This file is indexed.

/usr/share/perl5/Math/PlanePath/BetaOmega.pm is in libmath-planepath-perl 122-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
# Copyright 2011, 2012, 2013, 2014, 2015 Kevin Ryde

# This file is part of Math-PlanePath.
#
# Math-PlanePath is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by the
# Free Software Foundation; either version 3, or (at your option) any later
# version.
#
# Math-PlanePath is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
# or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
# for more details.
#
# You should have received a copy of the GNU General Public License along
# with Math-PlanePath.  If not, see <http://www.gnu.org/licenses/>.


# math-image --path=BetaOmega --lines --scale=20
#
# math-image --path=BetaOmega --all --output=numbers_dash

# http://www.upb.de/pc2/papers/files/pdfps399main.toappear.ps   # gone
# http://www.uni-paderborn.de/pc2/papers/files/pdfps399main.toappear.ps
# http://wwwcs.upb.de/pc2/papers/files/399.ps   # gone
#
# copy ?
# http://www.cs.uleth.ca/~wismath/cccg/papers/27l.ps


package Math::PlanePath::BetaOmega;
use 5.004;
use strict;

use vars '$VERSION', '@ISA';
$VERSION = 122;
use Math::PlanePath;
use Math::PlanePath::Base::NSEW;
@ISA = ('Math::PlanePath::Base::NSEW',
        'Math::PlanePath');

use Math::PlanePath::Base::Generic
  'is_infinite',
  'round_nearest';
use Math::PlanePath::Base::Digits
  'round_down_pow',
  'bit_split_lowtohigh',
  'digit_split_lowtohigh',
  'digit_join_lowtohigh';

# uncomment this to run the ### lines
#use Smart::Comments;




use constant n_start => 0;
use constant class_x_negative => 0;
use constant y_negative_at_n => 4;
*xy_is_visited = \&Math::PlanePath::Base::Generic::_xy_is_visited_x_positive;
use constant _UNDOCUMENTED__dxdy_list_at_n => 4;


#------------------------------------------------------------------------------

# tables generated by tools/beta-omega-table.pl
#
my @next_state = (28, 8,36,88,  8,28,32,76,  4,16,44,64, 16, 4,40,84,
                  12,24,52,72, 24,12,48,92, 20, 0,60,80,  0,20,56,68,
                  68, 4,40,60, 64, 0,60,40, 76,12,48,36, 72, 8,36,48,
                  84,20,56,44, 80,16,44,56, 92,28,32,52, 88,24,52,32,
                  28, 8,36,48,  8,28,32,52,  4,16,44,56, 16, 4,40,60,
                  12,24,52,32, 24,12,48,36, 20, 0,60,40,  0,20,56,44);
my @digit_to_x = (0,0,1,1, 0,1,1,0, 1,0,0,1, 1,1,0,0,
                  1,1,0,0, 1,0,0,1, 0,1,1,0, 0,0,1,1,
                  1,1,0,0, 0,1,1,0, 1,0,0,1, 0,0,1,1,
                  0,0,1,1, 1,0,0,1, 0,1,1,0, 1,1,0,0,
                  0,0,1,1, 0,1,1,0, 1,0,0,1, 1,1,0,0,
                  1,1,0,0, 1,0,0,1, 0,1,1,0, 0,0,1,1);
my @digit_to_y = (0,1,1,0, 0,0,1,1, 0,0,1,1, 0,1,1,0,
                  1,0,0,1, 1,1,0,0, 1,1,0,0, 1,0,0,1,
                  0,1,1,0, 1,1,0,0, 1,1,0,0, 0,1,1,0,
                  1,0,0,1, 0,0,1,1, 0,0,1,1, 1,0,0,1,
                  0,1,1,0, 0,0,1,1, 0,0,1,1, 0,1,1,0,
                  1,0,0,1, 1,1,0,0, 1,1,0,0, 1,0,0,1);
my @xy_to_digit = (0,1,3,2, 0,3,1,2, 1,2,0,3, 3,2,0,1,
                   2,3,1,0, 2,1,3,0, 3,0,2,1, 1,0,2,3,
                   3,2,0,1, 3,0,2,1, 2,1,3,0, 0,1,3,2,
                   1,0,2,3, 1,2,0,3, 0,3,1,2, 2,3,1,0,
                   0,1,3,2, 0,3,1,2, 1,2,0,3, 3,2,0,1,
                   2,3,1,0, 2,1,3,0, 3,0,2,1, 1,0,2,3);
my @min_digit = (0,0,3,0, 0,2,1,1, 2,undef,undef,undef,
                 0,0,1,0, 0,1,3,2, 2,undef,undef,undef,
                 1,0,0,1, 0,0,2,2, 3,undef,undef,undef,
                 3,0,0,2, 0,0,2,1, 1,undef,undef,undef,
                 2,1,1,2, 0,0,3,0, 0,undef,undef,undef,
                 2,2,3,1, 0,0,1,0, 0,undef,undef,undef,
                 3,2,2,0, 0,1,0,0, 1,undef,undef,undef,
                 1,1,2,0, 0,2,0,0, 3,undef,undef,undef,
                 3,0,0,2, 0,0,2,1, 1,undef,undef,undef,
                 3,2,2,0, 0,1,0,0, 1,undef,undef,undef,
                 2,2,3,1, 0,0,1,0, 0,undef,undef,undef,
                 0,0,3,0, 0,2,1,1, 2,undef,undef,undef,
                 1,1,2,0, 0,2,0,0, 3,undef,undef,undef,
                 1,0,0,1, 0,0,2,2, 3,undef,undef,undef,
                 0,0,1,0, 0,1,3,2, 2,undef,undef,undef,
                 2,1,1,2, 0,0,3,0, 0,undef,undef,undef,
                 0,0,3,0, 0,2,1,1, 2,undef,undef,undef,
                 0,0,1,0, 0,1,3,2, 2,undef,undef,undef,
                 1,0,0,1, 0,0,2,2, 3,undef,undef,undef,
                 3,0,0,2, 0,0,2,1, 1,undef,undef,undef,
                 2,1,1,2, 0,0,3,0, 0,undef,undef,undef,
                 2,2,3,1, 0,0,1,0, 0,undef,undef,undef,
                 3,2,2,0, 0,1,0,0, 1,undef,undef,undef,
                 1,1,2,0, 0,2,0,0, 3);
my @max_digit = (0,3,3,1, 3,3,1,2, 2,undef,undef,undef,
                 0,1,1,3, 3,2,3,3, 2,undef,undef,undef,
                 1,1,0,2, 3,3,2,3, 3,undef,undef,undef,
                 3,3,0,3, 3,1,2,2, 1,undef,undef,undef,
                 2,2,1,3, 3,1,3,3, 0,undef,undef,undef,
                 2,3,3,2, 3,3,1,1, 0,undef,undef,undef,
                 3,3,2,3, 3,2,0,1, 1,undef,undef,undef,
                 1,2,2,1, 3,3,0,3, 3,undef,undef,undef,
                 3,3,0,3, 3,1,2,2, 1,undef,undef,undef,
                 3,3,2,3, 3,2,0,1, 1,undef,undef,undef,
                 2,3,3,2, 3,3,1,1, 0,undef,undef,undef,
                 0,3,3,1, 3,3,1,2, 2,undef,undef,undef,
                 1,2,2,1, 3,3,0,3, 3,undef,undef,undef,
                 1,1,0,2, 3,3,2,3, 3,undef,undef,undef,
                 0,1,1,3, 3,2,3,3, 2,undef,undef,undef,
                 2,2,1,3, 3,1,3,3, 0,undef,undef,undef,
                 0,3,3,1, 3,3,1,2, 2,undef,undef,undef,
                 0,1,1,3, 3,2,3,3, 2,undef,undef,undef,
                 1,1,0,2, 3,3,2,3, 3,undef,undef,undef,
                 3,3,0,3, 3,1,2,2, 1,undef,undef,undef,
                 2,2,1,3, 3,1,3,3, 0,undef,undef,undef,
                 2,3,3,2, 3,3,1,1, 0,undef,undef,undef,
                 3,3,2,3, 3,2,0,1, 1,undef,undef,undef,
                 1,2,2,1, 3,3,0,3, 3);

sub n_to_xy {
  my ($self, $n) = @_;
  ### BetaOmega n_to_xy(): $n
  ### hex: sprintf "%#X", $n

  if ($n < 0) { return; }
  if (is_infinite($n)) { return ($n,$n); }

  my $int = int($n);
  $n -= $int;  # remaining fraction, preserve possible BigFloat/BigRat

  my $zero = $int * 0;  # inherit bignum
  my @ndigits = digit_split_lowtohigh($int,4);
  ### ndigits: join(', ',@ndigits)."   count ".scalar(@ndigits)

  my $state = ($#ndigits & 1 ? 28 : 0);
  my $dirstate   = ($#ndigits & 1 ? 0 : 28); # default if all $ndigit==3
  my @xbits;
  my @ybits;

  foreach my $i (reverse 0 .. $#ndigits) {
    my $ndigit = $ndigits[$i];    # high to low
    $state += $ndigit;
    if ($ndigit != 3) {
      $dirstate = $state;  # lowest non-3 digit
    }

    ### $ndigit
    ### $state
    ### $dirstate
    ### digit_to_x: $digit_to_x[$state]
    ### digit_to_y: $digit_to_y[$state]
    ### next_state: $next_state[$state]

    $xbits[$i] = $digit_to_x[$state];
    $ybits[$i] = $digit_to_y[$state];
    $state = $next_state[$state];
  }

  ### $dirstate
  ### frac: $n
  ### Ymin: - (((4+$zero)**int($#ndigits/2) - 1) * 2 / 3)

  # with $n fractional part
  return ($n * ($digit_to_x[$dirstate+1] - $digit_to_x[$dirstate])
          + digit_join_lowtohigh(\@xbits, 2, $zero),

          $n * ($digit_to_y[$dirstate+1] - $digit_to_y[$dirstate])
          + (digit_join_lowtohigh(\@ybits, 2, $zero)

             # Ymin = - (4^floor(level/2) - 1) * 2 / 3
             - (((4+$zero)**int(scalar(@ndigits)/2) - 1) * 2 / 3)));
}


# ($len,$level) rounded down for $y ...
sub _y_round_down_len_level {
  my ($y) = @_;
  my $pos;
  if ($pos = ($y >= 0)) {
    # eg. 1 becomes 3, or 5 becomes 15, 2^k-1
    $y = 3 * $y;
  } else {
    # eg. -2 becomes 7, or -10 becomes 31, 2^k-1
    $y = 1 - 3*$y;
  }
  my ($len, $level) = round_down_pow($y,2);

  # Make positive y give even level, and negative y give odd level.
  # If positive and odd then reduce, or if negative and even then reduce.
  if (($level & 1) == $pos) {
    $level--;
    $len /= 2;
  }

  return ($len, $level);
}

sub xy_to_n {
  my ($self, $x, $y) = @_;
  ### BetaOmega xy_to_n(): "$x, $y"

  $x = round_nearest ($x);
  if ($x < 0) {
    return undef;
  }
  if (is_infinite($x)) {
    return $x;
  }
  my @xbits = bit_split_lowtohigh($x);

  $y = round_nearest ($y);
  my $zero = ($x * 0 * $y);
  my ($len, $level) = _y_round_down_len_level ($y);
  ### y: "len=$len  level=$level"

  if ($#xbits > $level) {
    ### increase level to xbits ...
    $level = $#xbits;
    $len = (2+$zero) ** $level;
  }
  ### $len
  ### $level

  $y += (($level&1 ? 4 : 2) * $len - 2) / 3;
  ### offset y to: $y
  if (is_infinite($y)) {
    return $y;
  }
  my @ybits = bit_split_lowtohigh($y);
  my $state = ($level & 1 ? 28 : 0);

  my @ndigits;
  foreach my $i (reverse 0 .. $level) {   # high to low
    ### at: "i=$i state=$state  xbit=".($xbits[$i]||0)." ybit=".($ybits[$i]||0)

    my $ndigit = $xy_to_digit[$state + 2*($xbits[$i]||0) + ($ybits[$i]||0)];
    $ndigits[$i] = $ndigit;
    $state = $next_state[$state+$ndigit];
  }

  return digit_join_lowtohigh(\@ndigits, 4, $zero);
}

# exact
sub rect_to_n_range {
  my ($self, $x1,$y1, $x2,$y2) = @_;
  ### BetaOmega rect_to_n_range(): "$x1,$y1, $x2,$y2"

  $x1 = round_nearest ($x1);
  $x2 = round_nearest ($x2);
  ($x1,$x2) = ($x2,$x1) if $x1 > $x2;

  if ($x2 < 0) {
    return (1, 0);
  }

  $y1 = round_nearest ($y1);
  $y2 = round_nearest ($y2);
  ($y1,$y2) = ($y2,$y1) if $y1 > $y2;

  my ($len, $level) = round_down_pow ($x2, 2);
  ### x len/level: "$len  $level"

  # If y1/y2 both positive or both negative then only look at the bigger of
  # the two.  If y1 negative and y2 positive then consider both.
  foreach my $y (($y2 > 0 ? ($y2) : ()),
                 ($y1 < 0 ? ($y1) : ())) {
    my ($ylen, $ylevel) = _y_round_down_len_level ($y);
    ### y len/level: "$ylen  $ylevel"
    if ($ylevel > $level) {
      $level = $ylevel;
      $len = $ylen;
    }
  }
  if (is_infinite($len)) {
    return (0, $len);
  }

  my $n_min = my $n_max = 0;
  my $y_min = my $y_max = - (4**int(($level+1)/2) - 1) * 2 / 3;
  my $x_min = my $x_max = 0;
  my $min_state = my $max_state = ($level & 1 ? 28 : 0);
  ### $x_min
  ### $y_min

  while ($level >= 0) {
    ### $level
    ### $len
    {
      my $x_cmp = $x_min + $len;
      my $y_cmp = $y_min + $len;
      my $digit = $min_digit[3*$min_state
                             + ($x1 >= $x_cmp ? 2 : $x2 >= $x_cmp ? 1 : 0)
                             + ($y1 >= $y_cmp ? 6 : $y2 >= $y_cmp ? 3 : 0)];

      # my $xr = ($x1 >= $x_cmp ? 2 : $x2 >= $x_cmp ? 1 : 0);
      # my $yr = ($y1 >= $y_cmp ? 6 : $y2 >= $y_cmp ? 3 : 0);
      # my $key = 3*$min_state + ($x1 >= $x_cmp ? 2 : $x2 >= $x_cmp ? 1 : 0) + ($y1 >= $y_cmp ? 6 : $y2 >= $y_cmp ? 3 : 0);
      # ### min at: "min_state=$min_state  $x_min,$y_min   cmp $x_cmp,$y_cmp"
      # ### min_state: state_string($min_state)
      # ### $xr
      # ### $yr
      # ### $key
      # ### min digit: $digit
      # ### min key: $key
      # ### y offset: $digit_to_y[$max_state+$digit]

      $n_min = 4*$n_min + $digit;
      $min_state += $digit;
      if ($digit_to_x[$min_state]) { $x_min += $len; }
      $y_min += $len * $digit_to_y[$min_state];
      $min_state = $next_state[$min_state];
    }
    {
      my $x_cmp = $x_max + $len;
      my $y_cmp = $y_max + $len;
      my $digit = $max_digit[3*$max_state
                             + ($x1 >= $x_cmp ? 2 : $x2 >= $x_cmp ? 1 : 0)
                             + ($y1 >= $y_cmp ? 6 : $y2 >= $y_cmp ? 3 : 0)];

      # my $xr = ($x1 >= $x_cmp ? 2 : $x2 >= $x_cmp ? 1 : 0);
      # my $yr = ($y1 >= $y_cmp ? 6 : $y2 >= $y_cmp ? 3 : 0);
      # my $key = 3*$min_state + ($x1 >= $x_cmp ? 2 : $x2 >= $x_cmp ? 1 : 0) + ($y1 >= $y_cmp ? 6 : $y2 >= $y_cmp ? 3 : 0);
      # ### max at: "max_state=$max_state  $x_max,$y_max   cmp $x_cmp,$y_cmp"
      # ### $x_cmp
      # ### $y_cmp
      # ### $xr
      # ### $yr
      # ### $key
      # ### max digit: $digit
      # ### x offset: $digit_to_x[$max_state+$digit]
      # ### y offset: $digit_to_y[$max_state+$digit]
      # ### y digit offset: $digit_to_y[$max_state+$digit]
      # ### y min shift part: - ($level&1)

      $n_max = 4*$n_max + $digit;
      $max_state += $digit;
      if ($digit_to_x[$max_state]) { $x_max += $len; }
      $y_max += $len * $digit_to_y[$max_state];
      $max_state = $next_state[$max_state];
    }

    $len = int($len/2);
    $level--;
  }

  return ($n_min, $n_max);
}

#------------------------------------------------------------------------------
# levels

use Math::PlanePath::HilbertCurve;
*level_to_n_range = \&Math::PlanePath::HilbertCurve::level_to_n_range;
*n_to_level       = \&Math::PlanePath::HilbertCurve::n_to_level;

#------------------------------------------------------------------------------
1;
__END__


    #                                                |
    #   5   25--26  29--30  33--34  37--38 249-250 255-254 233-232-231-230
    #        |   |   |   |   |   |   |   |   |   |       |   |           |
    #   4   24  27--28  31--32  35--36  39 248 251-252-253 234-235 228-229
    #        |                           |   |                   |   |
    #   3   23  20--19--18  45--44--43  40 247 244-243 240-239 236 227-226
    #        |   |       |   |       |   |   |   |   |   |   |   |       |
    #   2   22--21  16--17  46--47  42--41 246-245 242-241 238-237 224-225
    #                |           |                                   |
    #   1    1-- 2  15--14  49--48  53--54 201-202 205-206 209-210 223-222
    #        |   |       |   |       |   |   |   |   |   |   |   |       |
    # Y=0->  0   3  12--13  50--51--52  55 200 203-204 207-208 211 220-221
    #            |   |                   |   |                   |   |
    #  -1    5-- 4  11--10  61--60--59  56 199 196-195-194 213-212 219-218
    #        |           |   |       |   |   |   |       |   |           |
    #  -2    6-- 7-- 8-- 9  62--63  58--57 198-197 192-193 214-215-216-217
    #                            |                   |
    #  -3   89--88--87--86  65--64  69--70 185-186 191-190 169-168-167-166
    #        |           |   |       |   |   |   |       |   |           |
    #  -4   90--91  84--85  66--67--68  71 184 187-188-189 170-171 164-165
    #            |   |                   |   |                   |   |
    #  -5   93--92  83  80--79  76--75  72 183 180-179 176-175 172 163-162
    #        |       |   |   |   |   |   |   |   |   |   |   |   |       |
    #  -6   94--95  82--81  78--77  74--73 182-181 178-177 174-173 160-161
    #            |                                                   |
    #  -7   97--96 109-110 113-114 125-126 129-130 141-142 145-146 159-158
    #        |       |   |   |   |   |   |   |   |   |   |   |   |       |
    #  -8   98--99 108 111-112 115 124 127-128 131 140 143-144 147 156-157
    #            |   |           |   |           |   |           |   |
    #  -9  101-100 107-106 117-116 123-122 133-132 139-138 149-148 155-154
    #        |           |   |           |   |           |   |           |
    # -10  102-103-104-105 118-119-120-121 134-135-136-137 150-151-152-153
    #
    #       ^
    #      X=0   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15




=for stopwords eg Ryde OEIS ie bignums prepending Math-PlanePath Jens-Michael Wierum Ymin Ymax Wierum's Paderborn CCCG'02 MERCHANTABILITY 14th ybit

=head1 NAME

Math::PlanePath::BetaOmega -- 2x2 half-plane traversal

=head1 SYNOPSIS

 use Math::PlanePath::BetaOmega;
 my $path = Math::PlanePath::BetaOmega->new;
 my ($x, $y) = $path->n_to_xy (123);

=head1 DESCRIPTION

X<Wierum, Jens-Michael>This is an integer version of the Beta-Omega curve

=over

Jens-Michael Wierum, "Definition of a New Circular Space-Filling Curve:
Beta-Omega-Indexing", Technical Report TR-001-02, Paderborn Center for
Parallel Computing, March 2002.

=back

The curve form here makes a 2x2 self-similar traversal of the half plane
XE<gt>=0.

      5   25--26  29--30  33--34  37--38
           |   |   |   |   |   |   |   |
      4   24  27--28  31--32  35--36  39
           |                           |
      3   23  20--19--18  45--44--43  40
           |   |       |   |       |   |
      2   22--21  16--17  46--47  42--41
                   |           |
      1    1-- 2  15--14  49--48  53--54
           |   |       |   |       |   |
    Y=0->  0   3  12--13  50--51--52  55
               |   |                   |
     -1    5-- 4  11--10  61--60--59  56
           |           |   |       |   |
     -2    6-- 7-- 8-- 9  62--63  58--57
                               |
     -3                       ...

         X=0   1   2   3   4   5   6   7

Each level extends square parts 2^level x 2^level alternately up or down.
The initial N=0 to N=3 extends upwards from Y=0 and exits the block
downwards at N=3.  N=4 extends downwards and goes around back upwards to
exit N=15.  N=16 then extends upwards through to N=63 which exits downwards,
etc.

The curve is named for the two base shapes

         Beta                     Omega

           *---*                  *---*
           |   |                  |   |
         --*   *                --*   *--
               |

The beta is made from three betas and an omega sub-parts.  The omega is made
from four betas.  In each case the sub-parts are suitably rotated,
transposed or reversed, so expanding to

    Beta = 3*Beta+Omega      Omega = 4*Beta

      *---*---*---*            *---*---*---*
      |           |            |           |
      *---*   *---*            *---*   *---*
          |   |                    |   |
    --*   *   *---*          --*   *   *   *--
      |   |       |            |   |   |   |
      *---*   *---*            *---*   *---*
              |

The sub-parts represent successive ever-smaller substitutions.  They have
the effect of making the start a beta going alternately up or down.  For
this integer version the start direction is kept fixed as a beta going
upwards and the higher levels then alternate up and down from there.

=head2 Level Ranges

Reckoning the initial N=0 to N=3 as level 1, a replication level extends to

    Nlevel = 4^level - 1
    Xmin = 0
    Xmax = 2^level - 1

    Ymin = - (4^floor(level/2) - 1) * 2 / 3
         = binary 1010...10
    Ymax = (4^ceil(level/2) - 1) / 3
         = binary 10101...01

    height = Ymax - Ymin = 2^level - 1

The Y range increases alternately above and below by a power of 2, so the
result for Ymin and Ymax is a 1 bit going alternately to Ymax and Ymin,
starting with Ymax for level 1.

    level     Ymin    binary       Ymax   binary
    -----     --------------       -------------
      0         0                    0
      1         0          0         1 =       1
      2        -2 =      -10         1 =      01
      3        -2 =     -010         5 =     101
      4       -10 =    -1010         5 =    0101
      5       -10 =   -01010        21 =   10101
      6       -42 =  -101010        21 =  010101
      7       -42 = -0101010        85 = 1010101

The power of 4 divided by 3 formulas above for Ymin/Ymax have the effect of
producing alternating bit patterns like this.

For odd levels -Ymin/height approaches 1/3 and Ymax/height approaches 2/3,
ie. the start point is about 1/3 up the total extent.  For even levels it's
the other way around, with -Ymin/height approaching 2/3 and Ymax/height
approaching 1/3.

=head2 Closed Curve

Wierum's idea for the curve is a closed square made from four betas,

    *---*      *---*
    |   |      |   |
    *   *--  --*   *
    |              |

    |              |
    *   *--  --*   *
    |   |      |   |
    *---*      *---*

And at the next expansion level

    *---*---*---*       *---*---*---*
    |           |       |           |
    *---*   *---*       *---*   *---*
        |   |               |   |
    *---*   *   *--   --*   *   *---*
    |       |   |       |   |       |
    *---*   *---*       *---*   *---*
        |                       |

        |                       |
    *---*   *---*       *---*   *---*
    |       |   |       |   |       |
    *---*   *   *--   --*   *   *---*
        |   |               |   |
    *---*   *---*       *---*   *---*
    |           |       |           |
    *---*---*---*       *---*---*---*

The code here could be used for that by choosing a level and applying four
copies of the path suitably mirrored and offset in X and Y.

For an odd level, the path N=0 to N=4^level-1 here is the top-right quarter,
entering on the left and exiting downwards.  For an even level it's the
bottom-right shape instead, exiting upwards.  The difference arises because
when taking successively greater detail sub-parts the initial direction
alternates up or down, but in the code here it's kept fixed (as noted
above).

The start point here is also fixed at Y=0, so an offset Ymin must be applied
if say the centre of the sections is to be Y=0 instead of the side entry
point.

=head1 FUNCTIONS

See L<Math::PlanePath/FUNCTIONS> for behaviour common to all path classes.

=over 4

=item C<$path = Math::PlanePath::BetaOmega-E<gt>new ()>

Create and return a new path object.

=item C<($x,$y) = $path-E<gt>n_to_xy ($n)>

Return the X,Y coordinates of point number C<$n> on the path.  Points begin
at 0 and if C<$n E<lt> 0> then the return is an empty list.

=item C<($n_lo, $n_hi) = $path-E<gt>rect_to_n_range ($x1,$y1, $x2,$y2)>

The returned range is exact, meaning C<$n_lo> and C<$n_hi> are the smallest
and biggest in the rectangle.

=back

=head2 Level Methods

=over

=item C<($n_lo, $n_hi) = $path-E<gt>level_to_n_range($level)>

Return C<(0, 4**$level - 1)>.

=back

=head1 FORMULAS

=head2 N to X,Y

Each 2 bits of N become a bit each for X and Y in a "U" arrangement, but
which way around is determined by sub-part orientation and beta/omega type
per above,

    beta rotation     4 of
         transpose    2 of
         reverse      2 of
    omega rotation    4 of
          transpose   2 of
                    ----
    total states     24   = 4*2*2 + 4*2

The omega pattern is symmetric so its reverse is the same, hence only rotate
and transpose forms for it.  Omitting omega reverse reduces the states from
32 to 24, saving a little space in a table driven approach.  But if using
separate variables for rotate, transpose and reverse then the reverse can be
kept for both beta and omega without worrying that it makes no difference in
the omega.

Adding bits to Y produces a positive value measured up from Ymin(level),
where level is the number of base 4 digits in N.  That Ymin can be
incorporated by adding -(2^level) for each even level.  A table driven
calculation can work that in as for example

    digit = N base 4 digits from high to low

    xbit = digit_to_x[state,digit]
    ybit = digit_to_y[state,digit]
    state = next_state[state,digit]

    X += 2^level * xbit
    Y += 2^level * (ybit - !(level&1))

The (ybit-!(level&1)) means either 0,1 or -1,0.  Another possibility there
would be to have -!(level&1) in the digit_to_y[] table, doubling the states
so as to track the odd/even level within the state and having the
digit_to_y[] as -1,0 in the even and 0,1 in the odd.

=head2 N to X,Y Fraction

If N includes a fractional part, it can be put on a line towards the next
integer point by taking the direction as at the least significant non-3
digit.

If the least significant base 4 digit is 3 then the direction along the
curve is determined by the curve part above.  For example at N=7 (13 base 4)
it's rightwards as per the inverted beta which is the N=4 towards N=8 part
of the surrounding pattern.  Or likewise N=11 (23 base 4) in the N=8 to N=12
direction.

        |                 0    12--
    5---4                 |     |
    |                     |     |
    6---7-- ...           4-----8

If all digits are 3 base 4, which is N=3, N=15, N=63, etc, then the
direction is down for an odd number of digits, up for an even number.  So
N=3 downwards, N=15 upwards, N=63 downwards, etc.

This curve direction calculation might be of interest in its own right, not
merely to apply a fractional N as done in the code here.  There's nothing
offered for that in the C<PlanePath> modules as such.  For it the X,Y values
can be ignored just follow the state or orientations changes using the base
4 digits of N.

=head1 SEE ALSO

L<Math::PlanePath>,
L<Math::PlanePath::HilbertCurve>,
L<Math::PlanePath::PeanoCurve>

=over

L<http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.18.3487> (cached
copy)

=back

Jens-Michael Wierum, "Logarithmic Path-Length in Space-Filling Curves", 14th
Canadian Conference on Computational Geometry (CCCG'02), 2002.

=over

L<http://www.cccg.ca/proceedings/2002/>
L<http://www.cccg.ca/proceedings/2002/27.ps> (shorter),
L<http://www.cccg.ca/proceedings/2002/27l.ps> (longer)

=back

=head1 HOME PAGE

L<http://user42.tuxfamily.org/math-planepath/index.html>

=head1 LICENSE

Copyright 2011, 2012, 2013, 2014, 2015 Kevin Ryde

This file is part of Math-PlanePath.

Math-PlanePath is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.

Math-PlanePath is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
more details.

You should have received a copy of the GNU General Public License along with
Math-PlanePath.  If not, see <http://www.gnu.org/licenses/>.

=cut