/usr/share/perl5/Math/PlanePath/AlternatePaper.pm is in libmath-planepath-perl 122-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 | # Copyright 2011, 2012, 2013, 2014, 2015 Kevin Ryde
# This file is part of Math-PlanePath.
#
# Math-PlanePath is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by the
# Free Software Foundation; either version 3, or (at your option) any later
# version.
#
# Math-PlanePath is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
# or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
# for more details.
#
# You should have received a copy of the GNU General Public License along
# with Math-PlanePath. If not, see <http://www.gnu.org/licenses/>.
# ENHANCE-ME: Explanation for this bit ...
# 'arms=4' =>
# { dSum => 'A020985', # GRS
# # OEIS-Other: A020985 planepath=AlternatePaper,arms=4 delta_type=dSum
# },
package Math::PlanePath::AlternatePaper;
use 5.004;
use strict;
use List::Util 'min'; # 'max'
*max = \&Math::PlanePath::_max;
use vars '$VERSION', '@ISA';
$VERSION = 122;
use Math::PlanePath;
use Math::PlanePath::Base::NSEW;
@ISA = ('Math::PlanePath::Base::NSEW',
'Math::PlanePath');
use Math::PlanePath::Base::Generic
'is_infinite',
'round_nearest';
use Math::PlanePath::Base::Digits
'round_down_pow',
'digit_split_lowtohigh',
'digit_join_lowtohigh',
'bit_split_lowtohigh';
*_divrem = \&Math::PlanePath::_divrem;
*_divrem_mutate = \&Math::PlanePath::_divrem_mutate;
# uncomment this to run the ### lines
# use Smart::Comments;
use constant parameter_info_array => [ { name => 'arms',
share_key => 'arms_8',
display => 'Arms',
type => 'integer',
minimum => 1,
maximum => 8,
default => 1,
width => 1,
description => 'Arms',
} ];
use constant n_start => 0;
sub x_negative {
my ($self) = @_;
return ($self->{'arms'} >= 3);
}
sub y_negative {
my ($self) = @_;
return ($self->{'arms'} >= 5);
}
{
my @x_negative_at_n = (undef,
undef,undef,8,7,
4,4,4,4);
sub x_negative_at_n {
my ($self) = @_;
return $x_negative_at_n[$self->{'arms'}];
}
}
{
my @y_negative_at_n = (undef,
undef,undef,undef,undef,
44,23,13,14);
sub y_negative_at_n {
my ($self) = @_;
return $y_negative_at_n[$self->{'arms'}];
}
}
sub sumxy_minimum {
my ($self) = @_;
return ($self->arms_count <= 3
? 0 # 1,2,3 arms above X=-Y diagonal
: undef);
}
sub diffxy_minimum {
my ($self) = @_;
return ($self->arms_count == 1
? 0 # 1 arms right of X=Y diagonal
: undef);
}
use constant turn_any_straight => 0; # never straight
#------------------------------------------------------------------------------
sub new {
my $self = shift->SUPER::new(@_);
$self->{'arms'} = max(1, min(8, $self->{'arms'} || 1));
return $self;
}
# state=0 /| +----+----+
# / | |\ 1||<--/
# /2 | |^\ || 0/
# /-->| || \v| /
# +----+ ||3 \|/
# /|\ 3|| +----+
# / |^\ || |<--/ state=4
# / 0|| \v| | 2/
# /-->||1 \| | /
# +----+----+ |/
#
# |\ state=8 +----+----+ state=12
# |^\ \ 1||<--/|
# || \ \ || 0/ |
# ||3 \ \v| /2 |
# +----+ \|/-->|
# |<--/|\ +----+
# | 2/ |^\ \ 3||
# | /0 || \ \ ||
# |/-->||1 \ \v|
# +----+----+ \|
my @next_state = (0, 8, 0, 12, # forward
4, 12, 4, 8, # forward NW
0, 8, 4, 8, # reverse
4, 12, 0, 12, # reverse NE
);
my @digit_to_x = (0,1,1,1,
1,0,0,0,
0,1,0,0,
1,0,1,1,
);
my @digit_to_y = (0,0,1,0,
1,1,0,1,
0,0,0,1,
1,1,1,0,
);
# state_to_dx[S] == state_to_x[S+3] - state_to_x[S+0]
my @state_to_dx = (1, undef,undef,undef,
-1, undef,undef,undef,
0, undef,undef,undef,
0, undef,undef,undef,
);
my @state_to_dy = (0, undef,undef,undef,
0, undef,undef,undef,
1, undef,undef,undef,
-1, undef,undef,undef,
);
sub n_to_xy {
my ($self, $n) = @_;
### AlternatePaper n_to_xy(): $n
if ($n < 0) { return; }
if (is_infinite($n)) { return ($n, $n); }
my $int = int($n); # integer part
$n -= $int; # fraction part
### $int
### $n
my $zero = ($int * 0); # inherit bignum 0
my $arm = _divrem_mutate ($int, $self->{'arms'});
### $arm
### $int
my @digits = digit_split_lowtohigh($int,4);
my $state = 0;
my (@xbits,@ybits); # bits low to high (like @digits)
foreach my $i (reverse 0 .. $#digits) { # high to low
$state += $digits[$i];
$xbits[$i] = $digit_to_x[$state];
$ybits[$i] = $digit_to_y[$state];
$state = $next_state[$state];
}
my $x = digit_join_lowtohigh(\@xbits,2,$zero);
my $y = digit_join_lowtohigh(\@ybits,2,$zero);
# X+1,Y+1 for final state=4 or state=12
$x += $digit_to_x[$state];
$y += $digit_to_y[$state];
### final: "xy=$x,$y state=$state"
# apply possible fraction part of $n in direction of $state
$x = $n * $state_to_dx[$state] + $x;
$y = $n * $state_to_dy[$state] + $y;
# rotate,transpose for arm number
if ($arm & 1) {
($x,$y) = ($y,$x); # transpose
}
if ($arm & 2) {
($x,$y) = (-$y,$x+1); # rotate +90 and shift origin to X=0,Y=1
}
if ($arm & 4) {
$x = -1 - $x; # rotate +180 and shift origin to X=-1,Y=1
$y = 1 - $y;
}
### rotated return: "$x,$y"
return ($x,$y);
}
# 8
#
# 42 43 7
#
# 40 41/45 44 6
#
# 34 35/39 38/46 47 5
#
# 32-33/53-36/52-37/49---48 4
# | \
# 10 11/31 30/54 51/55 50/58 59 3
# | \
# 8 9/13 12/28 25/29 24/56 57/61 60 2
# | \
# 2 3/7 6/14 15/27 18/26 19/23 22/62 63 1
# | \
# 0 1 4 5 16 17 20 21 ==64 0
#
# 0 1 2 3 4 5 6 7 8
sub xy_to_n {
return scalar((shift->xy_to_n_list(@_))[0]);
}
sub xy_to_n_list {
my ($self, $x, $y) = @_;
### AlternatePaper xy_to_n(): "$x, $y"
$x = round_nearest($x);
$y = round_nearest($y);
if (is_infinite($x)) { return $x; }
if (is_infinite($y)) { return $y; }
my $arms = $self->{'arms'};
my $arm = 0;
my @ret;
foreach (1 .. 4) {
push @ret, map {$_*$arms+$arm} _xy_to_n_list__onearm($self,$x,$y);
last if ++$arm >= $arms;
($x,$y) = ($y,$x); # transpose
push @ret, map {$_*$arms+$arm} _xy_to_n_list__onearm($self,$x,$y);
last if ++$arm >= $arms;
# X,Y -> Y,X
# -> Y,X-1 # Y-1 shift
# -> X-1,-Y # rot -90
# ie. mirror across X axis and shift
($x,$y) = ($x-1,-$y);
}
return sort {$a<=>$b} @ret;
}
sub _xy_to_n_list__onearm {
my ($self, $x, $y) = @_;
### _xy_to_n_list__onearm(): "$x,$y"
if ($y < 0 || $y > $x || $x < 0) {
### outside first octant ...
return;
}
my ($len,$level) = round_down_pow($x, 2);
### $len
### $level
if (is_infinite($level)) {
return;
}
my $n = my $big_n = $x * 0 * $y; # inherit bignum 0
my $rev = 0;
my $big_x = $x;
my $big_y = $y;
my $big_rev = 0;
while ($level-- >= 0) {
### at: "$x,$y len=$len n=$n"
# the smaller N
{
$n *= 4;
if ($rev) {
if ($x+$y < 2*$len) {
### rev 0 or 1 ...
if ($x < $len) {
} else {
### rev 1 ...
$rev = 0;
$n -= 2;
($x,$y) = ($len-$y, $x-$len); # x-len,y-len then rotate +90
}
} else {
### rev 2 or 3 ...
if ($y > $len || ($x==$len && $y==$len)) {
### rev 2 ...
$n -= 2;
$x -= $len;
$y -= $len;
} else {
### rev 3 ...
$n -= 4;
$rev = 0;
($x,$y) = ($y, 2*$len-$x); # to origin then rotate -90
}
}
} else {
if ($x+$y <= 2*$len
&& !($x==$len && $y==$len)
&& !($x==2*$len && $y==0)) {
### 0 or 1 ...
if ($x <= $len) {
} else {
### 1 ...
$n += 2;
$rev = 1;
($x,$y) = ($len-$y, $x-$len); # x-len,y-len then rotate +90
}
} else {
### 2 or 3 ...
if ($y >= $len && !($x==2*$len && $y==$len)) {
$n += 2;
$x -= $len;
$y -= $len;
} else {
$n += 4;
$rev = 1;
($x,$y) = ($y, 2*$len-$x); # to origin then rotate -90
}
}
}
}
# the bigger N
{
$big_n *= 4;
if ($big_rev) {
if ($big_x+$big_y <= 2*$len
&& !($big_x==$len && $big_y==$len)
&& !($big_x==2*$len && $big_y==0)) {
### rev 0 or 1 ...
if ($big_x <= $len) {
} else {
### rev 1 ...
$big_rev = 0;
$big_n -= 2;
($big_x,$big_y) = ($len-$big_y, $big_x-$len); # x-len,y-len then rotate +90
}
} else {
### rev 2 or 3 ...
if ($big_y >= $len && !($big_x==2*$len && $big_y==$len)) {
### rev 2 ...
$big_n -= 2;
$big_x -= $len;
$big_y -= $len;
} else {
### rev 3 ...
$big_n -= 4;
$big_rev = 0;
($big_x,$big_y) = ($big_y, 2*$len-$big_x); # to origin then rotate -90
}
}
} else {
if ($big_x+$big_y < 2*$len) {
### 0 or 1 ...
if ($big_x < $len) {
} else {
### 1 ...
$big_n += 2;
$big_rev = 1;
($big_x,$big_y) = ($len-$big_y, $big_x-$len); # x-len,y-len then rotate +90
}
} else {
### 2 or 3 ...
if ($big_y > $len || ($big_x==$len && $big_y==$len)) {
$big_n += 2;
$big_x -= $len;
$big_y -= $len;
} else {
$big_n += 4;
$big_rev = 1;
($big_x,$big_y) = ($big_y, 2*$len-$big_x); # to origin then rotate -90
}
}
}
}
$len /= 2;
}
if ($x) {
$n += ($rev ? -1 : 1);
}
if ($big_x) {
$big_n += ($big_rev ? -1 : 1);
}
### final: "$x,$y n=$n rev=$rev"
### final: "$x,$y big_n=$n big_rev=$rev"
return ($n,
($n == $big_n ? () : ($big_n)));
}
# not exact
sub rect_to_n_range {
my ($self, $x1,$y1, $x2,$y2) = @_;
### AlternatePaper rect_to_n_range(): "$x1,$y1 $x2,$y2"
$x1 = round_nearest($x1);
$x2 = round_nearest($x2);
$y1 = round_nearest($y1);
$y2 = round_nearest($y2);
($x1,$x2) = ($x2,$x1) if $x1 > $x2;
($y1,$y2) = ($y2,$y1) if $y1 > $y2;
### rounded: "$x1,$y1 $x2,$y2"
my $arms = $self->{'arms'};
if (($arms == 1 && $y1 > $x2) # x2,y1 bottom right corner
|| ($arms <= 2 && $x2 < 0)
|| ($arms <= 4 && $y2 < 0)) {
### outside ...
return (1,0);
}
# arm start 0,1 at X=0,Y=0
# 2,3 at X=0,Y=1
# 4,5 at X=-1,Y=1
# 6,7 at X=-1,Y=1
# arms>=6 is arm=5 starting at Y=+1, so 1-$y1
# arms>=8 starts at X=-1 so extra +1 for x2 to the right in that case
my ($len, $level) =round_down_pow (max ($x2+($arms>=8),
($arms >= 2 ? $y2 : ()),
($arms >= 4 ? -$x1 : ()),
($arms >= 6 ? 1-$y1 : ())),
2);
return (0, 4*$arms*$len*$len-1);
}
my @dir4_to_dx = (1,0,-1,0);
my @dir4_to_dy = (0,1,0,-1);
sub n_to_dxdy {
my ($self, $n) = @_;
### n_to_dxdy(): $n
my $int = int($n);
$n -= $int; # $n fraction part
### $int
### $n
my $arm = _divrem_mutate ($int, $self->{'arms'});
### $arm
### $int
# $dir initial direction from the arm.
# $inc +/-1 according to the bit position odd or even, but also odd
# numbered arms are transposed so flip them.
#
my @bits = bit_split_lowtohigh($int);
my $dir = ($arm+1) >> 1;
my $inc = (($#bits ^ $arm) & 1 ? -1 : 1);
my $prev = 0;
### @bits
### initial dir: $dir
### initial inc: $inc
foreach my $bit (reverse @bits) {
if ($bit != $prev) {
$dir += $inc;
$prev = $bit;
}
$inc = -$inc; # opposite at each bit
}
$dir &= 3;
my $dx = $dir4_to_dx[$dir];
my $dy = $dir4_to_dy[$dir];
### $dx
### $dy
if ($n) {
### apply fraction part: $n
# maybe:
# +/- $n as dx or dy
# +/- (1-$n) as other dy or dx
# strip any low 1-bits, and the 0-bit above them
# $inc is +1 at an even bit position or -1 at an odd bit position
$inc = my $inc = ($arm & 1 ? -1 : 1);
while (shift @bits) {
$inc = -$inc;
}
if ($bits[0]) { # bit above lowest 0-bit, 1=right,0=left
$inc = -$inc;
}
$dir += $inc; # apply turn to give $dir at $n+1
$dir &= 3;
$dx += $n*($dir4_to_dx[$dir] - $dx);
$dy += $n*($dir4_to_dy[$dir] - $dy);
}
### result: "$dx, $dy"
return ($dx,$dy);
}
# {
# sub print_table {
# my ($name, $aref) = @_;
# print "my \@$name = (";
# my $entry_width = max (map {length($_//'')} @$aref);
#
# foreach my $i (0 .. $#$aref) {
# printf "%*s", $entry_width, $aref->[$i]//'undef';
# if ($i == $#$aref) {
# print ");\n";
# } else {
# print ",";
# if (($i % 16) == 15
# || ($entry_width >= 3 && ($i % 4) == 3)) {
# print "\n ".(" " x length($name));
# } elsif (($i % 4) == 3) {
# print " ";
# }
# }
# }
# }
#
# my @next_state;
# my @state_to_dxdy;
#
# sub make_state {
# my %values = @_;
# # if ($oddpos) { $rot = ($rot-1)&3; }
# my $state = delete $values{'nextturn'};
# $state <<= 2; $state |= delete $values{'rot'};
# $state <<= 1; $state |= delete $values{'oddpos'};
# $state <<= 1; $state |= delete $values{'lowerbit'};
# $state <<= 1; $state |= delete $values{'bit'};
# die if %values;
# return $state;
# }
# sub state_string {
# my ($state) = @_;
# my $bit = $state & 1; $state >>= 1;
# my $lowerbit = $state & 1; $state >>= 1;
# my $oddpos = $state & 1; $state >>= 1;
# my $rot = $state & 3; $state >>= 2;
# my $nextturn = $state;
# # if ($oddpos) { $rot = ($rot+1)&3; }
# return "rot=$rot,oddpos=$oddpos nextturn=$nextturn lowerbit=$lowerbit (bit=$bit)";
# }
#
# foreach my $nextturn (0, 1, 2) {
# foreach my $rot (0, 1, 2, 3) {
# foreach my $oddpos (0, 1) {
# foreach my $lowerbit (0, 1) {
# foreach my $bit (0, 1) {
# my $state = make_state (bit => $bit,
# lowerbit => $lowerbit,
# rot => $rot,
# oddpos => $oddpos,
# nextturn => $nextturn);
# ### $state
#
# my $new_nextturn = $nextturn;
# my $new_lowerbit = $bit;
# my $new_rot = $rot;
# my $new_oddpos = $oddpos ^ 1;
#
# if ($bit != $lowerbit) {
# if ($oddpos) {
# $new_rot++;
# } else {
# $new_rot--;
# }
# $new_rot &= 3;
# }
# if ($lowerbit == 0 && ! $nextturn) {
# $new_nextturn = ($bit ^ $oddpos ? 1 : 2); # bit above lowest 0
# }
#
# my $dx = 1;
# my $dy = 0;
# if ($rot & 2) {
# $dx = -$dx;
# $dy = -$dy;
# }
# if ($rot & 1) {
# ($dx,$dy) = (-$dy,$dx); # rotate +90
# }
# ### rot to: "$dx, $dy"
#
# # if ($oddpos) {
# # ($dx,$dy) = (-$dy,$dx); # rotate +90
# # } else {
# # ($dx,$dy) = ($dy,-$dx); # rotate -90
# # }
#
# my $next_dx = $dx;
# my $next_dy = $dy;
# if ($nextturn == 2) {
# ($next_dx,$next_dy) = (-$next_dy,$next_dx); # left, rotate +90
# } else {
# ($next_dx,$next_dy) = ($next_dy,-$next_dx); # right, rotate -90
# }
# my $frac_dx = $next_dx - $dx;
# my $frac_dy = $next_dy - $dy;
#
# # mask to rot,oddpos only, ignore bit,lowerbit
# my $masked_state = $state & ~3;
# $state_to_dxdy[$masked_state] = $dx;
# $state_to_dxdy[$masked_state + 1] = $dy;
# $state_to_dxdy[$masked_state + 2] = $frac_dx;
# $state_to_dxdy[$masked_state + 3] = $frac_dy;
#
# my $next_state = make_state (bit => 0,
# lowerbit => $new_lowerbit,
# rot => $new_rot,
# oddpos => $new_oddpos,
# nextturn => $new_nextturn);
# $next_state[$state] = $next_state;
# }
# }
# }
# }
# }
#
# my @arm_to_state;
# foreach my $arm (0 .. 7) {
# my $rot = $arm >> 1;
# my $oddpos = 0;
# if ($arm & 1) {
# $rot++;
# $oddpos ^= 1;
# }
# $arm_to_state[$arm] = make_state (bit => 0,
# lowerbit => 0,
# rot => $rot,
# oddpos => $oddpos,
# nextturn => 0);
# }
#
# ### @next_state
# ### @state_to_dxdy
# ### next_state length: 4*(4*2*2 + 4*2)
#
# print "# next_state length ", scalar(@next_state), "\n";
# print_table ("next_state", \@next_state);
# print_table ("state_to_dxdy", \@state_to_dxdy);
# print_table ("arm_to_state", \@arm_to_state);
# print "\n";
#
# foreach my $arm (0 .. 7) {
# print "# arm=$arm ",state_string($arm_to_state[$arm]),"\n";
# }
# print "\n";
#
#
#
# use Smart::Comments;
#
# sub n_to_dxdy {
# my ($self, $n) = @_;
# ### n_to_dxdy(): $n
#
# my $int = int($n);
# $n -= $int; # $n fraction part
# ### $int
# ### $n
#
# my $state = _divrem_mutate ($int, $self->{'arms'}) << 2;
# ### arm as initial state: $state
#
# foreach my $bit (bit_split_lowtohigh($int)) {
# $state = $next_state[$state + $bit];
# }
# $state &= 0x1C; # mask out "prevbit"
#
# ### final state: $state
# ### dx: $state_to_dxdy[$state]
# ### dy: $state_to_dxdy[$state+1],
# ### frac dx: $state_to_dxdy[$state+2],
# ### frac dy: $state_to_dxdy[$state+3],
#
# return ($state_to_dxdy[$state] + $n * $state_to_dxdy[$state+2],
# $state_to_dxdy[$state+1] + $n * $state_to_dxdy[$state+3]);
# }
#
# }
#------------------------------------------------------------------------------
# levels
use Math::PlanePath::DragonCurve;
*level_to_n_range = \&Math::PlanePath::DragonCurve::level_to_n_range;
*n_to_level = \&Math::PlanePath::DragonCurve::n_to_level;
#------------------------------------------------------------------------------
sub _UNDOCUMENTED_level_to_right_line_boundary {
my ($self, $level) = @_;
if ($level == 0) {
return 1;
}
my ($h,$odd) = _divrem($level,2);
return ($odd
? 6 * 2**$h - 4
: 2 * 2**$h);
}
sub _UNDOCUMENTED_level_to_left_line_boundary {
my ($self, $level) = @_;
if ($level == 0) {
return 1;
}
my ($h,$odd) = _divrem($level,2);
return ($odd
? 2 * 2**$h
: 4 * 2**$h - 4);
}
sub _UNDOCUMENTED_level_to_line_boundary {
my ($self, $level) = @_;
my ($h,$odd) = _divrem($level,2);
return (($odd?8:6) * 2**$h - 4);
}
sub _UNDOCUMENTED_level_to_hull_area {
my ($self, $level) = @_;
return (2**$level - 1)/2;
}
sub _UNDOCUMENTED__n_is_x_positive {
my ($self, $n) = @_;
if (! ($n >= 0) || is_infinite($n)) { return 0; }
$n = int($n);
{
my $arm = _divrem_mutate($n, $self->{'arms'});
# arm 1 good only on N=1 which is remaining $n==0
if ($arm == 1) {
return ($n == 0);
}
# arm 0 good
# arm 8 good for N>=15 which is remaining $n>=1
unless ($arm == 0
|| ($arm == 7 && $n > 0)) {
return 0;
}
}
return _is_base4_01($n);
}
sub _UNDOCUMENTED__n_is_diagonal_NE {
my ($self, $n) = @_;
if (! ($n >= 0) || is_infinite($n)) { return 0; }
$n = int($n);
if ($self->{'arms'} >= 8 && $n == 15) { return 1; }
if (_divrem_mutate($n, $self->{'arms'}) >= 2) { return 0; }
return _is_base4_02($n);
}
# X axis N is base4 digits 0,1
# and -1 from even is 0,1 low 0333333
# and -2 from even is 0,1 low 0333332
# so $n+2 low digit any then 0,1s above
sub _UNDOCUMENTED__n_segment_is_right_boundary {
my ($self, $n) = @_;
if ($self->{'arms'} >= 8
|| ! ($n >= 0)
|| is_infinite($n)) {
return 0;
}
$n = int($n);
if (_divrem_mutate($n, $self->{'arms'}) >= 1) {
return 0;
}
$n += 2;
_divrem_mutate($n,4);
return _is_base4_01($n);
}
# diagonal N is base4 digits 0,2,
# and -1 from there is 0,2 low 1
# or 0,2 low 13333
# so $n+1 low digit possible 1 or 3 then 0,2s above
# which means $n+1 low digit any and 0,2s above
#use Smart::Comments;
sub _UNDOCUMENTED__n_segment_is_left_boundary {
my ($self, $n) = @_;
### _UNDOCUMENTED__n_segment_is_left_boundary(): $n
my $arms = $self->{'arms'};
if ($arms >= 8
|| ! ($n >= 0)
|| is_infinite($n)) {
return 0;
}
$n = int($n);
if (($n == 1 && $arms >= 4)
|| ($n == 3 && $arms >= 5)
|| ($n == 5 && $arms == 7)) {
return 1;
}
if (_divrem_mutate($n, $arms) < $arms-1) {
### no, not last arm ...
return 0;
}
if ($arms % 2) {
### odd arms, stair-step boundary ...
$n += 1;
_divrem_mutate($n,4);
return _is_base4_02($n);
} else {
# even arms, notched like right boundary
$n += 2;
_divrem_mutate($n,4);
return _is_base4_01($n);
}
}
sub _is_base4_01 {
my ($n) = @_;
while ($n) {
my $digit = _divrem_mutate($n,4);
if ($digit >= 2) { return 0; }
}
return 1;
}
sub _is_base4_02 {
my ($n) = @_;
while ($n) {
my $digit = _divrem_mutate($n,4);
if ($digit == 1 || $digit == 3) { return 0; }
}
return 1;
}
1;
__END__
#------------------------------------------------------------------------------
# Old code with explicit rotation etc rather than state table.
#
# my @dir4_to_dx = (1,0,-1,0);
# my @dir4_to_dy = (0,1,0,-1);
#
# my @arm_to_x = (0,0, 0,0, -1,-1, -1,-1);
# my @arm_to_y = (0,0, 1,1, 1,1, 0,0);
#
# sub XXn_to_xy {
# my ($self, $n) = @_;
# ### AlternatePaper n_to_xy(): $n
#
# if ($n < 0) { return; }
# if (is_infinite($n)) { return ($n, $n); }
#
# my $frac;
# {
# my $int = int($n);
# $frac = $n - $int; # inherit possible BigFloat
# $n = $int; # BigFloat int() gives BigInt, use that
# }
# ### $frac
#
# my $zero = ($n * 0); # inherit bignum 0
#
# my $arm = _divrem_mutate ($n, $self->{'arms'});
#
# my @bits = bit_split_lowtohigh($n);
# if (scalar(@bits) & 1) {
# push @bits, 0; # extra high to make even
# }
#
# my @sx;
# my @sy;
# {
# my $sy = $zero; # inherit BigInt
# my $sx = $sy + 1; # inherit BigInt
# ### $sx
# ### $sy
#
# foreach (1 .. scalar(@bits)/2) {
# push @sx, $sx;
# push @sy, $sy;
#
# # (sx,sy) + rot+90(sx,sy)
# ($sx,$sy) = ($sx - $sy,
# $sy + $sx);
#
# push @sx, $sx;
# push @sy, $sy;
#
# # (sx,sy) + rot-90(sx,sy)
# ($sx,$sy) = ($sx + $sy,
# $sy - $sx);
# }
# }
#
# ### @bits
# ### @sx
# ### @sy
# ### assert: scalar(@sx) == scalar(@bits)
#
# my $rot = int($arm/2); # arm to initial rotation
# my $rev = 0;
# my $x = $zero;
# my $y = $zero;
# while (@bits) {
# {
# my $bit = pop @bits; # high to low
# my $sx = pop @sx;
# my $sy = pop @sy;
# ### at: "$x,$y $bit side $sx,$sy"
# ### $rot
#
# if ($rot & 2) {
# ($sx,$sy) = (-$sx,-$sy);
# }
# if ($rot & 1) {
# ($sx,$sy) = (-$sy,$sx);
# }
#
# if ($rev) {
# if ($bit) {
# $x -= $sy;
# $y += $sx;
# ### rev add to: "$x,$y next is still rev"
# } else {
# $rot ++;
# $rev = 0;
# }
# } else {
# if ($bit) {
# $rot ++;
# $x += $sx;
# $y += $sy;
# $rev = 1;
# ### add to: "$x,$y next is rev"
# }
# }
# }
#
# @bits || last;
#
# {
# my $bit = pop @bits;
# my $sx = pop @sx;
# my $sy = pop @sy;
# ### at: "$x,$y $bit side $sx,$sy"
# ### $rot
#
# if ($rot & 2) {
# ($sx,$sy) = (-$sx,-$sy);
# }
# if ($rot & 1) {
# ($sx,$sy) = (-$sy,$sx);
# }
#
# if ($rev) {
# if ($bit) {
# $x += $sy;
# $y -= $sx;
# ### rev add to: "$x,$y next is still rev"
# } else {
# $rot --;
# $rev = 0;
# }
# } else {
# if ($bit) {
# $rot --;
# $x += $sx;
# $y += $sy;
# $rev = 1;
# ### add to: "$x,$y next is rev"
# }
# }
# }
# }
#
# ### $rot
# ### $rev
#
# if ($rev) {
# $rot += 2;
# ### rev change rot to: $rot
# }
#
# if ($arm & 1) {
# ($x,$y) = ($y,$x); # odd arms transpose
# }
#
# $rot &= 3;
# $x = $frac * $dir4_to_dx[$rot] + $x + $arm_to_x[$arm];
# $y = $frac * $dir4_to_dy[$rot] + $y + $arm_to_y[$arm];
#
# ### final: "$x,$y"
# return ($x,$y);
# }
=for :stopwords eg Ryde Math-PlanePath Nlevel et al vertices doublings OEIS Online DragonCurve ZOrderCurve 0xAA..AA Golay-Rudin-Shapiro Rudin-Shapiro dX dY dX,dY GRS dSum undoubled MendE<232>s Tenenbaum des Courbes Papiers de ie ceil
=head1 NAME
Math::PlanePath::AlternatePaper -- alternate paper folding curve
=head1 SYNOPSIS
use Math::PlanePath::AlternatePaper;
my $path = Math::PlanePath::AlternatePaper->new;
my ($x, $y) = $path->n_to_xy (123);
=head1 DESCRIPTION
This is an integer version of the alternate paper folding curve (a variation
on the DragonCurve paper folding).
=cut
# math-image --path=AlternatePaper --expression='i<=128?i:0' --output=numbers --size=60
=pod
8 | 128
| |
7 | 42---43/127
| | |
6 | 40---41/45--44/124
| | | |
5 | 34---35/39--38/46--47/123
| | | | |
4 | 32---33/53--36/52--37/49--48/112
| | | | | |
3 | 10---11/31--30/54--51/55--50/58--59/111
| | | | | | |
2 | 8----9/13--12/28--29/25--24/56--57/61--60/108
| | | | | | | |
1 | 2----3/7---6/14--15/27--26/18--19/23---22/62--63/107
| | | | | | | | |
Y=0 | 0-----1 4-----5 16-----17 20-----21 64---..
|
+------------------------------------------------------------
X=0 1 2 3 4 5 6 7 8
The curve visits the X axis points and the X=Y diagonal points once each and
visits "inside" points between there twice each. The first doubled point is
X=2,Y=1 which is N=3 and also N=7. The segments N=2,3,4 and N=6,7,8 have
touched, but the curve doesn't cross over itself. The doubled vertices are
all like this, touching but not crossing, and no edges repeat.
The first step N=1 is to the right along the X axis and the path fills the
eighth of the plane up to the X=Y diagonal inclusive.
The X axis N=0,1,4,5,16,17,etc is the integers which have only digits 0,1 in
base 4, or equivalently those which have a 0 bit at each odd numbered bit
position.
The X=Y diagonal N=0,2,8,10,32,etc is the integers which have only digits
0,2 in base 4, or equivalently those which have a 0 bit at each even
numbered bit position.
The X axis values are the same as on the ZOrderCurve X axis, and the X=Y
diagonal is the same as the ZOrderCurve Y axis, but in between the two are
different. (See L<Math::PlanePath::ZOrderCurve>.)
=head2 Paper Folding
The curve arises from thinking of a strip of paper folded in half
alternately one way and the other, and then unfolded so each crease is a 90
degree angle. The effect is that the curve repeats in successive doublings
turned 90 degrees and reversed.
The first segment N=0 to N=1 unfolds clockwise, pivoting at the endpoint
"1",
2
-> |
unfold / |
===> | |
|
0------1 0-------1
Then that "L" shape unfolds again, pivoting at the end "2", but
anti-clockwise, on the opposite side to the first unfold,
2-------3
2 | |
| unfold | ^ |
| ===> | _/ |
| | |
0------1 0-------1 4
In general after each unfold the shape is a triangle as follows. "N" marks
the N=2^k endpoint in the shape, either bottom right or top centre.
after even number after odd number
of unfolds, of unfolds,
N=0 to N=2^even N=0 to N=2^odd
. N
/| / \
/ | / \
/ | / \
/ | / \
/ | / \
/_____N /___________\
0,0 0,0
For an even number of unfolds the triangle consists of 4 sub-parts numbered
by the high digit of N in base 4. Those sub-parts are self-similar in the
direction "E<gt>", "^" etc as follows, and with a reversal for parts 1
and 3.
+
/|
/ |
/ |
/ 2>|
+----+
/|\ 3|
/ | \ v|
/ |^ \ |
/ 0>| 1 \|
+----+----+
=head2 Arms
The C<arms> parameter can choose 1 to 8 curve arms successively advancing.
Each fills an eighth of the plane. The second arm is mirrored across the
X=Y leading diagonal, so
=cut
# math-image --path=AlternatePaper,arms=2 --expression='i<=128?i:0' --output=numbers --size=60
=pod
arms => 2
| | | | | |
4 | 33---31/55---25/57---23/63---64/65--
| | | | |
3 | 11---13/29---19/27---20/21---22/62--
| | | | | |
2 | 9----7/15---16/17---18/26---24/56--
| | | | |
1 | 3----4/5-----6/14---12/28---30/54--
| | | | | |
Y=0 | 0/1----2 8------10 32---
|
+------------- -------------------------
X=0 1 2 3 4
Here the even N=0,2,4,6,etc is the plain curve below the X=Y diagonals and
odd N=1,3,5,7,9,etc is the mirrored copy.
Arms 3 and 4 are the same but rotated +90 degrees and starting from X=0,Y=1.
That start point ensures each edge between integer points is traversed just
once.
=cut
# math-image --path=AlternatePaper,arms=4 --expression='i<=256?i:0' --output=numbers --size=60
=pod
arms => 4
| | | | |
--34/35---14/30---18/21--25/57----37/53-- 3
| | | | |
--15/31---10/11----6/17--13/29----32/33-- 2
| | | | |
--19 7-----2/3/5---8/9-----12/28-- 1
| | |
0/1-----4 16-- <- Y=0
-----------------------------------------
-1 -2 X=0 1 2
Points N=0,4,8,12,etc is the plain curve, N=1,5,9,13,etc the second mirrored
arm, N=2,6,10,14,etc is arm 3 which is the plain curve rotated +90, and
N=3,7,11,15,etc the rotated and mirrored.
Arms 5 and 6 start at X=-1,Y=1, and arms 7 and 8 start at X=-1,Y=0 so they
too traverse each edge once. With a full 8 arms each point is visited twice
except for the four start points which are three times.
=cut
# math-image --path=AlternatePaper,arms=8 --expression='i<=256?i:0' --output=numbers --size=60
=pod
arms => 8
| | | | | |
--75/107--66/67---26/58---34/41---49/113--73/105-- 3
| | | | | |
--51/115---27/59---18/19--10/33---25/57---64/65-- 2
| | | | | |
--36/43---12/35---4/5/11---2/3/9--16/17---24/56-- 1
| | | | | |
--28/60---20/21---6/7/13--0/1/15---8/39---32/47-- <- Y=0
| | | | | |
--68/69---29/61----14/37---22/23--31/63---55/119-- -1
| | | | | |
--77/109--53/117---38/45---30/62--70/71---79/111-- -2
| | | | | |
^
-3 -2 -1 X=0 1 2
=head1 FUNCTIONS
See L<Math::PlanePath/FUNCTIONS> for behaviour common to all path classes.
=over 4
=item C<$path = Math::PlanePath::AlternatePaper-E<gt>new ()>
=item C<$path = Math::PlanePath::AlternatePaper-E<gt>new (arms =E<gt> $integer)>
Create and return a new path object.
=item C<($x,$y) = $path-E<gt>n_to_xy ($n)>
Return the X,Y coordinates of point number C<$n> on the path. Points begin
at 0 and if C<$n E<lt> 0> then the return is an empty list.
Fractional positions give an X,Y position along a straight line between the
integer points.
=item C<@n_list = $path-E<gt>xy_to_n_list ($x,$y)>
Return a list of N point numbers for coordinates C<$x,$y>.
For arms=1 there may be none, one or two N's for a given C<$x,$y>. For
multiple arms the origin points X=0 or 1 and Y=0 or -1 have up to 3 Ns,
being the starting points of the arms. For arms=8 those 4 points have 3 N
and every other C<$x,$y> has exactly two Ns.
=item C<$n = $path-E<gt>n_start()>
Return 0, the first N in the path.
=back
=head2 Level Methods
=over
=item C<($n_lo, $n_hi) = $path-E<gt>level_to_n_range($level)>
Return C<(0, 2**$level)>, or for multiple arms return C<(0, $arms *
2**$level + ($arms-1))>.
This is the same as L<Math::PlanePath::DragonCurve/Level Methods>. Each
level is an unfold (on alternate sides left or right).
=back
=head1 FORMULAS
=head2 Turn
At each point N the curve always turns either left or right, it never goes
straight ahead. The turn is given by the bit above the lowest 1 bit in N
and whether that position is odd or even.
N = 0b...z100..00 (including possibly no trailing 0s)
^
pos, counting from 0 for least significant bit
(z bit) XOR (pos&1) Turn
------------------- ----
0 right
1 left
For example N=10 binary 0b1010 has lowest 1 bit at 0b__1_ and the bit above
that is a 0 at even number pos=2, so turn to the right.
=head2 Next Turn
The bits also give the turn after next by looking at the bit above the
lowest 0.
N = 0b...w011..11 (including possibly no trailing 1s)
^
pos, counting from 0 for least significant bit
(w bit) XOR (pos&1) Next Turn
------------------- ---------
0 right
1 left
For example at N=10 binary 0b1010 the lowest 0 is the least significant bit,
and above that is a 1 at odd pos=1, so at N=10+1=11 turn right. This works
simply because w011..11 when incremented becomes w100..00 which is the "z"
form above.
The inversion at odd bit positions can be applied with an xor 0b1010..1010.
If that's done then the turn calculation is the same as the DragonCurve (see
L<Math::PlanePath::DragonCurve/Turn>).
=head2 Total Turn
The total turn can be calculated from the segment replacements resulting
from the bits of N.
each bit of N from high to low
when plain state
0 -> no change
1 -> turn left if even bit pos or turn right if odd bit pos
and go to reversed state
when reversed state
1 -> no change
0 -> turn left if even bit pos or turn right if odd bit pos
and go to plain state
(bit positions numbered from 0 for the least significant bit)
This is similar to the DragonCurve (see L<Math::PlanePath::DragonCurve/Total
Turn>) except the turn is either left or right according to an odd or even
bit position of the transition, instead of always left for the DragonCurve.
=head2 dX,dY
Since there's always a turn either left or right, never straight ahead, the
X coordinate changes, then Y coordinate changes, alternately.
N=0
dX 1 0 1 0 1 0 -1 0 1 0 1 0 -1 0 1 0 ...
dY 0 1 0 -1 0 1 0 1 0 1 0 -1 0 -1 0 -1 ...
X changes when N is even, Y changes when N is odd. Each change is either +1
or -1. Which it is follows the Golay-Rudin-Shapiro sequence which is parity
odd or even of the count of adjacent 11 bit pairs.
In the total turn above it can be seen that if the 0-E<gt>1 transition is at
an odd position and 1-E<gt>0 transition at an even position then there's a
turn to the left followed by a turn to the right for no net change.
Likewise an even and an odd. This means runs of 1 bits with an odd length
have no effect on the direction. Runs of even length on the other hand are
a left followed by a left, or a right followed by a right, for 180 degrees,
which negates the dX change. Thus
if N even then dX = (-1)^(count even length runs of 1 bits in N)
if N odd then dX = 0
This (-1)^count is related to the Golay-Rudin-Shapiro sequence,
GRS = (-1) ^ (count of adjacent 11 bit pairs in N)
= (-1) ^ count_1_bits(N & (N>>1))
= / +1 if (N & (N>>1)) even parity
\ -1 if (N & (N>>1)) odd parity
The GRS is +1 on an odd length run of 1 bits, for example a run 111 has two
11 bit pairs. The GRS is -1 on an even length run, for example 1111 has
three 11 bit pairs. So modulo 2 the power in the GRS is the same as the
count of even length runs and therefore
dX = / GRS(N) if N even
\ 0 if N odd
For dY the total turn and odd/even runs of 1s is the same 180 degree
changes, except N is odd for a Y change so the least significant bit is 1
and there's no return to "plain" state. If this lowest run of 1s starts on
an even position (an odd number of 1s) then it's a turn left for +1.
Conversely if the run started at an odd position (an even number of 1s) then
a turn right for -1. The result for this last run is the same "negate if
even length" as the rest of the GRS, just for a slightly different reason.
dY = / 0 if N even
\ GRS(N) if N odd
=head2 dX,dY Pair
At a consecutive pair of points N=2k and N=2k+1 the dX and dY can be
expressed together in terms of GRS(k) as
dX = GRS(2k)
= GRS(k)
dY = GRS(2k+1)
= GRS(k) * (-1)^k
= / GRS(k) if k even
\ -GRS(k) if k odd
For dY reducing 2k+1 to k drops a 1 bit from the low end. If the second
lowest bit is also a 1 then they were a "11" bit pair which is lost from
GRS(k). The factor (-1)^k adjusts for that, being +1 if k even or -1 if k
odd.
=head2 dSum
From the dX and dY formulas above it can be seen that their sum is simply
GRS(N),
dSum = dX + dY = GRS(N)
The sum X+Y is a numbering of anti-diagonal lines,
| \ \ \
|\ \ \ \
| \ \ \ \
|\ \ \ \ \
| \ \ \ \ \
|\ \ \ \ \ \
+------------
0 1 2 3 4 5
The curve steps each time either up to the next or back to the previous
according to dSum=GRS(N).
The way the curve visits outside edge X,Y points once each and inner X,Y
points twice each means an anti-diagonal s=X+Y is visited a total of s many
times. The diagonal has floor(s/2)+1 many points. When s is odd the first
is visited once and the rest visited twice. When s is even the X=Y point is
only visited once. In each case the total is s many visits.
The way the coordinate sum s=X+Y occurs s many times is a geometric
interpretation to the way the cumulative GRS sequence has each value k
occurring k many times. (See L<Math::NumSeq::GolayRudinShapiroCumulative>.)
=head2 Area
The area enclosed by the curve for points N=0 to N=2^k inclusive is
A[k] = (2^floor((k-1)/2) - 1) * (2^ceil((k-1)/2) - 1)
= / (2^k - 3*2^h + 2) / 2 if k odd
\ (2^k - 4*2^h + 2) / 2 if k even
where h=floor(k/2)
= 1/2*0, 0*0, 0*1, 1*1, 1*3, 3*3, 3*7, 7*7, 7*15, 15*15, ...
= 0, 0, 0, 1, 3, 9, 21, 49, 105, 225, 465, 961, ... (A027556/2)
=for GP-DEFINE AsamplesP = [0, 0, 0, 1*1, 1*3, 3*3, 3*7, 7*7, 7*15, 15*15, 15*31, 31*31, 31*63, 63*63, 63*127, 127*127, 127*255]
=for GP-DEFINE Asamples = [0, 0, 0, 1, 3, 9, 21, 49, 105, 225, 465, 961, 1953, 3969, 8001, 16129, 32385]
=for GP-DEFINE A(k) = (2^floor((k-1)/2) - 1) * (2^ceil((k-1)/2) - 1)
=for GP-DEFINE A2(k)= local(h); h=floor(k/2); if(k%2, (2^k - 4*2^h + 2)/2, (2^k - 3*2^h + 2)/2)
=for GP-DEFINE A3(k)= local(h); h=floor(k/2); (2^h-1)*(2^if(k%2,h,h-1) - 1)
=for GP-Test vector(length(Asamples), k, A(k-1)) == Asamples
=for GP-Test vector(length(Asamples), k, A2(k-1)) == Asamples
=for GP-Test vector(length(Asamples), k, A3(k-1)) == Asamples
=for GP-Test Asamples == AsamplesP
=cut
# Pari: for(k=0,16,print1(A(k),", "))
# K = H^2
# (H-1)*(H-1 + 1)/2 - (H-2)/2 - (H-2)/2 - 1
# = 1/2*H^2 - 3/2*H + 1
# = (H^2 - 3*H + 2)/2
# = (H-1)(H-2)/2
=pod
When k is even the curve is a triangular stack with every second block along
the bottom and right sides unfilled.
*--* Y=2^h-1
| | where h=k/2
*--*--*
| |
*--*--*--*
| | | |
*--*--*--*--*
| | | |
*--*--*--*--*--*
| | | | | |
*--*--*--*--*--*--*
| | | | | |
*--*--*--*--*--*--*--*
| | | | | | | |
*--* *--* *--* *--* * Y=0
X=1 X=2^h
The area formula can be found by moving the alternating blocks in the right
column to fill the gaps in the bottom row, and moving the top half of the
triangle down to complete a rectangle
*--------*--*--*--*--*
| | | | | | height = 2^(h-1) - 1
| *--*--*--*--*--* = 2^floor((k-1)/2) - 1
| | | | | | |
| *--*--*--*--*--*--* width = 2^h - 1
| | | | | | | | = 2^ceil((k-1)/2) - 1
*--*__*--*__*--*__*--*
When k is odd the curve is a pyramid stack with every second block along the
bottom unfilled.
* Y=2^h
|
*--*--* Y=2^h-1
| | | where h=floor(k/2)
*--*--*--*--*
| | | | |
*--*--*--*--*--*--*
| | | | | | |
*--*--*--*--*--*--*--*--*
| | | | | | | | |
*--*--*--*--*--*--*--*--*--*--*
| | | | | | | | | | |
*--*--*--*--*--*--*--*--*--*--*--*--*
| | | | | | | | | | | | |
*--*--*--*--*--*--*--*--*--*--*--*--*--*--*
| | | | | | | | | | | | | | |
*--* *--* *--* *--* *--* *--* *--* *--*
X=1 X=2^h X=2^(2h)-1
This too can be rearranged, this time to make a square. The right hand half
of the bottom row fills the gaps in the left. The remaining right hand
triangle then goes above the left triangle.
* Y=2^h
|
*-----------------*--* Y=2^h - 1
| | |
| *--*--*
| | | |
| *--*--*--* height = 2^h - 1
| | | | | = 2^floor((k-1)/2)
| *--*--*--*--*
| | | | | | width = 2^h - 1
| *--*--*--*--*--* = 2^ceil((k-1)/2)
| | | | | | |
| *--*--*--*--*--*--* floor((k-1)/2) = ceil((k-1)/2)
| | | | | | | | since (k-1)/2 is an integer
*--*--*--*--*--*--*--* when k is odd
| | | | | | | |
*--*__*--*__*--*__*--*__*
X=1 X=2^h
For k=0 through k=2 there are no areas to copy this way but 2^0-1=0 in the
formula gives the desired A[0]=A[1]=A[2]=0.
=head2 Area Increment
The new area added between N=2^k and N=2^(k+1) is
dA[k] = A[k+1] - A[k]
= (2^floor(k/2) - 1) * 2^ceil(k/2) / 2
= (2^k - 2^ceil(k/2)) / 2
= 0, 0, 1, 2, 6, 12, 28, 56, 120, 240, 496, 992, ... (A122746)
=for GP-DEFINE dAsamples = [0, 0, 1, 2, 6, 12, 28, 56, 120, 240, 496, 992, 2016, 4032, 8128, 16256, 32640]
=for GP-DEFINE dA(k) = (2^floor(k/2) - 1) * 2^ceil(k/2) / 2
=for GP-DEFINE dA2(k) = (2^k - 2^ceil(k/2)) / 2
=for GP-Test vector(length(dAsamples), k, dA(k-1)) == dAsamples
=for GP-Test vector(length(dAsamples), k, dA2(k-1)) == dAsamples
=for GP-Test vector(20, k, dA(k-1)) == vector(20, k, A(k+1 -1) - A(k -1))
=cut
# dA[k] = A[k+1]-A[k]
# = (2^floor(k/2) - 1) * (2^ceil(k/2) - 1)
# - (2^floor((k-1)/2) - 1) * (2^ceil((k-1)/2) - 1)
# if k even h=floor(k/2) k/2 integer
# = (2^h - 1) * (2^h - 1) - (2^h/2 - 1) * (2^h - 1)
# = (2^h - 1 - (2^h/2 - 1)) * (2^h - 1)
# = (2^h - 1 - 2^h/2 + 1) * (2^h - 1)
# = 2^h * (2^h - 1) / 2
# = 2^k/2 - 2^h/2
# if k odd h=floor(k/2) k/2 not integer
# = (2^h - 1) * (2*2^h - 1) - (2^h - 1) * (2^h - 1)
# = (2^h - 1) * (2*2^h - 1 - (2^h - 1))
# = (2^h - 1) * (2*2^h - 1 - 2^h + 1)
# = (2^h - 1) * 2^h
# = 2^k/2 - 2^h
# dA[k] = (2^floor(k/2) - 1) * 2^ceil(k/2) / 2
=pod
=head2 Convex Hull Area
A convex hull is the smallest convex polygon which contains a given set of
points. For the alternate paper the area of the convex hull for points N=0
to N=2^k inclusive is
HA[k] = (2^k - 1)/2
The hull is a triangle of area 2^k/2 except for an end triangle of area 1/2
at the top for even level or right for odd level.
=head2 Right Boundary
The boundary length of the curve from N=0 to N=2^k on its right side is
R[k] = / 1 if k=0
| 2*2^h if k even >= 2
\ 6*2^h - 4 if k odd >= 1
where h=floor(k/2)
= 1, 2, 4, 8, 8, 20, 16, 44, 32, 92, 64, 188, 128, 380, 256, ...
=for GP-DEFINE Rsamples = [1, 2, 4, 8, 8, 20, 16, 44, 32, 92, 64, 188, 128, 380, 256, 764, 512]
=for GP-DEFINE R(k) = local(h); h=floor(k/2); if(k==0, 1, if(k%2, 6*2^h-4, 2*2^h))
=for GP-Test vector(length(Rsamples), k, R(k-1)) == Rsamples
For k even the right boundary is along the X axis
2^h X axis horizontals
2^h X axis indentations, if k >= 2
-----
2*2^h
For k odd the right boundary is along the X axis and then up the right side
to the top,
2*2^h - 1 X axis horizontals
2*2^h - 2 X axis indentations
2^h right slope verticals
2^h - 1 right slope horizontals
-------
6*2^h - 4
=head2 Left Boundary
The boundary length of the curve from N=0 to N=2^k on its left side is
L[k] = / 1 if k=0
| 4*2^h - 4 if k even >= 2
\ 2*2^h if k odd >= 1
where h=floor(k/2)
= 1, 2, 4, 4, 12, 8, 28, 16, 60, 32, 124, 64, 252, 128, 508, ...
=for GP-DEFINE Lsamples = [1, 2, 4, 4, 12, 8, 28, 16, 60, 32, 124, 64, 252, 128, 508, 256, 1020]
=for GP-DEFINE L(k) = local(h); h=floor(k/2); if(k==0, 1, if(k%2, 2*2^h, 4*2^h-4))
=for GP-Test vector(length(Lsamples), k, L(k-1)) == Lsamples
For k even the left boundary is up the left slope then down the vertical
2^h left slope horizontals
2^h - 1 left slope verticals
2^h - 1 right edge verticals
2^h - 2 right edge indentations
-----
4*2^h - 4
For k odd the left boundary is the left slope, and this time it includes a
final vertical line segment
2^h left slope horizontals
2^h left slope verticals
-------
2*2^h
=cut
# *---* k=2
# | | right=4
# O---* E left=4
#
# E k=3
# | right=8
# *---*---* left=4
# | | |
# O---* *---*
# E
# |
# *---*---*
# | | |
# *---*---*---*---* k=5
# | | | | | right=20
# *---*---*---*---*---*---* left=8
# | | | | | | |
# O---* *---* *---* *---*
#
=pod
=head2 Boundary
The total boundary length of the curve from N=0 to N=2^k is
B[k] = L[k] + R[k] = / 6*2^h - 4 if k even
\ 8*2^h - 4 if k odd
where h=floor(k/2)
= 2, 4, 8, 12, 20, 28, 44, 60, 92, 124, 188, 252, 380, ... (2*A027383)
=for GP-DEFINE Bsamples = [2, 4, 8, 12, 20, 28, 44, 60, 92, 124, 188, 252, 380, 508, 764, 1020, 1532]
=for GP-DEFINE B(k) = local(h); h=floor(k/2); if(k%2, 8*2^h-4, 6*2^h-4)
=for GP-Test vector(length(Bsamples), k, B(k-1)) == Bsamples
=for GP-Test vector(20, k, B(k-1)) == vector(20, k, R(k-1)+L(k-1))
=for GP-Test vector(20, k, 4*A(k-1)+B(k-1)) == vector(20, k, 2*2^(k-1))
=for GP-Test 4*(p/2 - 1)*(p-1) + 6*p-4 == 2*p^2
=for GP-Test 4*(p-1)*(p-1) + 8*p-4 == 4*p^2
The special case for k=0 is eliminated since the k even 6*2^h-4 is the
desired 2 when k=0, h=0.
Every enclosed unit square has all four sides traversed so by counting
inside and outside sides of the segments have 2*N = 4*A + B. This can be
verified for A[k] and B[k]
4*A[k] + B[k] = 4* / (2^h/2 - 1) * (2^h - 1) if k even
\ (2^h - 1) * (2^h - 1) if k odd
+ / 6*2^h - 4 if k even
\ 8*2^h - 4 if k odd
= / 2 * 2^h * 2^h if k even
\ 4 * 2^h * 2^h if k odd
= 2*2^k
This relation also gives a formula for B[k] using the floor and ceil pair
from A[k]
B[k] = 2*2^k - 4*A[k]
= 2*2^k - (2^floor((k+1)/2) - 2) * (2^ceil((k+1)/2) - 2)
=for GP-DEFINE BfromA(k) = 2*2^k - (2^floor((k+1)/2) - 2) * (2^ceil((k+1)/2) - 2)
=for GP-Test vector(length(Bsamples), k, BfromA(k-1)) == Bsamples
=head2 Single Points
The number of single-visited points for N=0 to N=2^k inclusive is
S[k] = / 3*2^h - 1 if k even
\ 4*2^h - 1 if k odd
= 2, 3, 5, 7, 11, 15, 23, 31, 47, 63, 95, 127, ... (A052955)
=for GP-DEFINE Ssamples = [2, 3, 5, 7, 11, 15, 23, 31, 47, 63, 95, 127, 191, 255, 383, 511, 767]
=for GP-DEFINE S(k) = local(h); h=floor(k/2); if(k%2, 4*2^h-1, 3*2^h-1)
=for GP-Test vector(length(Ssamples), k, S(k-1)) == Ssamples
=cut
# Pari: for(k=0,16,print1(S(k),", "))
=pod
The single points are all on the outer edges and those sides can be counted
easily.
The singles can also be obtained from the boundary. Each new line segment
which increases the area also increases the double points, so area=doubles.
Such a segment decreases the singles by -1 and the boundary by -2. A new
line segment which doesn't enclose new area increases the singles by +1 and
the boundary by +2. Starting from singles=1 boundary=0 means
S[N] = B[N]/2 + 1
=for GP-Test vector(20, k, S(k-1)) == vector(20, k, B(k-1)/2+1)
Or with singles and doubles adding up to N+1 points the doubles=area can
give the singles from the area.
S + 2*D = N+1 N=number of segments, N+1=number of points
=for GP-Test vector(20, k, S(k-1)) == vector(20, k, 2^(k-1)+1 - 2*A(k-1))
=head1 OEIS
The alternate paper folding curve is in Sloane's Online Encyclopedia of
Integer Sequences as
=over
L<http://oeis.org/A106665> (etc)
=back
A106665 next turn 1=left,0=right, a(0) is turn at N=1
A209615 turn 1=left,-1=right
A020985 Golay/Rudin/Shapiro sequence +1,-1
dX and dY alternately
dSum, change in X+Y
A020986 Golay/Rudin/Shapiro cumulative
X coordinate (undoubled)
X+Y coordinate sum
A020990 Golay/Rudin/Shapiro * (-1)^n cumulative
Y coordinate (undoubled)
X-Y diff, starting from N=1
A020987 GRS with values 0,1 instead of +1,-1
Since the X and Y coordinates each change alternately, each coordinate
appears twice, for instance X=0,1,1,2,2,3,3,2,2,etc. A020986 and A020990
are "undoubled" X and Y in the sense of just one copy of each of those
paired values.
A077957 Y at N=2^k, being alternately 0 and 2^(k/2)
A000695 N on X axis, base 4 digits 0,1 only
A062880 N on diagonal, base 4 digits 0,2 only
A022155 N positions of left or down segment,
being GRS < 0,
ie. dSum < 0 so move to previous anti-diagonal
A203463 N positions of up or right segment,
being GRS > 0,
ie. dSum > 0 so move to next anti-diagonal
A020991 N-1 of first time on X+Y=k anti-diagonal
A212591 N-1 of last time on X+Y=k anti-diagonal
A093573 N-1 of points on the anti-diagonals d=X+Y,
by ascending N-1 value within each diagonal
A020991 etc have values N-1, ie. the numbering differs by 1 from the N here,
since they're based on the A020986 cumulative GRS starting at n=0 for value
GRS(0). This matches the turn sequence A106665 starting at n=0 for the
first turn, whereas for the path here that's N=1.
A027556 area*2 to N=2^k
A134057 area to N=4^k
A060867 area to N=2*4^k
A122746 area increment N=2^k to N=2^(k+1)
A000225 convex hull area*2, being 2^k-1
A027383 boundary/2 to N=2^k
also boundary verticals or horizontals
(boundary is half verticals half horizontals)
A131128 boundary to N=4^k
A028399 boundary to N=2*4^k
A052955 single-visited points to N=2^k
A052940 single-visited points to N=4^k, being 3*2^n-1
arms=2
A062880 N on X axis, base 4 digits 0,2 only
arms=3
A001196 N on X axis, base 4 digits 0,3 only
=head1 SEE ALSO
L<Math::PlanePath>,
L<Math::PlanePath::AlternatePaperMidpoint>
L<Math::PlanePath::DragonCurve>,
L<Math::PlanePath::CCurve>,
L<Math::PlanePath::HIndexing>,
L<Math::PlanePath::ZOrderCurve>
L<Math::NumSeq::GolayRudinShapiro>,
L<Math::NumSeq::GolayRudinShapiroCumulative>
Michel MendE<232>s France and G. Tenenbaum, "Dimension des Courbes Planes,
Papiers Plies et Suites de Rudin-Shapiro", Bulletin de la S.M.F., volume
109, 1981, pages 207-215.
L<http://www.numdam.org/item?id=BSMF_1981__109__207_0>
=head1 HOME PAGE
L<http://user42.tuxfamily.org/math-planepath/index.html>
=head1 LICENSE
Copyright 2011, 2012, 2013, 2014, 2015 Kevin Ryde
This file is part of Math-PlanePath.
Math-PlanePath is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
Math-PlanePath is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
more details.
You should have received a copy of the GNU General Public License along with
Math-PlanePath. If not, see <http://www.gnu.org/licenses/>.
=cut
|