y never
Per the Y rule, a 4 mod 5 segment is traversed when d=2,3. The following
segment is then d+1=3,4 as lowest non-zero which in the X rule is
not-traversed. Conversely in the Y rule not-traversed when d=0,1 which
becomes d+1=1,2 which in the X rule is traversed.
So exactly one of two consecutive 4 mod 5 and 0 mod 5 segments are
traversed.
=head1 SEE ALSO
L<Math::PlanePath>,
L<Math::PlanePath::DekkingCentres>,
L<Math::PlanePath::CincoCurve>,
L<Math::PlanePath::PeanoCurve>
=head1 HOME PAGE
L<http://user42.tuxfamily.org/math-planepath/index.html>
=head1 LICENSE
Copyright 2011, 2012, 2013, 2014, 2015 Kevin Ryde
This file is part of Math-PlanePath.
Math-PlanePath is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
Math-PlanePath is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
more details.
You should have received a copy of the GNU General Public License along with
Math-PlanePath. If not, see <http://www.gnu.org/licenses/>.
=cut
|