/usr/share/perl5/Math/PlanePath/CellularRule190.pm is in libmath-planepath-perl 122-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 | # Copyright 2011, 2012, 2013, 2014, 2015 Kevin Ryde
# This file is part of Math-PlanePath.
#
# Math-PlanePath is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by the
# Free Software Foundation; either version 3, or (at your option) any later
# version.
#
# Math-PlanePath is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
# or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
# for more details.
#
# You should have received a copy of the GNU General Public License along
# with Math-PlanePath. If not, see <http://www.gnu.org/licenses/>.
# http://mathworld.wolfram.com/ElementaryCellularAutomaton.html
#
# Loeschian numbers strips on the right ...
package Math::PlanePath::CellularRule190;
use 5.004;
use strict;
use vars '$VERSION', '@ISA';
$VERSION = 122;
use Math::PlanePath;
@ISA = ('Math::PlanePath');
use Math::PlanePath::Base::Generic
'round_nearest';
use Math::PlanePath::CellularRule54;
*_rect_for_V = \&Math::PlanePath::CellularRule54::_rect_for_V;
# uncomment this to run the ### lines
# use Smart::Comments;
use constant class_y_negative => 0;
use constant n_frac_discontinuity => .5;
use constant parameter_info_array =>
[ { name => 'mirror',
display => 'Mirror',
type => 'boolean',
default => 0,
description => 'Mirror to "rule 246" instead.',
},
Math::PlanePath::Base::Generic::parameter_info_nstart1(),
];
sub x_negative_at_n {
my ($self) = @_;
return $self->n_start + 1;
}
use constant sumxy_minimum => 0; # triangular X>=-Y so X+Y>=0
use constant diffxy_maximum => 0; # triangular X<=Y so X-Y<=0
use constant dx_maximum => 2; # across gap
use constant dy_minimum => 0;
use constant dy_maximum => 1;
use constant absdx_minimum => 1;
use constant dsumxy_maximum => 2; # straight East dX=+2
use constant ddiffxy_maximum => 2; # straight East dX=+2
use constant dir_maximum_dxdy => (-1,0); # supremum, West except dY=+1
#------------------------------------------------------------------------------
sub new {
my $self = shift->SUPER::new (@_);
if (! defined $self->{'n_start'}) {
$self->{'n_start'} = $self->default_n_start;
}
return $self;
}
# 31 32 33 34 35 36 37 38 39 40
# 22 23 24 25 26 27 28 29 30
# 15 6 17 18 19 20 21
# 9 10 11 12 13 14
# 5 6 7 8
# 2 3 4
# 1
#
# even y = [ 0, 2, 4, 6 ]
# N = [ 1, 5, 15, 31 ]
# Neven = (3/4 y^2 + 1/2 y + 1)
# = (3y + 2)*y/4 + 1
# = ((3y + 2)*y + 4) /4
# = (3 (y/2)^2 + (y/2) + 1)
# = (3*(y/2) + 1)*(y/2) + 1
#
# odd y = [ 1, 3, 5,7 ]
# N = [ 2,9,22,41 ]
# Nodd = (3/4 y^2 + 1/2 y + 3/4)
# = ((3y+2)*y+ 3) / 4
#
# pair even d = [0,1,2,3]
# N = [ 1, 5, 15, 31 ]
# Npair = (3 d^2 + d + 1)
# d = -1/6 + sqrt(1/3 * $n + -11/36)
# = [ -1 + sqrt(1/3 * $n + -11/36)*6 ] / 6
# = [ -1 + sqrt(1/3 * $n*36 + -11/36*36) ] / 6
# = [ -1 + sqrt(12n-11) ] / 6
#
sub n_to_xy {
my ($self, $n) = @_;
### CellularRule190 n_to_xy(): $n
$n = $n - $self->{'n_start'} + 1; # to N=1 basis, and warn if $n undef
my $frac;
{
my $int = int($n);
$frac = $n - $int;
$n = $int; # BigFloat int() gives BigInt, use that
if (2*$frac >= 1) {
$frac -= 1;
$n += 1;
}
# now -0.5 <= $frac < 0.5
### assert: 2*$frac >= -1 || $n!=$n || $n+1==$n
### assert: 2*$frac < 1 || $n!=$n || $n+1==$n
}
if ($n < 1) {
return;
}
# d is the two-row number, ie. d=2*y, where n belongs
# start of the two-row group is nbase = 3 d^2 + d + 1
#
my $d = int ((sqrt(12*$n-11) - 1) / 6);
$n -= ((3*$d + 1)*$d + 1); # remainder within two-row
### $d
### remainder: $n
if ($n <= 3*$d) {
# 3d+1 many points in the Y=0,2,4,6 etc even row
$d *= 2; # y=2*d
return ($frac + $n + int(($n + ($self->{'mirror'} ? 2 : 0))/3) - $d,
$d);
} else {
# 3*d many points in the Y=1,3,5,7 etc odd row, using 3 in 4 cells
$n -= 3*$d+1; # remainder 0 upwards into odd row
$d = 2*$d+1; # y=2*d+1
return ($frac + $n + int($n/3) - $d,
$d);
}
}
sub xy_to_n {
my ($self, $x, $y) = @_;
$x = round_nearest ($x);
$y = round_nearest ($y);
### CellularRule190 xy_to_n(): "$x,$y"
if ($y < 0 || $x > $y) {
return undef;
}
$x += $y; # move to have x=0 the start of the row
if ($x < 0) {
return undef;
}
### x centred: $x
if ($y % 2) {
### odd row, 3s from the start ...
if (($x % 4) == 3) {
return undef;
}
# 3y^2+2y-1 = (3y-1)*(y+1)
return ($x
- int($x/4)
+ ((3*$y+2)*$y-1)/4
+ $self->{'n_start'});
} else {
### even row, 3s then 1 sep, or mirror 1 sep start ...
my $mirror = $self->{'mirror'};
if (($x % 4) == ($mirror ? 1 : 3)) {
return undef;
}
return ($x
- int(($x+($mirror ? 2 : 1))/4)
+ (3*$y+2)*$y/4
+ $self->{'n_start'});
}
}
# exact
sub rect_to_n_range {
my ($self, $x1,$y1, $x2,$y2) = @_;
### CellularRule190 rect_to_n_range(): "$x1,$y1, $x2,$y2"
($x1,$y1, $x2,$y2) = _rect_for_V ($x1,$y1, $x2,$y2)
or return (1,0); # rect outside pyramid
# # inherit bignum (before collapsing some y1 to x1 etc)
# my $zero = ($x1 * 0 * $y1 * $x2 * $y2);
my $mirror = $self->{'mirror'};
my $unincremented_x1 = $x1;
# \+------+
# | | /
# |\ | /
# | \ | /
# | \ | /
# y1 +------+ /
# x1 \ /
# \/
#
if ($x1 < (my $neg_y1 = -$y1)) {
### bottom-left outside, move across to: "$neg_y1,$y1"
$x1 = $neg_y1;
# For the following blank checks a blank doesn't occur at the ends of a
# row, so when on a blank it's always possible to increment or decrement
# X to go to a non-blank -- as long as that adjacent space is within the
# rectangle.
#
} elsif ((($mirror ? $y1-$x1 : $x1+$y1) % 4) == 3) {
### x1,y1 bottom left is on a blank: "x1+y1=".($x1+$y1)
if ($x1 < $x2) {
### rect width >= 2, so increase x1 ...
$x1 += 1;
} else {
### rect is a single column width==1, increase y1 ...
if (($y1 += 1) > $y2) {
### rect was a single blank square, contains no N ...
return (1,0);
}
}
}
if ((($mirror ? $y2-$x2 : $x2+$y2) % 4) == 3) {
### x2,y2 top right is on a blank, decrement ...
if ($x2 > $unincremented_x1) {
### rect width >= 2, so decrease x2 ...
$x2 -= 1;
} else {
### rect is a single column width==1, decrease y2 ...
$y2 -= 1;
# Can decrement without checking whether the rect is a single square.
# If the rect was a single blank square then the x1+y1 bottom left
# above detects and returns. And the bottom left blank check
# incremented y1 to leave a single square then that's a non-blank
# because there's no vertical blank pairs (they go on the diagonal).
### assert $y2 >= $y1
}
}
# At this point $x1,$y1 is a non-blank bottom left corner, and $x2,$y2
# is a non-blank top right corner, being the N lo to hi range.
### range: "bottom-right $x1,$y1 top-left $x2,$y2"
return ($self->xy_to_n ($x1,$y1),
$self->xy_to_n ($x2,$y2));
}
# old rect_to_n_range() of row endpoints
#
# # even right y = [ 0, 2, 4, 6 ]
# # N = [ 1,8,21,40 ]
# # Nright = (3/4 y^2 + 2 y + 1)
# # = (3 y^2 + 8 y + 4) / 4
# # = ((3y + 8)y + 4) / 4
# #
# # odd right y = [ 1, 3, 5, 7 ]
# # N = [ 4,14,30, 52 ]
# # Nright = (3/4 y^2 + 2 y + 5/4)
# # = (3 y^2 + 8 y + 5) / 4
# # = ((3y + 8)y + 5) / 4
# #
# # Nleft y even ((3y+2)*y + 4)/4
# # Nleft y odd ((3y+2)*y + 3)/4
# # Nright even ((3(y+1)+2)*(y+1) + 3)/4 - 1
# # = ((3y+3+2)*(y+1) + 3 - 4)/4
# # = ((3y+5)*(y+1) - 1)/4
# # = ((3y^2 + 8y + 5 - 1)/4
# # = ((3y^2 + 8y + 4)/4
# # = ((3y+8)y + 4)/4
# # = ((3y+2)(y+2)/4
# #
# ### $y1
# ### $y2
# $y2 += $zero;
# $y1 += $zero;
# return (((3*$y1 + 2)*$y1 + 4 - ($y1%2)) / 4, # even/odd Nleft
# ((3*$y2 + 8)*$y2 + 4 + ($y2%2)) / 4); # even/odd Nright
1;
__END__
=for stopwords straight-ish Ryde Math-PlanePath ie hexagonals 18-gonal Xmax-Xmin Nleft Nright Klaner-Rado unplotted OEIS
=head1 NAME
Math::PlanePath::CellularRule190 -- cellular automaton 190 and 246 points
=head1 SYNOPSIS
use Math::PlanePath::CellularRule190;
my $path = Math::PlanePath::CellularRule190->new;
my ($x, $y) = $path->n_to_xy (123);
=head1 DESCRIPTION
X<Wolfram, Stephen>This is the pattern of Stephen Wolfram's "rule 190"
cellular automaton
=over
L<http://mathworld.wolfram.com/Rule190.html>
=back
arranged as rows,
66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 9
53 54 55 56 57 58 59 60 61 62 63 64 65 8
41 42 43 44 45 46 47 48 49 50 51 52 7
31 32 33 34 35 36 37 38 39 40 6
22 23 24 25 26 27 28 29 30 5
15 16 17 18 19 20 21 4
9 10 11 12 13 14 3
5 6 7 8 2
2 3 4 1
1 <- Y=0
-9 -8 -7 -6 -5 -4 -3 -2 -1 X=0 1 2 3 4 5 6 7 8 9
Each row is 3 out of 4 cells. Even numbered rows have one point on its own
at the end. Each two-row group has a step of 6 more points than the
previous two-row.
The of rightmost N=1,4,8,14,21,etc are triangular plus quarter
square, ie.
Nright = triangular(Y+1) + quartersquare(Y+1)
triangular(t) = t*(t+1)/2
quartersquare(t) = floor(t^2/4)
The rightmost N=1,8,21,40,65,etc on even rows Y=0,2,4,6,etc are the
octagonal numbers k*(3k-2). The octagonal numbers of the "second kind"
N=5,16,33,56,85, etc, k*(3k+2) are a straight-ish line upwards to the left.
=head2 Mirror
The C<mirror =E<gt> 1> option gives the mirror image pattern which is "rule
246". It differs only in the placement of the gaps on the even rows. The
point on its own is at the left instead of the right. The numbering is
still left to right.
66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 9
53 54 55 56 57 58 59 60 61 62 63 64 65 8
41 42 43 44 45 46 47 48 49 50 51 52 7
31 32 33 34 35 36 37 38 39 40 6
22 23 24 25 26 27 28 29 30 5
15 16 17 18 19 20 21 4
9 10 11 12 13 14 3
5 6 7 8 2
2 3 4 1
1 <- Y=0
-9 -8 -7 -6 -5 -4 -3 -2 -1 X=0 1 2 3 4 5 6 7 8 9
Sometimes this small change to the pattern helps things line up better. For
example plotting the Klaner-Rado sequence gives some unplotted lines up
towards the right in the mirror 246 which are not visible in the plain 190.
=head2 Row Ranges
The left end of each row, both ordinary and mirrored, is
Nleft = ((3Y+2)*Y + 4)/4 if Y even
((3Y+2)*Y + 3)/4 if Y odd
The right end is
Nright = ((3Y+8)*Y + 4)/4 if Y even
((3Y+8)*Y + 5)/4 if Y odd
= Nleft(Y+1) - 1 ie. 1 before next Nleft
The row width Xmax-Xmin = 2*Y but with the gaps the number of visited points
in a row is less than that,
rowpoints = 3*Y/2 + 1 if Y even
3*(Y+1)/2 if Y odd
For any Y of course the Nleft to Nright difference is the number of points
in the row too
rowpoints = Nright - Nleft + 1
=cut
# even Nright - Nleft + 1
# = ((3Y+8)Y + 4)/4 - ((3Y+2)*Y + 4)/4 + 1
# = [ (3Y+8)Y + 4 - (3Y+2)*Y - 4 ]/4 + 1
# = [ (3Y+8)Y - (3Y+2)*Y ] / 4 + 1
# = (3Y+8-3Y-2)Y/4 + 1
# = 6Y/4 + 1
# = 3Y/2 + 1
# odd Nright - Nleft + 1
# = ((3Y+8)Y + 5)/4 - ((3Y+2)*Y + 3)/4 + 1
# = [ (3Y+8)Y + 5 - (3Y+2)*Y - 3 ]/4 + 1
# = [ (3Y+8)Y - (3Y+2)*Y + 2 ]/4 + 1
# = [ 6Y + 2 ]/4 + 1
# = [ 6Y + 2 + 4]/4
# = [ 6Y + 6]/4
# = 3(Y+1)/2
=head2 N Start
The default is to number points starting N=1 as shown above. An optional
C<n_start> can give a different start, in the same pattern. For example to
start at 0,
=cut
# math-image --path=CellularRule190,n_start=0 --all --output=numbers --size=75x6
=pod
n_start => 0
21 22 23 24 25 26 27 28 29 5
14 15 16 17 18 19 20 4
8 9 10 11 12 13 3
4 5 6 7 2
1 2 3 1
0 <- Y=0
-5 -4 -3 -2 -1 X=0 1 2 3 4 5
The effect is to push each N rightwards by 1, and wrapping around. So the
N=0,1,4,8,14,etc on the left were on the right of the default n_start=1.
This also has the effect of removing the +1 in the Nright formula given
above, so
Nleft = triangular(Y) + quartersquare(Y)
=head1 FUNCTIONS
See L<Math::PlanePath/FUNCTIONS> for behaviour common to all path classes.
=over 4
=item C<$path = Math::PlanePath::CellularRule190-E<gt>new ()>
=item C<$path = Math::PlanePath::CellularRule190-E<gt>new (mirror =E<gt> 1, n_start =E<gt> $n)>
Create and return a new path object.
=item C<($x,$y) = $path-E<gt>n_to_xy ($n)>
Return the X,Y coordinates of point number C<$n> on the path.
=item C<$n = $path-E<gt>xy_to_n ($x,$y)>
Return the point number for coordinates C<$x,$y>. C<$x> and C<$y> are each
rounded to the nearest integer, which has the effect of treating each cell
as a square of side 1. If C<$x,$y> is outside the pyramid or on a skipped
cell the return is C<undef>.
=item C<($n_lo, $n_hi) = $path-E<gt>rect_to_n_range ($x1,$y1, $x2,$y2)>
The returned range is exact, meaning C<$n_lo> and C<$n_hi> are the smallest
and biggest in the rectangle.
=back
=head1 OEIS
This pattern is in Sloane's Online Encyclopedia of Integer Sequences in a
couple of forms,
=over
L<http://oeis.org/A037576> (etc)
=back
A037576 whole-row used cells as bits of a bignum
A071039 \ 1/0 used and unused cells across rows
A118111 /
A071041 1/0 used and unused of mirrored rule 246
n_start=0
A006578 N at left of each row (X=-Y),
and at right of each row when mirrored,
being triangular+quartersquare
=head1 SEE ALSO
L<Math::PlanePath>,
L<Math::PlanePath::CellularRule>,
L<Math::PlanePath::CellularRule54>,
L<Math::PlanePath::CellularRule57>,
L<Math::PlanePath::PyramidRows>
L<Cellular::Automata::Wolfram>
L<http://mathworld.wolfram.com/Rule190.html>
=head1 HOME PAGE
L<http://user42.tuxfamily.org/math-planepath/index.html>
=head1 LICENSE
Copyright 2011, 2012, 2013, 2014, 2015 Kevin Ryde
This file is part of Math-PlanePath.
Math-PlanePath is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
Math-PlanePath is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
more details.
You should have received a copy of the GNU General Public License along with
Math-PlanePath. If not, see <http://www.gnu.org/licenses/>.
=cut
# Local variables:
# compile-command: "math-image --path=CellularRule190 --all"
# End:
#
# math-image --path=CellularRule190 --all --output=numbers --size=132x50
#
|