This file is indexed.

/usr/share/perl5/Math/PlanePath/ComplexPlus.pm is in libmath-planepath-perl 122-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
# Copyright 2011, 2012, 2013, 2014, 2015 Kevin Ryde

# This file is part of Math-PlanePath.
#
# Math-PlanePath is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by the
# Free Software Foundation; either version 3, or (at your option) any later
# version.
#
# Math-PlanePath is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
# or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
# for more details.
#
# You should have received a copy of the GNU General Public License along
# with Math-PlanePath.  If not, see <http://www.gnu.org/licenses/>.



# math-image --path=ComplexPlus --all --scale=5
#
# math-image --path=ComplexPlus --expression='i<128?i:0' --output=numbers --size=132x40
#
# Realpart:
# math-image --path=ComplexPlus,realpart=2 --expression='i<50?i:0' --output=numbers --size=180
#
# Arms:
# math-image --path=ComplexPlus,arms=2 --expression='i<64?i:0' --output=numbers --size=79



package Math::PlanePath::ComplexPlus;
use 5.004;
use strict;
#use List::Util 'max';
*max = \&Math::PlanePath::_max;

use vars '$VERSION', '@ISA';
$VERSION = 122;

use Math::PlanePath;
@ISA = ('Math::PlanePath');
*_divrem_mutate = \&Math::PlanePath::_divrem_mutate;

use Math::PlanePath::Base::Generic
  'is_infinite',
  'round_nearest';
use Math::PlanePath::Base::Digits
  'round_up_pow',
  'digit_split_lowtohigh',
  'digit_join_lowtohigh';

# uncomment this to run the ### lines
#use Smart::Comments;


use constant n_start => 0;
use constant parameter_info_array =>
  [ { name      => 'realpart',
      display   => 'Real Part',
      type      => 'integer',
      default   => 1,
      minimum   => 1,
      width     => 2,
      description => 'Real part r in the i+r complex base.',
    },
    { name      => 'arms',
      share_key => 'arms_2',
      display   => 'Arms',
      type      => 'integer',
      minimum   => 1,
      maximum   => 2,
      default   => 1,
      width     => 1,
      description => 'Arms',
      when_name   => 'realpart',
      when_value  => '1',
    },
  ];

# b=i+r
# theta = atan(1/r)
sub x_negative_at_n {
  my ($self) = @_;
  if ($self->{'realpart'} == 1) { return 8; }
  return $self->{'norm'} ** _ceil((2*atan2(1,1)) / atan2(1,$self->{'realpart'}));
}
sub y_negative_at_n {
  my ($self) = @_;
  if ($self->{'realpart'} == 1) { return 32; }
  return $self->{'norm'} ** _ceil((4*atan2(1,1)) / atan2(1,$self->{'realpart'}));
}
sub _ceil {
  my ($x) = @_;
  my $int = int($x);
  return ($x > $int ? $int+1 : $int);
}

sub absdx_minimum {
  my ($self) = @_;
  return ($self->{'realpart'} == 1
          ? 0   # i+1 N=1 dX=0,dY=1
          : 1); # i+r otherwise always diff
}
# use constant dir_maximum_dxdy => (0,0);  # supremum, almost full way

sub turn_any_straight {
  my ($self) = @_;
  return ($self->{'realpart'} != 1);  # realpart=1 never straight
}


#------------------------------------------------------------------------------
sub new {
  my $self = shift->SUPER::new(@_);

  my $realpart = $self->{'realpart'};
  if (! defined $realpart || $realpart < 1) {
    $self->{'realpart'} = $realpart = 1;
  }
  $self->{'norm'} = $realpart*$realpart + 1;

  my $arms = $self->{'arms'};
  if (! defined $arms || $arms <= 0 || $realpart != 1) { $arms = 1; }
  elsif ($arms > 2) { $arms = 2; }
  $self->{'arms'} = $arms;

  return $self;
}

sub n_to_xy {
  my ($self, $n) = @_;
  ### ComplexPlus n_to_xy(): $n

  if ($n < 0) { return; }
  if (is_infinite($n)) { return ($n,$n); }

  {
    my $int = int($n);
    ### $int
    ### $n
    if ($n != $int) {
      my ($x1,$y1) = $self->n_to_xy($int);
      my ($x2,$y2) = $self->n_to_xy($int+$self->{'arms'});
      my $frac = $n - $int;  # inherit possible BigFloat
      my $dx = $x2-$x1;
      my $dy = $y2-$y1;
      return ($frac*$dx + $x1, $frac*$dy + $y1);
    }
    $n = $int;       # BigFloat int() gives BigInt, use that
  }

  my $realpart = $self->{'realpart'};
  my $norm = $self->{'norm'};
  ### $norm
  ### $realpart

  my $x = my $y = ($n * 0); # inherit bignum
  my $dx;
  my $dy = 0;
  {
    my $arm = _divrem_mutate ($n, $self->{'arms'});
    if ($arm) {
      $y += 1;   # start X=0,Y=1
      $dx = -1;
    } else {
      $dx = 1;
    }
  }

  foreach my $digit (digit_split_lowtohigh($n,$norm)) {
    ### at: "$x,$y  digit=$digit  dxdy=$dx,$dy"

    $x += $dx * $digit;
    $y += $dy * $digit;

    # multiply i+r, ie. (dx,dy) = (dx + i*dy)*(i+$realpart)
    ($dx,$dy) = ($realpart*$dx - $dy, $dx + $realpart*$dy);
  }

  ### final: "$x,$y"
  return ($x,$y);
}

sub xy_to_n {
  my ($self, $x, $y) = @_;
  ### ComplexPlus xy_to_n(): "$x, $y"

  $x = round_nearest ($x);
  $y = round_nearest ($y);

  my $realpart = $self->{'realpart'};
  {
    my $rx = $realpart*$x;
    my $ry = $realpart*$y;
    foreach my $overflow ($rx+$ry, $rx-$ry) {
      if (is_infinite($overflow)) { return $overflow; }
    }
  }

  my $orig_x = $x;
  my $orig_y = $y;

  my $norm = $self->{'norm'};
  my $zero = ($x * 0 * $y);  # inherit bignum 0
  my @n; # digits low to high

  my $prev_x = 0;
  my $prev_y = 0;
  while ($x || $y) {
    my $neg_y = $x - $y*$realpart;
    my $digit = $neg_y % $norm;
    ### at: "$x,$y  n=$n  digit $digit"

    push @n, $digit;
    $x -= $digit;
    $neg_y -= $digit;

    ### assert: ($neg_y % $norm) == 0
    ### assert: (($x * $realpart + $y) % $norm) == 0

    # divide i+r = mul (i-r)/(i^2 - r^2)
    #            = mul (i-r)/-norm
    # is (i*y + x) * (i-realpart)/-norm
    #  x = [ x*-realpart - y ] / -norm
    #    = [ x*realpart + y ] / norm
    #  y = [ y*-realpart + x ] / -norm
    #    = [ y*realpart - x ] / norm
    #
    ($x,$y) = (($x*$realpart+$y)/$norm, -$neg_y/$norm);

    if ($x == $prev_x && $y == $prev_y) {
      last;
    }
    $prev_x = $x;
    $prev_y = $y;
  }

  ### final: "$x,$y n=$n cf arms $self->{'arms'}"

  if ($y) {
    if ($self->{'arms'} > 1) {
      ### not on first arm, re-run as: -$orig_x, 1-$orig_y
      local $self->{'arms'} = 1;
      my $n = $self->xy_to_n(-$orig_x,1-$orig_y);
      if (defined $n) {
        return 1 + 2*$n; # 180 degrees
      }
    }
    ### X,Y not visited
    return undef;
  }

  my $n = digit_join_lowtohigh (\@n, $norm, $zero);
  if ($self->{'arms'} > 1) {
    $n *= 2;
  }
  return $n;
}

# not exact
sub rect_to_n_range {
  my ($self, $x1,$y1, $x2,$y2) = @_;
  ### ComplexPlus rect_to_n_range(): "$x1,$y1  $x2,$y2"

  my $xm = max(abs($x1),abs($x2));
  my $ym = max(abs($y1),abs($y2));
  my $n_hi = ($xm*$xm + $ym*$ym) * $self->{'arms'};
  if ($self->{'realpart'} == 1) {
    $n_hi *= 16;  # 2**4
  }
  return (0, int($n_hi));
}

#------------------------------------------------------------------------------
# levels

sub level_to_n_range {
  my ($self, $level) = @_;
  return (0,  $self->{'norm'}**$level * $self->{'arms'} - 1);
}
sub n_to_level {
  my ($self, $n) = @_;
  if ($n < 0) { return undef; }
  if (is_infinite($n)) { return $n; }
  $n = round_nearest($n);
  _divrem_mutate ($n, $self->{'arms'});
  my ($pow, $exp) = round_up_pow ($n+1, $self->{'norm'});
  return $exp;
}

#------------------------------------------------------------------------------
1;
__END__

=for stopwords eg Ryde Math-PlanePath ie Nstart Nlevel

=head1 NAME

Math::PlanePath::ComplexPlus -- points in complex base i+r

=head1 SYNOPSIS

 use Math::PlanePath::ComplexPlus;
 my $path = Math::PlanePath::ComplexPlus->new;
 my ($x, $y) = $path->n_to_xy (123);

=head1 DESCRIPTION

This path traverses points by a complex number base i+r with integer
rE<gt>=1.  The default is base i+1

                         30  31          14  15                 5
                     28  29          12  13                     4
                         26  27  22  23  10  11   6   7         3
                     24  25  20  21   8   9   4   5             2
         62  63          46  47  18  19           2   3         1
     60  61          44  45  16  17           0   1         <- Y=0
         58  59  54  55  42  43  38  39                        -1
     56  57  52  53  40  41  36  37                            -2
                 50  51  94  95  34  35  78  79                -3
             48  49  92  93  32  33  76  77                    -4
                         90  91  86  87  74  75  70  71        -5
                     88  89  84  85  72  73  68  69            -6
        126 127         110 111  82  83          66  67        -7
    124 125         108 109  80  81          64  65            -8
        122 123 118 119 106 107 102 103                        -9
    120 121 116 117 104 105 100 101                           -10
                114 115          98  99                       -11
            112 113          96  97                           -12

      ^   ^   ^   ^   ^   ^   ^   ^   ^   ^   ^   ^   ^
    -10  -9  -8  -7  -6  -5  -4  -3  -2  -1  X=0  1   2

The shape of the default i+1 points N=0 to N=2^k-1 inclusive is equivalent
to the twindragon turned 135 degrees.  Each complex base point corresponds
to a unit square inside the twindragon.

=head2 Real Part

Option C<realpart =E<gt> $r> selects another r for complex base b=i+r.  For
example

    realpart => 2
                                     45 46 47 48 49      8
                               40 41 42 43 44            7
                         35 36 37 38 39                  6
                   30 31 32 33 34                        5
             25 26 27 28 29 20 21 22 23 24               4
                      15 16 17 18 19                     3
                10 11 12 13 14                           2
           5  6  7  8  9                                 1
     0  1  2  3  4                                   <- Y=0

     ^
    X=0 1  2  3  4  5  6  7  8  9 10 11 12 13 14 15

N is broken into digits of a base norm=r*r+1, ie. digits 0 to r*r inclusive.

    norm = r*r + 1
    Nstart = 0
    Nlevel = norm^level - 1

The low digit of N makes horizontal runs of r*r+1 many points, such as above
N=0 to N=4, then N=5 to N=9, etc.  In the default r=1 these runs are 2 long.
For r=2 shown above they're 2*2+1=5 long, or r=3 would be 3*3+1=10, etc.

The offset for each successive run is i+r, ie. Y=1,X=r such as the N=5 shown
above.  Then the offset for the next level is (i+r)^2 = (2r*i + r^2-1) so
N=25 begins at Y=2*r=4, X=r*r-1=3.  In general each level adds an angle

    angle = atan(1/r)
    Nlevel_angle = level * angle

So the points spiral around anti-clockwise.  For r=1 the angle is
atan(1/1)=45 degrees, so that for example level=4 is angle 4*45=180 degrees,
putting N=2^4=16 on the negative X axis as shown in the first sample above.

As r becomes bigger the angle becomes smaller, making it spiral more slowly.
The points never fill the plane, but the set of points N=0 to Nlevel are all
touching.

=head2 Arms

For C<realpart =E<gt> 1>, an optional C<arms =E<gt> 2> adds a second copy of
the curve rotated 180 degrees and starting from X=0,Y=1.  It meshes
perfectly to fill the plane.  Each arm advances successively so N=0,2,4,etc
is the plain path and N=1,3,5,7,etc is the copy

    arms=>2

        60  62          28  30                                 5
    56  58          24  26                                     4
        52  54  44  46  20  22  12  14                         3
    48  50  40  42  16  18   8  10                             2
                36  38   3   1   4   6  35  33                 1
            32  34   7   5   0   2  39  37                 <- Y=0
                        11   9  19  17  43  41  51  49        -1
                    15  13  23  21  47  45  55  53            -2
                                27  25          59  57        -3
                            31  29          63  61            -4

                             ^   
    -6  -5  -4  -3  -2  -1  X=0  1   2   3   4   5   6

There's no C<arms> parameter for other C<realpart> values as yet, only i+1.
Is there a good rotated arrangement for others?  Do "norm" many copies fill
the plane in general?

=head1 FUNCTIONS

See L<Math::PlanePath/FUNCTIONS> for behaviour common to all path classes.

=over 4

=item C<$path = Math::PlanePath::ComplexPlus-E<gt>new ()>

Create and return a new path object.

=item C<($x,$y) = $path-E<gt>n_to_xy ($n)>

Return the X,Y coordinates of point number C<$n> on the path.  Points begin
at 0 and if C<$n E<lt> 0> then the return is an empty list.

=back

=head2 Level Methods

=over

=item C<($n_lo, $n_hi) = $path-E<gt>level_to_n_range($level)>

Return C<(0, 2**$level - 1)>, or for 2 arms return C<(0, 2 * 2**$level -
1)>.  With the C<realpart> option return C<(0, $norm**$level - 1)> where
norm=realpart^2+1.

=back

=head1 SEE ALSO

L<Math::PlanePath>,
L<Math::PlanePath::ComplexMinus>,
L<Math::PlanePath::ComplexRevolving>,
L<Math::PlanePath::DragonCurve>

The author's mathematical write-up of the dragon curve includes some
correspondences and measurements for the i+1 complex base shape

=over

L<http://user42.tuxfamily.org/dragon/index.html>

=back

=head1 HOME PAGE

L<http://user42.tuxfamily.org/math-planepath/index.html>

=head1 LICENSE

Copyright 2011, 2012, 2013, 2014, 2015 Kevin Ryde

This file is part of Math-PlanePath.

Math-PlanePath is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.

Math-PlanePath is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
more details.

You should have received a copy of the GNU General Public License along with
Math-PlanePath.  If not, see <http://www.gnu.org/licenses/>.

=cut