This file is indexed.

/usr/share/perl5/Math/PlanePath/ChanTree.pm is in libmath-planepath-perl 122-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
# Copyright 2012, 2013, 2014, 2015 Kevin Ryde

# This file is part of Math-PlanePath.
#
# Math-PlanePath is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by the
# Free Software Foundation; either version 3, or (at your option) any later
# version.
#
# Math-PlanePath is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
# or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
# for more details.
#
# You should have received a copy of the GNU General Public License along
# with Math-PlanePath.  If not, see <http://www.gnu.org/licenses/>.


# digit_direction LtoH
# digit_order     HtoL
# reduced = bool
# points = even, all_mul, all_div

# points=all wrong
#
# Chan corollary 3 taking frac(2n)   = b(2n)   /   b(2n+1)
#                         frac(2n+1) = b(2n+1) / 2*b(2n+2)
# at N odd multiply 2 into denominator,
# which is divide out 2 from numerator since b(2n+1) odd terms are even
#

package Math::PlanePath::ChanTree;
use 5.004;
use strict;
#use List::Util 'max';
*max = \&Math::PlanePath::_max;

use vars '$VERSION', '@ISA';
$VERSION = 122;
use Math::PlanePath;
@ISA = ('Math::PlanePath');

use Math::PlanePath::Base::Generic
  'is_infinite',
  'round_nearest';
use Math::PlanePath::Base::Digits
  'round_down_pow',
  'digit_split_lowtohigh',
  'digit_join_lowtohigh';
*_divrem = \&Math::PlanePath::_divrem;
*_divrem_mutate = \&Math::PlanePath::_divrem_mutate;

use Math::PlanePath::CoprimeColumns;
*_coprime = \&Math::PlanePath::CoprimeColumns::_coprime;

use Math::PlanePath::GcdRationals;
*_gcd = \&Math::PlanePath::GcdRationals::_gcd;

# uncomment this to run the ### lines
# use Smart::Comments;


use constant parameter_info_array =>
  [ { name            => 'k',
      display         => 'k',
      type            => 'integer',
      default         => 3,
      minimum         => 2,
    },

    # Not sure about these yet.
    # { name            => 'reduced',
    #   display         => 'Reduced',
    #   type            => 'boolean',
    #   default         => 0,
    # },
    # { name            => 'points',
    #   share_key       => 'points_ea',
    #   display         => 'Points',
    #   type            => 'enum',
    #   default         => 'even',
    #   choices         => ['even','all_mul','all_div'],
    #   choices_display => ['Even','All Mul','All Div'],
    #   when_name       => 'k',
    #   when_condition  => 'odd',
    # },
    # { name            => 'digit_order',
    #   display         => 'Digit Direction',
    #   type            => 'enum',
    #   default         => 'HtoL',
    #   choices         => ['HtoL','LtoH'],
    #   choices_display => ['High to Low','Low to High'],
    # },

    Math::PlanePath::Base::Generic::parameter_info_nstart0(),
  ];

use constant class_x_negative => 0;
use constant class_y_negative => 0;

use constant x_minimum => 1;
use constant y_minimum => 1;

sub sumxy_minimum {
  my ($self) = @_;
  return ($self->{'reduced'} || $self->{'k'} == 2
          ? 2    # X=1,Y=1 if reduced or k=2
          : 3);  # X=1,Y=2
}
sub absdiffxy_minimum {
  my ($self) = @_;
  return ($self->{'k'} & 1
          ? 1    # k odd, X!=Y since one odd one even
          : 0);  # k even, has X=Y in top row
}
sub rsquared_minimum {
  my ($self) = @_;
  return ($self->{'k'} == 2
          || ($self->{'reduced'} && ($self->{'k'} & 1) == 0)
          ? 2    # X=1,Y=1 reduced k even, including k=2 top 1/1
          : 5);  # X=1,Y=2
}
sub gcdxy_maximum {
  my ($self) = @_;
  return ($self->{'k'} == 2       # k=2, RationalsTree CW above
          || $self->{'reduced'}
          ? 1
          : undef);  # other, unlimited
}

sub absdx_minimum {
  my ($self) = @_;
  return ($self->{'k'} & 1
          ? 1    # k odd
          : 0);  # k even, dX=0,dY=-1 at N=k/2 middle of roots
}
sub absdy_minimum {
  my ($self) = @_;
  return ($self->{'k'} == 2 || ($self->{'k'} & 1)
          ? 1    # k=2 or k odd
          : 0);  # k even, dX=1,dY=0 at N=k/2-1 middle of roots
}

sub dir_minimum_dxdy {
  my ($self) = @_;
  return ($self->{'k'} == 2
          ? (0,1)   # k=2, per RationalsTree CW

          # otherwise East
          # k even exact  dX=1,dY=0 middle of roots
          # k odd infimum dX=big,dY=-1 eg k=5 N="2222220"
          : (1,0));
}

sub tree_num_children_list {
  my ($self) = @_;
  return ($self->{'k'});   # complete tree, always k children
}
use constant tree_n_to_subheight => undef; # complete trees, all infinite

sub turn_any_left {
  my ($self) = @_;
  return ($self->{'k'} <= 3 || $self->{'reduced'});
}
sub turn_any_straight {
  my ($self) = @_;
  return ($self->{'k'} >= 7);
}

# left reduced=1,k=5,7,9,11 at N=51,149,327,609,...
sub _UNDOCUMENTED__turn_any_left_at_n {
  my ($self) = @_;
  if ($self->{'k'} == 5 && $self->{'reduced'}) { return 51; }
  if ($self->{'k'} == 7 && $self->{'reduced'}) { return 149; }
  return undef;
}


#------------------------------------------------------------------------------

sub new {
  my $self = shift->SUPER::new(@_);

  $self->{'digit_order'} ||= 'HtoL'; # default

  my $k = ($self->{'k'} ||= 3);  # default
  $self->{'half_k'} = int($k / 2);

  if (! defined $self->{'n_start'}) {
    $self->{'n_start'} = 0;      # default
  }

  $self->{'points'} ||= 'even';
  return $self;
}

# rows
# level=0   k-1
# level=1   k * (k-1)
# level=2   k^2 * (k-1)
# total (k-1)*(1+k+k^2+...+k^level)
#     = (k-1)*(k^(level+1) - 1)/(k-1)
#     = k^(level+1) - 1
#
# middle odd
# k(r+s)/2-r-2s / k(r+s)/2-s
# (k-1)(r+s)/2+r / (k-1)(r+s)/2+s
# k(r+s)/2-r-2s / k(r+s)/2-s
#
#   k=5
#   5(r+2)/2 -r-2s / 5(r+s)/2-s
#
# (1 + 2*x + 3*x^2 + 2*x^3 + x^4 + 2*x^5 + 3*x^6 + 2*x^7 + x^8)
# * (1 + 2*x^5 + 3*x^10 + 2*x^15 + x^20 + 2*x^25 + 3*x^30 + 2*x^35 + x^40)
# * (1 + 2*x^(25*1) + 3*x^(25*2) + 2*x^(25*3) + x^(25*4) + 2*x^(25*5) + 3*x^(25*6) + 2*x^(25*7) + x^(25*8))
#
# 1 2 3 2
# 1 4 7 8 5 2 7 12 13 8 3 8

# x^48 + 2*x^47 + 3*x^46 + 2*x^45 + x^44 + 4*x^43 + 7*x^42 + 8*x^41 + 5*x^40 + 2*x^39 + 7*x^38 + 12*x^37 + 13*x^36 + 8*x^35 + 3*x^34 + 8*x^33 + 13*x^32 + 12*x^31 + 7*x^30 + 2*x^29 + 5*x^28 + 8*x^27 + 7*x^26 + 4*x^25 + x^24 + 4*x^23 + 7*x^22 + 8*x^21 + 5*x^20 + 2*x^19 + 7*x^18 + 12*x^17 + 13*x^16 + 8*x^15 + 3*x^14 + 8*x^13 + 13*x^12 + 12*x^11 + 7*x^10 + 2*x^9 + 5*x^8 + 8*x^7 + 7*x^6 + 4*x^5 + x^4 + 2*x^3 + 3*x^2 + 2*x + 1


sub n_to_xy {
  my ($self, $n) = @_;
  ### ChanTree n_to_xy(): "$n   k=$self->{'k'} reduced=".($self->{'reduced'}||0)

  if ($n < $self->{'n_start'}) { return; }

  $n -= $self->{'n_start'}-1;
  ### 1-based N: $n
  if (is_infinite($n)) { return ($n,$n); }

  {
    my $int = int($n);
    if ($n != $int) {
      my $frac = $n - $int;  # inherit possible BigFloat/BigRat
      $int += $self->{'n_start'}-1;  # back to n_start() based
      my ($x1,$y1) = $self->n_to_xy($int);
      my ($x2,$y2) = $self->n_to_xy($int+1);
      my $dx = $x2-$x1;
      my $dy = $y2-$y1;
      return ($frac*$dx + $x1, $frac*$dy + $y1);
    }
  }

  my $k = $self->{'k'};
  my $half_k = int($self->{'k'} / 2);
  my $half_ceil = int(($self->{'k'}+1) / 2);
  my @digits = digit_split_lowtohigh ($n, $k);
  ### @digits

  # top 1/2, 2/3, ..., (k/2-1)/(k/2), (k/2)/(k/2) ... 3/2, 2/1
  my $x = (pop @digits) + ($n*0);  # inherit bignum zero
  my $y = $x+1;
  if ($x > $half_k) {
    $x = $k+1 - $x;
  }
  if ($y > $half_k) {
    $y = $k+1 - $y;
  }
  ### top: "x=$x y=$y"


  # 1/2       2/3 3/4 ...
  # 1/4 4/7 7/10 10/13 ...

  # descend
  #
  # middle even
  # (k/2-1)(r+s)-s / (k/2)(r+s)-s
  # (k/2)(r+s)-s / (k/2)(r+s)
  # (k/2)(r+s) / (k/2)(r+s)-r
  # (k/2)(r+s)-r / (k/2-1)(r+s)-r
  #
  # k=4          r/s=1/2
  # r/2r+s         1/4
  # 2r+s/2r+2s     4/6
  # 2r+2s/r+2s     6/5
  # r+2s/s         5/1
  #
  # even eg k=4    half_k==2 half_ceil==2
  #    x + 0*(x+y) / x + 1*(x+y)     0    1x+0y / 2x+1y    <1/2
  #    x + 1*(x+y) /     2*(x+y)     1    2x+1y / 2x+2y    <2/3
  #    2*(x+y)     / 1*(x+y) + y     2    2x+2y / 1x+2y    >3/2
  #    1*(x+y) + y / 0*(x+y) + y     3    1x+2y / 0x+1y    >2/1
  #
  # even eg k=6    half_k==3 half_ceil==3
  #    x + 0*(x+y) / x + 1*(x+y)     0    1x+0y / 2x+1y
  #    x + 1*(x+y) / x + 2*(x+y)     1    2x+1y / 3x+2y
  #    x + 2*(x+y) / 3(x+y)          2    3x+2y / 3x+3y
  #        3*(x+y) / 2*(x+y) + y     3    3x+3y / 2x+3y
  #    2*(x+y) + y / 1*(x+y) + y     4    2x+3y / 1x+2y
  #    1*(x+y) + y / 0*(x+y) + y     5    1x+2y / 0x+1y
  #
  # odd eg k=3   half_k==1 half_ceil==2
  #    x + 0*(x+y) / x + 1*(x+y)     0    1x+0y / 2x+1y    <1/2
  #    x + 1*(x+y) / 1*(x+y) + y     1    2x+1y / 1x+2y
  #    1*(x+y) + y / 0*(x+y) + y     2    1x+2y / 0x+1y    >2/1
  #
  # odd eg k=5   half_k==2 half_ceil==3
  #    x + 0*(x+y) / x + 1*(x+y)     0    1x+0y / 2x+1y    <1/2
  #    x + 1*(x+y) / x + 2*(x+y)     1    2x+1y / 3x+2y    <2/3
  #    x + 2*(x+y) / 2*(x+y) + y     2    3x+2y / 2x+3y
  #    2*(x+y) + y / 1*(x+y) + y     3    2x+3y / 1x+2y    >3/2
  #    1*(x+y) + y / 0*(x+y) + y     4    1x+2y / 0x+1y    >2/1

  if ($self->{'digit_order'} eq 'HtoL') {
    @digits = reverse @digits;   # high to low is the default
  }
  foreach my $digit (@digits) {
    # c1 = 1,2,3,3,2,1 or 1,2,3,2,1
    my $c0 = ($digit <= $half_ceil ? $digit : $k-$digit+1);
    my $c1 = ($digit < $half_ceil ? $digit+1 : $k-$digit);
    my $c2 = ($digit < $half_ceil-1 ? $digit+2 : $k-$digit-1);
    ### at: "x=$x y=$y  next digit=$digit  $c1,$c0  $c2,$c1"

    ($x,$y) = ($x*$c1 + $y*$c0,
               $x*$c2 + $y*$c1);
  }
  ### loop: "x=$x y=$y"

  if (($k & 1) && ($n % 2) == 0) {   # odd N=2n+1 when 1 based
    if ($self->{'points'} eq 'all_div') {
      $x /= 2;
      ### all_div divide X to: "x=$x y=$y"
    } elsif ($self->{'points'} eq 'all_mul') {
      if ($self->{'reduced'} && ($x % 2) == 0) {
        $x /= 2;
        ### all_mul reduced divide X to: "x=$x y=$y"
      } else {
        $y *= 2;
        ### all_mul multiply Y to: "x=$x y=$y"
      }
    }
  }

  if ($self->{'reduced'}) {
    ### unreduced: "x=$x y=$y"
    if ($k & 1) {
      # k odd, gcd(x,y)=k^m for some m, divide out factors of k as possible
      foreach (0 .. scalar(@digits)) {
        last if ($x % $k) || ($y % $k);
        $x /= $k;
        $y /= $k;
      }
    } else {
      # k even, gcd(x,y) divides (k/2)^m for some m, but gcd isn't
      # necessarily equal to such a power, only a divisor of it, so must do
      # full gcd calculation
      my $g = _gcd($x,$y);
      $x /= $g;
      $y /= $g;
    }
  }

  ### n_to_xy() return: "x=$x  y=$y"
  return ($x,$y);
}

# (3*pow+1)/2 - (pow+1)/2
#     = (3*pow + 1 - pow - 1)/2
#     = (2*pow)/2
#     = pow
#
sub xy_to_n {
  my ($self, $x, $y) = @_;
  ### Chan xy_to_n(): "x=$x y=$y   k=$self->{'k'}"

  $x = round_nearest ($x);
  $y = round_nearest ($y);

  if (is_infinite($x)) {
    return $x;  # infinity
  }
  if (is_infinite($y)) {
    return $y;  # infinity
  }
  my $orig_x = $x;
  my $orig_y = $y;

  my $k = $self->{'k'};
  my $zero = ($x * 0 * $y);  # inherit bignum
  my $half_k = $self->{'half_k'};
  my $half_ceil = int(($self->{'k'}+1) / 2);

  if ($k & 1) {
    if ($self->{'points'} eq 'all_div'
        || ($self->{'points'} eq 'all_mul' && ($self->{'reduced'}))) {
      my $n = do {
        local $self->{'points'} = 'even';
        $self->xy_to_n(2*$x,$y)
      };
      if (defined $n) {
        my ($nx,$ny) = $self->n_to_xy($n);
        if ($nx == $x && $ny == $y) {
          return $n;
        }
      }
    }
    if ($self->{'points'} eq 'all_mul' && ($y % 2) == 0) {
      my $n = do {
        local $self->{'points'} = 'even';
        $self->xy_to_n($x,$y/2)
      };
      if (defined $n) {
        my ($nx,$ny) = $self->n_to_xy($n);
        if ($nx == $x && $ny == $y) {
          return $n;
        }
      }
    }

    # k odd cannot have X,Y both odd
    if (($x % 2) && ($y % 2)) {
      return undef;
    }
  }

  if (ref $x && ref $y && $x < 0xFF_FFFF && $y < 0xFF_FFFF) {
    # numize BigInt for speed
    $x = "$x";
    $y = "$y";
  }

  if ($self->{'reduced'}) {
    ### unreduced: "x=$x y=$y"
    unless (_coprime($x,$y)) {
      return undef;
    }
  }

  # left t'th child (t-1)/t < x/y < t/(t+1)       x/y<1  t=1,2,3,...
  #   x/y < (t-1)/t
  #   xt < (t-1)y
  #   xt < ty-y
  #   y < (y-x)t
  #   t > y/(y-x)
  #
  #   lx = x + (t-1)*(x+y) = t*x + (t-1)y         # t=1 upwards
  #   ly = x + t*(x+y)     = (t+1)x + ty
  #   t*lx - (t-1)*ly
  #      = t*t*x - (t-1)(t+1)x
  #      = (t^2 - (t^2 - 1))x
  #      = x
  #   x = t*lx - (t-1)*ly
  #
  #   lx = x + (t-1)*(x+y)
  #   ly = x + t*(x+y)
  #   ly-lx = x+y
  #   y = ly-lx - x
  #     = ly-lx - (t*lx - (t-1)*ly)
  #     = ly-lx - t*lx + (t-1)*ly
  #     = (-1-t)*lx + (1 + t-1)*ly
  #     = t*ly - (t+1)*lx
  #
  # right t'th child is (t+1)/t < x/y < t/(t-1)       x/y > 1
  #   (t+1)*y < t*x
  #   ty+y < tx
  #   t(x-y) > y
  #   t > y/(x-y)
  #
  #   lx = y + t*(x+y)       = t*x + (t+1)y
  #   ly = y + (t-1)*(x+y)   = (t-1)x + ty
  #   t*lx - (t+1)*ly
  #      = t*t*x - (t+1)(t-1)x
  #      = (t^2 - (t^2 - 1))x
  #      = x
  #   x = t*lx - (t+1)*ly
  #
  #   lx-ly = x+y
  #   y = lx-ly - x
  #     = lx - ly - t*lx + (t+1)*ly
  #     = (1-t)*lx + t*ly
  #     = t*ly - (t-1)*lx
  #
  # middle odd
  #   lx = x + t*(x+y)   = (t+1)x + ty
  #   ly = y + t*(x+y)   = tx + (t+1)y
  #   (t+1)*lx - t*ly
  #     = (t+1)*(t+1)*x - t*t*x
  #     = (2t+1)*x
  #   x = ((t+1)*lx - t*ly) / k          with 2t+1=k
  #   lx-ly = x-y
  #   y = ly - lx + x
  #     = x-diff
  #   ky = kx-k*diff
  #
  #   (t+1)*ly - t*lx
  #     = (t+1)*(t+1)*y - t*t*y
  #     = (2t+1)*y
  #
  # eg. k=11 x=6 y=5 t=5 -> child_x=6+5*(6+5)=61 child_y=5+5*(6+5)=60
  #     N=71 digits=5,6 top=6,5 -> 61,60
  #     low diff=11-10=1  k*ly-k*lx + x
  #
  # middle even first, t=k/2
  #   lx = tx + (t-1)y      # eg. x + 2*(x+y) / 3(x+y)  =  3x+2y / 3x+3y
  #   ly = tx + ty
  #   y = ly-lx
  #   t*x = ly - t*y
  #   x = ly/t - y
  #   eg k=4 lx=6,ly=10 t=2  y=10-6=4  x=10/2-4=1
  # middle even second, t=k/2
  #   lx = tx + ty          # eg. 3*(x+y) / 2*(x+y) + y  =  3x+3y / 2x+3y
  #   ly = (t-1)x + ty
  #   x = lx-ly
  #   t*y = lx - t*x
  #   y = lx/t - x

  my @digits;
  for (;;) {
    ### at: "x=$x, y=$y"
    ### assert: $x==int($x)
    ### assert: $y==int($y)

    if ($x < 1 || $y < 1) {
      ### X,Y negative, no such point ...
      return undef;
    }

    if ($x == $y) {
      if ($x == $half_k) {
        ### X=Y=half_k, done: $half_k
        push @digits, $x;
        last;
      } elsif ($x == 1 && $self->{'reduced'}) {
        ### X=Y=1 reduced, is top middle ...
        push @digits, $half_k;
        last;
      } else {
        ### X=Y, no such point ...
        return undef;
      }
    }

    my $diff = $x - $y;
    if ($diff < 0) {
      ### X<Y, left of row ...

      if ($diff == -1 && $x < $half_ceil) {
        ### end at diff=-1 ...
        push @digits, $x;
        last;
      }

      my ($t) = _divrem ($y, -$diff);   # y/(y-x)
      ### $t
      if ($t < $half_ceil) {
        # eg. k=4 t=1,  k=5 t=1,2  k=6 t=1,2  k=7 t=1,2,3
        ($x,$y) = ($t*$x - ($t-1)*$y,
                   $t*$y - ($t+1)*$x);
        push @digits, $t-1;

      } else {
        if ($k & 1) {
          ### left middle odd, t=half_k ...
          # x = ((t+1)*lx - t*ly) / k with 2t+1=k  t=(k-1)/2
          my $next_x = $half_ceil * $x - $half_k * $y;
          ### $next_x
          if ($next_x % $k) {
            unless ($self->{'reduced'}) {
              ### no divide k, no such point ...
              return undef;
            }
            $diff *= $k;
            ### no divide k, diff increased to: $diff
          } else {
            ### divide k ...
            $next_x /= $k;    # X = ((t+1)X - tY) / k
          }
          $x = $next_x;
          $y = $next_x - $diff;
        } else {
          ### left middle even, t=half_k ...
          my $next_y = $y - $x;
          ### $next_y
          if ($y % $half_k) {
            ### y not a multiple of half_k ...
            unless ($self->{'reduced'}) {
              return undef;
            }
            my $g = _gcd($y,$half_k);
            $y /= $g;
            $next_y *= $half_k / $g;
            ($x,$y) = ($y - $next_y,  # x = ly/t - y
                       $next_y);      # y = ly - lx
          } else {
            ### divide half_k ...
            ($x,$y) = ($y/$half_k - $next_y,  # x = ly/t - y
                       $next_y);              # y = ly - lx
          }
        }
        push @digits, $half_ceil-1;
      }

    } else {
      ### X>Y, right of row ...
      if ($diff == 1 && $y < $half_ceil) {
        ### end at diff=1 ...
        push @digits, $k+1-$x;
        last;
      }

      my ($t) = _divrem ($x, $diff);
      ### $t
      if ($t < $half_ceil) {
        ($x,$y) = ($t*$x - ($t+1)*$y,
                   $t*$y - ($t-1)*$x);
        push @digits, $k-$t;

      } else {
        if ($k & 1) {
          ### right middle odd ...
          # x = ((t+1)*lx - t*ly) / k with 2t+1=k  t=(k-1)/2
          my $next_x = $half_ceil * $x - $half_k * $y;
          ### $next_x
          if ($next_x % $k) {
            unless ($self->{'reduced'}) {
              ### no divide k, no such point ...
              return undef;
            }
            $diff *= $k;
            ### no divide k, diff increased to: $diff
          } else {
            ### divide k ...
            $next_x /= $k;    # X = ((t+1)X - tY) / k
          }
          $x = $next_x;
          $y = $next_x - $diff;
          push @digits, $half_k;
        } else {
          ### right middle even ...

          my $next_x = $x - $y;
          if ($x % $half_k) {
            ### x not a multiple of half_k ...
            unless ($self->{'reduced'}) {
              return undef;
            }
            # multiply lx,ly by half_k/gcd so lx is a multiple of half_k
            my $g = _gcd($x,$half_k);
            $x /= $g;
            $next_x *= $half_k / $g;
            ($x,$y) = ($next_x,         # x = lx-ly
                       $x - $next_x);   # y = lx/t - x
          } else {
            ### divide half_k ...
            ($x,$y) = ($next_x,                 # x = lx-ly
                       $x/$half_k - $next_x);   # y = lx/t - x
          }
          push @digits, $half_k;
        }
      }
    }
  }

  ### @digits
  if ($self->{'digit_order'} ne 'HtoL') {
    my $high = pop @digits;
    @digits = (reverse(@digits), $high);
    ### reverse digits to: @digits
  }
  my $n = digit_join_lowtohigh (\@digits, $k, $zero) + $self->{'n_start'}-1;
  ### $n

  # if (! $self->{'reduced'})
  {
    my ($nx,$ny) = $self->n_to_xy($n);
    ### reversed to: "$nx, $ny  cf orig $orig_x, $orig_y"
    if ($nx != $orig_x || $ny != $orig_y) {
      return undef;
    }
  }

  ### xy_to_n result: "n=$n"
  return $n;
}

# not exact
sub rect_to_n_range {
  my ($self, $x1,$y1, $x2,$y2) = @_;
  ### ChanTree rect_to_n_range(): "$x1,$y1  $x2,$y2"

  $x1 = round_nearest ($x1);
  $y1 = round_nearest ($y1);
  $x2 = round_nearest ($x2);
  $y2 = round_nearest ($y2);

  ($x1,$x2) = ($x2,$x1) if $x1 > $x2;
  ($y1,$y2) = ($y2,$y1) if $y1 > $y2;

  if ($x2 < 1 || $y2 < 1) {
    return (1,0);
  }

  my $zero = ($x1 * 0 * $y1 * $x2 * $y2);  # inherit bignum
  if ($self->{'points'} eq 'all_div') {
    $x2 *= 2;
  }

  my $max = max($x2,$y2);
  my $level = ($self->{'reduced'} || $self->{'k'} == 2   # k=2 is reduced
               ? $max + 1
               : int($max/2));

  return ($self->{'n_start'},
          $self->{'n_start'}-2 + ($self->{'k'}+$zero)**$level);
}

#------------------------------------------------------------------------------
# (N - (Nstart-1))*k + Nstart   run -1 to k-2
#   = N*k - (Nstart-1)*k + Nstart   run -1 to k-2
#   = N*k - k*Nstart + k + Nstart   run -1 to k-2
#   = (N+1)*k + (1-k)*Nstart   run -1 to k-2
# k*Nstart - k - Nstart + 1 = (k-1)*(Nstart-1)
#   = N*k - (k-1)*(Nstart-1) +1   run -1 to k-2
#   = N*k - (k-1)*(Nstart-1)    run 0 to k-1
#
sub tree_n_children {
  my ($self, $n) = @_;
  my $n_start = $self->{'n_start'};
  unless ($n >= $n_start) {
    return;
  }
  my $k = $self->{'k'};
  $n = $n*$k - ($k-1)*($n_start-1);
  return map {$n+$_} 0 .. $k-1;
}
sub tree_n_num_children {
  my ($self, $n) = @_;
  return ($n >= $self->{'n_start'} ? $self->{'k'} : undef);
}

# parent = floor((N-Nstart+1) / k) + Nstart-1
#        = floor((N-Nstart+1 + k*Nstart-k) / k)
#        = floor((N + (k-1)*(Nstart-1)) / k)
# N-(Nstart-1) >= k
# N-Nstart+1 >= k
# N-Nstart >= k-1
# N >= k-1+Nstart
# N >= k+Nstart-1
sub tree_n_parent {
  my ($self, $n) = @_;
  ### ChanTree tree_n_parent(): $n
  my $n_start = $self->{'n_start'};
  $n = $n - ($n_start-1);   # to N=1 basis, and warn if $n undef
  my $k = $self->{'k'};
  unless ($n >= $k) {
    ### root node, no parent ...
    return undef;
  }
  _divrem_mutate ($n, $k);   # delete low digit ...
  return $n + ($n_start-1);
}
sub tree_n_to_depth {
  my ($self, $n) = @_;
  ### ChanTree tree_n_to_depth(): $n
  $n = $n - $self->{'n_start'} + 1;   # N=1 basis, and warn if $n==undef
  unless ($n >= 1) {
    return undef;
  }
  my ($pow, $exp) = round_down_pow ($n, $self->{'k'});
  return $exp;     # floor(log base k (N-Nstart+1))
}
sub tree_depth_to_n {
  my ($self, $depth) = @_;
  return ($depth >= 0
          ? $self->{'k'}**$depth + ($self->{'n_start'}-1)
          : undef);
}

sub tree_num_roots {
  my ($self) = @_;
  return $self->{'k'} - 1;
}
sub tree_root_n_list {
  my ($self) = @_;
  my $n_start = $self->{'n_start'};
  return $n_start .. $n_start + $self->{'k'} - 2;
}

sub tree_n_root {
  my ($self, $n) = @_;
  my $n_start_offset = $self->{'n_start'} - 1;
  $n = $n - $n_start_offset;   # N=1 basis, and warn if $n==undef
  return ($n >= 1
          ? _high_digit($n,$self->{'k'}) + $n_start_offset
          : undef);
}
# Return the most significant digit of $n written in base $radix.
sub _high_digit {
  my ($n, $radix) = @_;
  ### assert: ! ($n < 1)
  my ($pow) = round_down_pow ($n, $radix);
  _divrem_mutate($n,$pow);  # $n=quotient
  return $n;
}

1;
__END__

=for stopwords Ryde Math-PlanePath Heng coeffs GCD Calkin-Wilf ie Nstart OEIS k-ary

=head1 NAME

Math::PlanePath::ChanTree -- tree of rationals

=head1 SYNOPSIS

 use Math::PlanePath::ChanTree;
 my $path = Math::PlanePath::ChanTree->new (k => 3, reduced => 0);
 my ($x, $y) = $path->n_to_xy (123);

=head1 DESCRIPTION

X<Chan, Song Heng>This path enumerates rationals X/Y in a tree as per

=over

Song Heng Chan, "Analogs of the Stern Sequence", Integers 2011,
L<http://www.integers-ejcnt.org/l26/l26.pdf>

=back

The default k=3 visits X,Y with one odd, one even, and perhaps a common
factor 3^m.

=cut

# math-image --path=ChanTree --all --output=numbers_xy --size=62x15

=pod

     14 |    728              20                              12
     13 |         53      11      77      27
     12 |    242              14              18
     11 |
     10 |     80
      9 |         17      23       9                      15
      8 |     26                                              78
      7 |
      6 |      8                              24              28
      5 |          5       3                              19
      4 |      2               6              10              22
      3 |
      2 |      0               4              16              52
      1 |          1       7      25      79     241     727
    Y=0 |
        +--------------------------------------------------------
         X=0   1   2   3   4   5   6   7   8   9  10  11  12  13

There are 2 tree roots (so technically it's a "forest") and each node has 3
children.  The points are numbered by rows starting from N=0.  This
numbering corresponds to powers in a polynomial product generating function.

    N=0 to 1               1/2                    2/1
                         /  |  \                /  |  \
    N=2 to 7          1/4  4/5   5/2         2/5  5/4  4/1
                     / | \  ...   ...      ...   ...  / | \
    N=8 to 25     1/6 6/9 9/4  ...            ...  5/9 9/6 6/1

    N=26 ...        

The children of each node are

                    X/Y
       ------------/ | \-----------
      |              |             |
    X/(2X+Y)   (2X+Y)/(X+2Y)   (X+2Y)/Y

Which as X,Y coordinates means vertical, 45-degree diagonal, and horizontal.

    X,Y+2X      X+(X+Y),Y+(X+Y)
      |       /
      |     /
      |   /
      | /
     X,Y------- X+2Y,Y

The slowest growth is on the far left of the tree 1/2, 1/4, 1/6, 1/8, etc
advancing by just 2 at each level.  Similarly on the far right 2/1, 4/1,
6/1, etc.  This means that to cover such an X or Y requires a power-of-3,
N=3^(max(X,Y)/2).

=head2 GCD

Chan shows that these top nodes and children visit all rationals X/Y with
X,Y one odd, one even.  But the X,Y are not in least terms, they may have a
power-of-3 common factor GCD(X,Y)=3^m for some m.

The GCD is unchanged in the first and third children.  The middle child GCD
might gain an extra factor 3.  This means the power is at most the number of
middle legs taken, which is the count of ternary 1-digits of its position
across the row.

    GCD(X,Y) = 3^m
    m <= count ternary 1-digits of N+1, excluding high digit

As per L</N Start> below, N+1 in ternary has high digit 1 or 2 which
indicates the tree root.  Ignoring that high digit gives an offset into the
row of that tree and the digits are 0,1,2 for left,middle,right.

For example the first GCD is at N=9 with X=6,Y=9 common factor GCD=3.
N+1=10="101" ternary, which without the high digit is "01" which has a
single "1" so GCD <= 3^1.  The mirror image of this point is X=9,Y=6 at N=24
and there N+1=24+1=25="221" ternary which without the high digit is "21"
with a single 1-digit likewise.

For various points the power m is equal to the count of 1-digits.

=head2 k Parameter

The C<k =E<gt> $integer> parameter controls the number of children and top
nodes.  There are k-1 top nodes and each node has k children.  The top nodes
are

    k odd, k-1 many tops, with h=ceil(k/2)
    1/2  2/3  3/4  ... (h-1)/h       h/(h-1) ...  4/3  3/2  2/1

    k even, k-1 many tops, with h=k/2
    1/2  2/3  3/4  ... (h-1)/h  h/h  h/(h-1) ...  4/3  3/2  2/1

Notice the list for k odd or k even is the same except that for k even
there's an extra middle term h/h.  The first few tops are as follows.  The
list in each row is spread to show how successive bigger h adds terms in the
middle.

     k                 X/Y top nodes
    ---    ---------------------------------
    k=2                   1/1

    k=3              1/2       2/1
    k=4              1/2  2/2  2/1

    k=5         1/2  2/3       3/2  2/1
    k=6         1/2  2/3  3/3  3/2  2/1

    k=7    1/2  2/3  3/4       4/3  3/2  2/1
    k=8    1/2  2/3  3/4  4/4  4/3  3/2  2/1

As X,Y coordinates these tops are a run up along X=Y-1 and back down along
X=Y+1, with a middle X=Y point if k even.  For example,

=cut

# math-image --path=ChanTree,k=13 --output=numbers --expression='i<12?i:0'
# math-image --path=ChanTree,k=14 --output=numbers --expression='i<13?i:0'

=pod

      7 |                         5         k=13 top nodes N=0 to N=11
      6 |                     4       6        total 12 top nodes
      5 |                 3       7
      4 |             2       8
      3 |         1       9
      2 |     0      10
      1 |        11
    Y=0 |
        +------------------------------
        X=0   1   2   3   4   5   6   7

                                            k=14 top nodes N=0 to N=12
      7 |                         5   6        total 13 top nodes
      6 |                     4       7
      5 |                 3       8         N=6 is the 7/7 middle term
      4 |             2       9
      3 |         1      10
      2 |     0      11
      1 |        12
    Y=0 |
        +------------------------------
        X=0   1   2   3   4   5   6   7

Each node has k children.  The formulas for the children can be seen from
sample cases k=5 and k=6.  A node X/Y descends to

    k=5                     k=6

    1X+0Y / 2X+1Y           1X+0Y / 2X+1Y
    2X+1Y / 3X+2Y           2X+1Y / 3X+2Y
    3X+2Y / 2X+3Y           3X+2Y / 3X+3Y
    2X+3Y / 1X+2Y           3X+3Y / 2X+3Y
    1X+2Y / 0X+1Y           2X+3Y / 1X+2Y
                            1X+2Y / 0X+1Y

The coefficients of X and Y run up to h=ceil(k/2) starting from either 0, 1
or 2 and ending 2, 1 or 0.  When k is even there's two h coeffs in the
middle.  When k is odd there's just one.  The resulting tree for example
with k=4 is

    k=4
          1/2              2/2               2/1
       /       \        /        \        /       \
    1/4 4/6 6/5 5/2  2/6 6/8 8/6 6/2   2/5 5/6 6/4 4/1

Chan shows that this combination of top nodes and children visits

    if k odd:    rationals X/Y with X,Y one odd, one even
                  possible GCD(X,Y)=k^m for some integer m

    if k even:   all rationals X/Y
                  possible GCD(X,Y) a divisor of (k/2)^m

When k odd GCD(X,Y) is a power of k, so for example as described above k=3
gives GCD=3^m.  When k even GCD(X,Y) is a divisor of (k/2)^m but not
necessarily a full such power.  For example with k=12 the first such
non-power GCD is at N=17 where X=16,Y=18 has GCD(16,18)=2 which is only a
divisor of k/2=6, not a power of 6.

=head2 N Start

The C<n_start =E<gt> $n> option can select a different initial N.  The tree
structure is unchanged, just the numbering shifted.  As noted above the
default Nstart=0 corresponds to powers in a generating function.

C<n_start=E<gt>1> makes the numbering correspond to digits of N written in
base-k.  For example k=10 corresponds to N written in decimal,

    N=1 to 9                1/2    ...  ...    2/1

    N=10 to 99          1/4 4/7  ...      ...  7/4 4/1

    N=100 to 999    1/6 6/11   ...          ...   11/6 6/1

In general C<n_start=E<gt>1> makes the tree

    N written in base-k digits
     depth = numdigits(N)-1
     NdepthStart = k^depth
                 = 100..000 base-k, high 1 in high digit position of N
     N-NdepthStart = position across whole row of all top trees

And the high digit of N selects which top-level tree the given N is under,
so

    N written in base-k digits
     top tree = high digit of N
                (1 to k, selecting the k-1 many top nodes)
     Nrem = digits of N after the highest
          = position across row within the high-digit tree
     depth = numdigits(Nrem)       # top node depth=0
           = numdigits(N)-1

=head2 Diatomic Sequence

Chan shows that each denominator Y becomes the numerator X in the next
point.  The last Y of a row becomes the first X of the next row.  This is a
generalization of Stern's diatomic sequence and of the Calkin-Wilf tree of
rationals.  (See L<Math::NumSeq::SternDiatomic> and
L<Math::PlanePath::RationalsTree/Calkin-Wilf Tree>.)

The case k=2 is precisely the Calkin-Wilf tree.  There's just one top node
1/1, being the even k "middle" form h/h with h=k/2=1 as described above.
Then there's two children of each node (the "middle" pair of the even k
case),

    k=2, Calkin-Wilf tree

                     X/Y
                   /     \
    (1X+0Y)/(1X+1Y)       (1X+1Y)/(0X+1Y)
       = X/(X+Y)             = (X+Y)/Y

=head1 FUNCTIONS

See L<Math::PlanePath/FUNCTIONS> for behaviour common to all path classes.

=over 4

=item C<$path = Math::PlanePath::ChanTree-E<gt>new ()>

=item C<$path = Math::PlanePath::ChanTree-E<gt>new (k =E<gt> $k, n_start =E<gt> $n)>

Create and return a new path object.  The defaults are k=3 and n_start=0.

=item C<$n = $path-E<gt>n_start()>

Return the first N in the path.  This is 0 by default, otherwise the
C<n_start> parameter.

=item C<$n = $path-E<gt>xy_to_n ($x,$y)>

Return the point number for coordinates C<$x,$y>.  If there's nothing at
C<$x,$y> then return C<undef>.

=back

=head2 Tree Methods

X<Complete n-ary tree>Each point has k children, so the path is a complete
k-ary tree.

=over

=item C<@n_children = $path-E<gt>tree_n_children($n)>

Return the children of C<$n>, or an empty list if C<$n E<lt> n_start()>,
ie. before the start of the path.

=item C<$num = $path-E<gt>tree_n_num_children($n)>

Return k, since every node has k children.  Or return C<undef> if C<$n E<lt>
n_start()>, ie. before the start of the path.

=item C<$n_parent = $path-E<gt>tree_n_parent($n)>

Return the parent node of C<$n>, or C<undef> if C<$n> has no parent either
because it's a top node or before C<n_start()>.

=item C<$n_root = $path-E<gt>tree_n_root ($n)>

Return the N which is root node of C<$n>.

=item C<$depth = $path-E<gt>tree_n_to_depth($n)>

Return the depth of node C<$n>, or C<undef> if there's no point C<$n>.  The
tree tops are depth=0, then their children depth=1, etc.

=item C<$n = $path-E<gt>tree_depth_to_n($depth)>

=item C<$n = $path-E<gt>tree_depth_to_n_end($depth)>

Return the first or last N at tree level C<$depth> in the path.  The top of
the tree is depth=0.

=back

=head2 Tree Descriptive Methods

=over

=item C<$num = $path-E<gt>tree_num_roots ()>

Return the number of root nodes in C<$path>, which is k-1.  For example the
default k=3 return 2 as there are two root nodes.

=item C<@n_list = $path-E<gt>tree_root_n_list ()>

Return a list of the N values which are the root nodes of C<$path>.  This is
C<n_start()> through C<n_start()+k-2> inclusive, being the first k-1 many
points.  For example in the default k=2 and Nstart=0 the return is two
values C<(0,1)>.

=item C<$num = $path-E<gt>tree_num_children_minimum()>

=item C<$num = $path-E<gt>tree_num_children_maximum()>

Return k since every node has k many children, making that both the minimum
and maximum.

=item C<$bool = $path-E<gt>tree_any_leaf()>

Return false, since there are no leaf nodes in the tree.

=back

=head1 FORMULAS

=head2 N Children

For the default k=3 the children are

    3N+2, 3N+3, 3N+4        n_start=0

If C<n_start=E<gt>1> then instead

    3N, 3N+1, 3N+2                  n_start=1

For this C<n_start=1> the children are found by appending an extra ternary
digit, or base-k digit for arbitrary k.

    k*N, k*N+1, ... , k*N+(k-1)     n_start=1

In general for k and Nstart the children are

    kN - (k-1)*(Nstart-1)  + 0
      ...
    kN - (k-1)*(Nstart-1)  + k-1

=head2 N Parent

The parent node reverses the children calculation above.  The simplest case
is C<n_start=1> where it's a division to remove the lowest base-k
digit

    parent = floor(N/k)       when n_start=1

For other C<n_start> adjust before and after to an C<n_start=1> basis,

    parent = floor((N-(Nstart-1)) / k) + Nstart-1

For example in the default k=0 Nstart=1 the parent of N=3 is
floor((3-(1-1))/3)=1.

The post-adjustment can be worked into the formula with (k-1)*(Nstart-1)
similar to the children above,

    parent = floor((N + (k-1)*(Nstart-1)) / k)

But the first style is more convenient to compare to see that N is past the
top nodes and therefore has a parent.

    N-(Nstart-1) >= k      to check N is past top-nodes

=head2 N Root

As described under L</N Start> above, if Nstart=1 then the tree root is
simply the most significant base-k digit of N.  For other Nstart an
adjustment is made to N=1 style and back again.

    adjust = Nstart-1
    Nroot(N) = high_base_k_digit(N-adjust) + adjust

=head2 N to Depth

The structure of the tree means

    depth = floor(logk(N+1))    for n_start=0

For example if k=3 then all of N=8 through N=25 inclusive have
depth=floor(log3(N+1))=2.  With an C<n_start> it becomes

    depth = floor(logk(N-(Nstart-1)))

C<n_start=1> is the simplest case, being the length of N written in base-k
digits.

    depth = floor(logk(N))     for n_start=1

=head1 OEIS

This tree is in Sloane's Online Encyclopedia of Integer Sequences as

=over

L<http://oeis.org/A191379> (etc)

=back

    k=3, n_start=0  (the defaults)
      A191379   X coordinate, and Y=X(N+n)

As noted above k=2 is the Calkin-Wilf tree.  See
L<Math::PlanePath::RationalsTree/OEIS> for "CW" related sequences.

=head1 SEE ALSO

L<Math::PlanePath>,
L<Math::PlanePath::RationalsTree>,
L<Math::PlanePath::PythagoreanTree>

=head1 HOME PAGE

L<http://user42.tuxfamily.org/math-planepath/index.html>

=head1 LICENSE

Copyright 2012, 2013, 2014, 2015 Kevin Ryde

This file is part of Math-PlanePath.

Math-PlanePath is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.

Math-PlanePath is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
more details.

You should have received a copy of the GNU General Public License along with
Math-PlanePath.  If not, see <http://www.gnu.org/licenses/>.

=cut