/usr/share/perl5/Math/PlanePath/ComplexPlus.pm is in libmath-planepath-perl 122-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 | # Copyright 2011, 2012, 2013, 2014, 2015 Kevin Ryde
# This file is part of Math-PlanePath.
#
# Math-PlanePath is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by the
# Free Software Foundation; either version 3, or (at your option) any later
# version.
#
# Math-PlanePath is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
# or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
# for more details.
#
# You should have received a copy of the GNU General Public License along
# with Math-PlanePath. If not, see <http://www.gnu.org/licenses/>.
# math-image --path=ComplexPlus --all --scale=5
#
# math-image --path=ComplexPlus --expression='i<128?i:0' --output=numbers --size=132x40
#
# Realpart:
# math-image --path=ComplexPlus,realpart=2 --expression='i<50?i:0' --output=numbers --size=180
#
# Arms:
# math-image --path=ComplexPlus,arms=2 --expression='i<64?i:0' --output=numbers --size=79
package Math::PlanePath::ComplexPlus;
use 5.004;
use strict;
#use List::Util 'max';
*max = \&Math::PlanePath::_max;
use vars '$VERSION', '@ISA';
$VERSION = 122;
use Math::PlanePath;
@ISA = ('Math::PlanePath');
*_divrem_mutate = \&Math::PlanePath::_divrem_mutate;
use Math::PlanePath::Base::Generic
'is_infinite',
'round_nearest';
use Math::PlanePath::Base::Digits
'round_up_pow',
'digit_split_lowtohigh',
'digit_join_lowtohigh';
# uncomment this to run the ### lines
#use Smart::Comments;
use constant n_start => 0;
use constant parameter_info_array =>
[ { name => 'realpart',
display => 'Real Part',
type => 'integer',
default => 1,
minimum => 1,
width => 2,
description => 'Real part r in the i+r complex base.',
},
{ name => 'arms',
share_key => 'arms_2',
display => 'Arms',
type => 'integer',
minimum => 1,
maximum => 2,
default => 1,
width => 1,
description => 'Arms',
when_name => 'realpart',
when_value => '1',
},
];
# b=i+r
# theta = atan(1/r)
sub x_negative_at_n {
my ($self) = @_;
if ($self->{'realpart'} == 1) { return 8; }
return $self->{'norm'} ** _ceil((2*atan2(1,1)) / atan2(1,$self->{'realpart'}));
}
sub y_negative_at_n {
my ($self) = @_;
if ($self->{'realpart'} == 1) { return 32; }
return $self->{'norm'} ** _ceil((4*atan2(1,1)) / atan2(1,$self->{'realpart'}));
}
sub _ceil {
my ($x) = @_;
my $int = int($x);
return ($x > $int ? $int+1 : $int);
}
sub absdx_minimum {
my ($self) = @_;
return ($self->{'realpart'} == 1
? 0 # i+1 N=1 dX=0,dY=1
: 1); # i+r otherwise always diff
}
# use constant dir_maximum_dxdy => (0,0); # supremum, almost full way
sub turn_any_straight {
my ($self) = @_;
return ($self->{'realpart'} != 1); # realpart=1 never straight
}
#------------------------------------------------------------------------------
sub new {
my $self = shift->SUPER::new(@_);
my $realpart = $self->{'realpart'};
if (! defined $realpart || $realpart < 1) {
$self->{'realpart'} = $realpart = 1;
}
$self->{'norm'} = $realpart*$realpart + 1;
my $arms = $self->{'arms'};
if (! defined $arms || $arms <= 0 || $realpart != 1) { $arms = 1; }
elsif ($arms > 2) { $arms = 2; }
$self->{'arms'} = $arms;
return $self;
}
sub n_to_xy {
my ($self, $n) = @_;
### ComplexPlus n_to_xy(): $n
if ($n < 0) { return; }
if (is_infinite($n)) { return ($n,$n); }
{
my $int = int($n);
### $int
### $n
if ($n != $int) {
my ($x1,$y1) = $self->n_to_xy($int);
my ($x2,$y2) = $self->n_to_xy($int+$self->{'arms'});
my $frac = $n - $int; # inherit possible BigFloat
my $dx = $x2-$x1;
my $dy = $y2-$y1;
return ($frac*$dx + $x1, $frac*$dy + $y1);
}
$n = $int; # BigFloat int() gives BigInt, use that
}
my $realpart = $self->{'realpart'};
my $norm = $self->{'norm'};
### $norm
### $realpart
my $x = my $y = ($n * 0); # inherit bignum
my $dx;
my $dy = 0;
{
my $arm = _divrem_mutate ($n, $self->{'arms'});
if ($arm) {
$y += 1; # start X=0,Y=1
$dx = -1;
} else {
$dx = 1;
}
}
foreach my $digit (digit_split_lowtohigh($n,$norm)) {
### at: "$x,$y digit=$digit dxdy=$dx,$dy"
$x += $dx * $digit;
$y += $dy * $digit;
# multiply i+r, ie. (dx,dy) = (dx + i*dy)*(i+$realpart)
($dx,$dy) = ($realpart*$dx - $dy, $dx + $realpart*$dy);
}
### final: "$x,$y"
return ($x,$y);
}
sub xy_to_n {
my ($self, $x, $y) = @_;
### ComplexPlus xy_to_n(): "$x, $y"
$x = round_nearest ($x);
$y = round_nearest ($y);
my $realpart = $self->{'realpart'};
{
my $rx = $realpart*$x;
my $ry = $realpart*$y;
foreach my $overflow ($rx+$ry, $rx-$ry) {
if (is_infinite($overflow)) { return $overflow; }
}
}
my $orig_x = $x;
my $orig_y = $y;
my $norm = $self->{'norm'};
my $zero = ($x * 0 * $y); # inherit bignum 0
my @n; # digits low to high
my $prev_x = 0;
my $prev_y = 0;
while ($x || $y) {
my $neg_y = $x - $y*$realpart;
my $digit = $neg_y % $norm;
### at: "$x,$y n=$n digit $digit"
push @n, $digit;
$x -= $digit;
$neg_y -= $digit;
### assert: ($neg_y % $norm) == 0
### assert: (($x * $realpart + $y) % $norm) == 0
# divide i+r = mul (i-r)/(i^2 - r^2)
# = mul (i-r)/-norm
# is (i*y + x) * (i-realpart)/-norm
# x = [ x*-realpart - y ] / -norm
# = [ x*realpart + y ] / norm
# y = [ y*-realpart + x ] / -norm
# = [ y*realpart - x ] / norm
#
($x,$y) = (($x*$realpart+$y)/$norm, -$neg_y/$norm);
if ($x == $prev_x && $y == $prev_y) {
last;
}
$prev_x = $x;
$prev_y = $y;
}
### final: "$x,$y n=$n cf arms $self->{'arms'}"
if ($y) {
if ($self->{'arms'} > 1) {
### not on first arm, re-run as: -$orig_x, 1-$orig_y
local $self->{'arms'} = 1;
my $n = $self->xy_to_n(-$orig_x,1-$orig_y);
if (defined $n) {
return 1 + 2*$n; # 180 degrees
}
}
### X,Y not visited
return undef;
}
my $n = digit_join_lowtohigh (\@n, $norm, $zero);
if ($self->{'arms'} > 1) {
$n *= 2;
}
return $n;
}
# not exact
sub rect_to_n_range {
my ($self, $x1,$y1, $x2,$y2) = @_;
### ComplexPlus rect_to_n_range(): "$x1,$y1 $x2,$y2"
my $xm = max(abs($x1),abs($x2));
my $ym = max(abs($y1),abs($y2));
my $n_hi = ($xm*$xm + $ym*$ym) * $self->{'arms'};
if ($self->{'realpart'} == 1) {
$n_hi *= 16; # 2**4
}
return (0, int($n_hi));
}
#------------------------------------------------------------------------------
# levels
sub level_to_n_range {
my ($self, $level) = @_;
return (0, $self->{'norm'}**$level * $self->{'arms'} - 1);
}
sub n_to_level {
my ($self, $n) = @_;
if ($n < 0) { return undef; }
if (is_infinite($n)) { return $n; }
$n = round_nearest($n);
_divrem_mutate ($n, $self->{'arms'});
my ($pow, $exp) = round_up_pow ($n+1, $self->{'norm'});
return $exp;
}
#------------------------------------------------------------------------------
1;
__END__
=for stopwords eg Ryde Math-PlanePath ie Nstart Nlevel
=head1 NAME
Math::PlanePath::ComplexPlus -- points in complex base i+r
=head1 SYNOPSIS
use Math::PlanePath::ComplexPlus;
my $path = Math::PlanePath::ComplexPlus->new;
my ($x, $y) = $path->n_to_xy (123);
=head1 DESCRIPTION
This path traverses points by a complex number base i+r with integer
rE<gt>=1. The default is base i+1
30 31 14 15 5
28 29 12 13 4
26 27 22 23 10 11 6 7 3
24 25 20 21 8 9 4 5 2
62 63 46 47 18 19 2 3 1
60 61 44 45 16 17 0 1 <- Y=0
58 59 54 55 42 43 38 39 -1
56 57 52 53 40 41 36 37 -2
50 51 94 95 34 35 78 79 -3
48 49 92 93 32 33 76 77 -4
90 91 86 87 74 75 70 71 -5
88 89 84 85 72 73 68 69 -6
126 127 110 111 82 83 66 67 -7
124 125 108 109 80 81 64 65 -8
122 123 118 119 106 107 102 103 -9
120 121 116 117 104 105 100 101 -10
114 115 98 99 -11
112 113 96 97 -12
^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^
-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 X=0 1 2
The shape of the default i+1 points N=0 to N=2^k-1 inclusive is equivalent
to the twindragon turned 135 degrees. Each complex base point corresponds
to a unit square inside the twindragon.
=head2 Real Part
Option C<realpart =E<gt> $r> selects another r for complex base b=i+r. For
example
realpart => 2
45 46 47 48 49 8
40 41 42 43 44 7
35 36 37 38 39 6
30 31 32 33 34 5
25 26 27 28 29 20 21 22 23 24 4
15 16 17 18 19 3
10 11 12 13 14 2
5 6 7 8 9 1
0 1 2 3 4 <- Y=0
^
X=0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
N is broken into digits of a base norm=r*r+1, ie. digits 0 to r*r inclusive.
norm = r*r + 1
Nstart = 0
Nlevel = norm^level - 1
The low digit of N makes horizontal runs of r*r+1 many points, such as above
N=0 to N=4, then N=5 to N=9, etc. In the default r=1 these runs are 2 long.
For r=2 shown above they're 2*2+1=5 long, or r=3 would be 3*3+1=10, etc.
The offset for each successive run is i+r, ie. Y=1,X=r such as the N=5 shown
above. Then the offset for the next level is (i+r)^2 = (2r*i + r^2-1) so
N=25 begins at Y=2*r=4, X=r*r-1=3. In general each level adds an angle
angle = atan(1/r)
Nlevel_angle = level * angle
So the points spiral around anti-clockwise. For r=1 the angle is
atan(1/1)=45 degrees, so that for example level=4 is angle 4*45=180 degrees,
putting N=2^4=16 on the negative X axis as shown in the first sample above.
As r becomes bigger the angle becomes smaller, making it spiral more slowly.
The points never fill the plane, but the set of points N=0 to Nlevel are all
touching.
=head2 Arms
For C<realpart =E<gt> 1>, an optional C<arms =E<gt> 2> adds a second copy of
the curve rotated 180 degrees and starting from X=0,Y=1. It meshes
perfectly to fill the plane. Each arm advances successively so N=0,2,4,etc
is the plain path and N=1,3,5,7,etc is the copy
arms=>2
60 62 28 30 5
56 58 24 26 4
52 54 44 46 20 22 12 14 3
48 50 40 42 16 18 8 10 2
36 38 3 1 4 6 35 33 1
32 34 7 5 0 2 39 37 <- Y=0
11 9 19 17 43 41 51 49 -1
15 13 23 21 47 45 55 53 -2
27 25 59 57 -3
31 29 63 61 -4
^
-6 -5 -4 -3 -2 -1 X=0 1 2 3 4 5 6
There's no C<arms> parameter for other C<realpart> values as yet, only i+1.
Is there a good rotated arrangement for others? Do "norm" many copies fill
the plane in general?
=head1 FUNCTIONS
See L<Math::PlanePath/FUNCTIONS> for behaviour common to all path classes.
=over 4
=item C<$path = Math::PlanePath::ComplexPlus-E<gt>new ()>
Create and return a new path object.
=item C<($x,$y) = $path-E<gt>n_to_xy ($n)>
Return the X,Y coordinates of point number C<$n> on the path. Points begin
at 0 and if C<$n E<lt> 0> then the return is an empty list.
=back
=head2 Level Methods
=over
=item C<($n_lo, $n_hi) = $path-E<gt>level_to_n_range($level)>
Return C<(0, 2**$level - 1)>, or for 2 arms return C<(0, 2 * 2**$level -
1)>. With the C<realpart> option return C<(0, $norm**$level - 1)> where
norm=realpart^2+1.
=back
=head1 SEE ALSO
L<Math::PlanePath>,
L<Math::PlanePath::ComplexMinus>,
L<Math::PlanePath::ComplexRevolving>,
L<Math::PlanePath::DragonCurve>
The author's mathematical write-up of the dragon curve includes some
correspondences and measurements for the i+1 complex base shape
=over
L<http://user42.tuxfamily.org/dragon/index.html>
=back
=head1 HOME PAGE
L<http://user42.tuxfamily.org/math-planepath/index.html>
=head1 LICENSE
Copyright 2011, 2012, 2013, 2014, 2015 Kevin Ryde
This file is part of Math-PlanePath.
Math-PlanePath is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
Math-PlanePath is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
more details.
You should have received a copy of the GNU General Public License along with
Math-PlanePath. If not, see <http://www.gnu.org/licenses/>.
=cut
|