/usr/share/perl5/Math/Calculus/Expression.pm is in libmath-calculus-expression-perl 0.2.2.ds-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 | # ########################################################################################
# A CALCULUS EXPRESSION OBJECT
# Common algebra routines module by Jonathan Worthington.
# Copyright (C) Jonathan Worthington 2004-2005
# This module may be used and distributed under the same terms as Perl.
# ########################################################################################
package Math::Calculus::Expression;
use strict;
our $VERSION = '0.2.2';
=head1 NAME
Math::Calculus::Expression - Algebraic Calculus Tools Expression Class
=head1 SYNOPSIS
use Math::Calculus::Expression;
# Create an expression object.
my $exp = Math::Calculus::Expression->new;
# Set a variable and expression.
$exp->addVariable('x');
$exp->setExpression('x^(2+1) + 6*5*x') or die $exp->getError;
# Simplify
$exp->simplify or die $exp->getError;;
# Print the result.
print $exp->getExpression; # Prints x^3 + 30*x
=head1 DESCRIPTION
This module can take an algebraic expression, parse it into a tree structure, simplify
the tree, substitute variables and named constants for other variables or constants
(which may be numeric), numerically evaluate the tree and turn the tree back into an
output of the same form as the input.
It supports a wide range of expressions including the +, -, *, / and ^ (raise to
power) operators, bracketed expressions to enable correct precedence and the functions
ln, exp, sin, cos, tan, sec, cosec, cot, sinh, cosh, tanh, sech, cosech, coth, asin,
acos, atan, asinh, acosh and atanh.
=head1 EXPORT
None by default.
=head1 METHODS
=cut
# Constructor
# ###########
=over
=item new
$exp = Math::Calculus::Expression->new;
Creates a new instance of the expression object, which can hold an individual
expression and perform basic operations on it.
=cut
sub new {
# Get invocant.
my $invocant = shift;
# Create object.
my $self = {
traceback => '',
error => '',
expression => 0,
variables => [],
};
return bless $self, $invocant;
}
# Add variable.
# #############
=item addVariable
$exp->addVariable('x');
Sets a certain named value in the expression as being a variable. A named value must be
an alphabetic chracter.
=cut
sub addVariable {
# Get invocant and parameters.
my ($self, $var) = @_;
# Provided the variable is just one character and we don't already have it...
unless (length($var) != 1 || grep { $_ eq $var } @{$self->{'variables'}}) {
$self->{'variables'}->[@{$self->{'variables'}}] = $var;
$self->{'error'} = '';
return 1;
} else {
$self->{'error'} = 'Invalid variable or variable already added.';
return undef;
}
}
# Set Expression
# ##############
=item setExpression
$exp->setExpression('x^2 + 5*x);
Takes an expression in human-readable form and stores it internally as a tree structure,
checking it is a valid expression that the module can understand in the process. Note that
the module is strict about syntax. For example, note above that you must write 5*x and not
just 5x. Whitespace is allowed in the expression, but does not have any effect on precedence.
If you require control of precedence, use brackets; bracketed expressions will always be
evaluated first, as you would normally expect. The module follows the BODMAS precedence
convention. Returns undef on failure and a true value on success.
=cut
sub setExpression {
# Get invocant and parameters.
my ($self, $expr) = @_;
# Clear up the expression.
$expr =~ s/\s//g;
1 while $expr =~ s/--/+/g
|| $expr =~ s/\+-|-\+/-/g
|| $expr =~ s/([+\-*\/\^])\+/$1/g
|| $expr =~ s/^\+//g;
# Build expression tree.
$self->{'error'} = $self->{'traceback'} = undef;
$self->{'expression'} = $self->buildTree($expr);
# Return depending on whether there was an error.
if ($self->{'error'}) {
return undef;
} else {
return 1;
}
}
# Get Expression
# ##############
=item getExpression
$expr = $exp->getExpression;
Returns a textaul, human readable representation of the expression that is being stored.
=cut
sub getExpression {
# Get invocant.
my $self = shift;
# Walk expression tree and generate something to display.
$self->{'error'} = '';
my $text = $self->prettyPrint($self->{'expression'});
# If there was an error, return nothing.
if ($self->{'error'}) {
return undef;
} else {
return $text;
}
}
# Simplify.
# #########
=item simplify
$exp->simplify;
Attempts to simplify the expression that is stored internally.
=cut
sub simplify {
# Get invocant.
my ($self) = @_;
# Clear error.
$self->{'error'} = undef;
# Simplify.
eval {
$self->{'expression'} = $self->recSimplify($self->{'expression'}, undef);
};
# We may have boiled it all down to a numerical constant...
my $const = $self->numericEvaluation($self->{'expression'});
if (defined($const)) {
$self->{'expression'} = $const;
}
# Return an appropriate value (or lack thereof...).
if ($self->{'error'}) {
return undef;
} else {
return 1;
}
}
# Evaluate.
# #########
=item evaluate
$exp->evaluate(x => 0.5, a => 4);
This method takes a hash mapping any variables and named constants (represented
by letters) in the expression to numerical values, and attempts to evaluate the
expression and return a numerical value. It fails and returns undef if it finds
letters that have no mapping or an error such as division by zero occurs during
the evaluation.
=cut
sub evaluate {
# Get invocant.
my ($self, %mapping) = @_;
# Clear error.
$self->{'error'} = undef;
# Evaluate.
my $value = undef;
eval {
$value = $self->evaluateTree($self->{'expression'}, %mapping);
} || ($self->{'error'} ||= $@);
# Return value or undef if we there was an error.
if ($self->{'error'}) {
return undef;
} else {
return $value;
}
}
# Same representation?
# ####################
=item sameRepresentation
$same = $exp->sameRepresentation($exp2);
The sameRepresentation method takes another expression object as its parameter
and returns true if that expression has the same internal representation as the
expression the method is invoked on. Be careful - while it can be said that if
two expressions have the same representation they are equal, it would be wrong
to say that if they have different representations they are not equal. It is
clear to see that "x + 2" and "2 + x" are equal, but their internal representation
may well differ.
=cut
sub sameRepresentation {
# Get invocant.
my ($self, $exp2) = @_;
# Clear error.
$self->{'error'} = undef;
# Compare and return result.
return $self->isIdentical($self->{'expression'}, $exp2->getExpressionTree);
}
# Clone.
# ######
=item clone
$expCopy = $exp->clone;
The clone method returns a deep copy of the expression object (deep copy meaning
that if the original is modified the copy will not be affected and vice versa).
=cut
sub clone {
# Get invocant.
my ($self) = @_;
# Clear error.
$self->{'error'} = undef;
# Do a deep copy.
my $tree = $self->deepCopy($self->{'expression'});
# Create new object with copied tree and return.
my $clone = {
traceback => $self->{'traceback'},
error => $self->{'error'},
expression => $tree,
variables => [ @{$self->{'variables'}} ]
};
return bless $clone, 'Math::Calculus::Expression';
}
# Get traceback.
# ##############
=item getTraceback
$exp->getTraceback;
When setExpression and differentiate are called, a traceback is generated to describe
what these functions did. If an error occurs, this traceback can be extremely useful
in helping track down the source of the error.
=cut
sub getTraceback {
return $_[0]->{'traceback'};
}
# Get error.
# ##########
=item getError
$exp->getError;
When any method other than getTraceback is called, the error message stored is cleared, and
then any errors that occur during the execution of the method are stored. If failure occurs,
call this method to get a textual representation of the error.
=cut
sub getError {
return $_[0]->{'error'};
}
# Any other methods.
# ##################
=item Other Methods
Any other method call is taken to refer to a subclass of Expression. The first letter of the
name of the method invoked is capitalized, then a module by that name is loaded (if it exists)
and the method is called on it. This works for, for example, the Differentiate module; calling
the differentiate method on an Expression will load the Differentiate module and call the
differentiate method. If a module cannot be loaded or the method cannot be called, then this
module will die.
=cut
sub AUTOLOAD {
# Grab the params to pass on.
my ($self, @params) = @_;
# Get the name of the method called; skip if it is destroy.
my $name = our $AUTOLOAD;
return undef if $name =~ /::DESTROY$/;
$name =~ s/^.+::([A-Za-z0-9]+)(_\w+)?$/$1$2/;
my $modName = ucfirst $1;
# Attempt to load the module and call the method.
if (wantarray) {
my @result = eval {
require "Math/Calculus/$modName.pm";
bless $self, "Math::Calculus::$modName";
my $meth = eval('\&Math::Calculus::' . $modName . '::' . $name);
$meth->($self, @params)
};
die $@ if $@;
return @result;
} else {
my $result = eval {
require "Math/Calculus/$modName.pm";
bless $self, "Math::Calculus::$modName";
my $meth = eval('\&Math::Calculus::' . $modName . '::' . $name);
$meth->($self, @params)
};
die $@ if $@;
return $result;
}
}
=back
=head1 SEE ALSO
The author of this module has a website at L<http://www.jwcs.net/~jonathan/>, which has
the latest news about the module and a web-based frontend to allow you to try out this
module and, more specifically, its subclasses.
=head1 AUTHOR
Jonathan Worthington, E<lt>jonathan@jwcs.netE<gt>
=head1 COPYRIGHT AND LICENSE
Copyright (C) 2004 by Jonathan Worthington
This library is free software; you can redistribute it and/or modify
it under the same terms as Perl itself, either Perl version 5.8.1 or,
at your option, any later version of Perl 5 you may have available.
=cut
# ########################################################################################
# Private Methods
# ########################################################################################
# Get expression tree simply gets the raw expression tree.
# ########################################################################################
sub getExpressionTree { return $_[0]->{'expression'}; }
# Build tree recursively explores the passed expression and generates a tree for it.
# The trees take a structure of an operation (which is +, -, *, /, ^, sin, cos, tan,
# sec, cosec, cot, sinh, cosh, tanh, sech, cosech, coth, asin, acos, atan, asinh,
# acosh, atanh, exp or ln) and two operands, which are either constants or references
# to other trees.
# ########################################################################################
sub buildTree {
# Get invocant and expression.
my ($self, $expr) = @_;
# Store what we're parsing in the traceback.
$self->{'traceback'} .= "Parsing $expr\n";
# Clear any brackets around the entire expression.
my $bracketsRemoved = 1;
while ($bracketsRemoved && substr($expr, 0, 1) eq '(') {
# See if there are any brackets to remove.
my $bracketDepth = 0;
my $bracketDepthHitZero = 0;
my $count = 0;
foreach my $char (split //, $expr) {
if ($char eq '(') {
$bracketDepth ++;
} elsif ($char eq ')') {
$bracketDepth --;
}
if ($bracketDepth == 0 && $count > 0 && $count + 1 < length($expr)) {
$bracketDepthHitZero = 1;
}
$count++;
}
# If so, remove them.
if ($bracketDepthHitZero == 0) {
$expr =~ s/^\((.+)\)$/$1/;
} else {
$bracketsRemoved = 0;
}
}
# If it's a constant or single variable...
if ($expr =~ /^ (\-? ( (\d+(\.\d+)?) | [A-Za-z] )) $/x) {
# No tree to build; just return the expression.
return $1;
# Otherwise it could be a function.
} elsif ($expr =~ /^ (\-?) (a?sinh?|a?cosh?|a?tanh?|sech?|cosech?|coth?|ln|exp) \((.+)\) $/x &&
$self->isProperlyNested($3)) {
# Return single operand parse tree.
return {
operation => "$1$2",
operand1 => $self->buildTree($3),
operand2 => undef
};
} else {
# Otherwise full analysis needed. Analyse expressiona and try to find a split point.
my $error = undef;
my $bestSplitOp = '';
my $splitOpPos = 0;
my $bracketDepth = 0;
# Cycle through all characters.
my $curChar = 1;
my $lastCharOp = 1;
foreach my $char (split //, $expr) {
# Maintain bracket depth.
if ($char eq '(') {
$bracketDepth ++;
} elsif ($char eq ')') {
$bracketDepth --;
# Do we have a split point?
} elsif ($curChar > 1 && $bracketDepth == 0 && $char =~ /[\^*\/+\-]/ &&
($self->higherPrecedence($bestSplitOp, $char) || !$bestSplitOp)
&& !$lastCharOp) {
$splitOpPos = $curChar;
$bestSplitOp = $char;
}
# If bracket depth is negative, we've got an error.
if ($bracketDepth < 0)
{
$error = "Brackets not properly nested.";
}
# Maintain flag for if this character was an operator.
$lastCharOp = $char =~ /[\^*\/+\-]/ ? 1 : 0;
# Increment character counter.
$curChar ++;
}
# Split failure error.
if (!$error && !$bestSplitOp) {
$error = 'Could not split expression ' . $expr;
}
# If there wasn't an error, split, get operand and parse each subexpression.
unless ($error) {
my $operand1 = substr($expr, 0, $splitOpPos - 1);
my $operand2 = substr($expr, $splitOpPos);
if ($operand2 ne '') {
return {
operation => $bestSplitOp,
operand1 => $self->buildTree($operand1),
operand2 => $self->buildTree($operand2)
};
} else {
$error = 'Could not split expression ' . $expr;
}
}
# If we've got an error, store it and return failure.
if ($error) {
$self->{'error'} = $error;
return undef;
}
}
# If we get here, something weird happened.
$self->{'error'} = "Unknown error parsing $expr.";
return undef;
}
# Pretty print takes an expression tree and returns a text representation for it.
# #######################################################################################
sub prettyPrint {
# Get invocant and tree.
my ($self, $tree, $lastOp) = @_;
# See if the tree actually is a tree. If not, it's a value and just return it.
unless (ref $tree) {
return $tree;
} else {
# See how many operands we take.
my $curOp = $tree->{'operation'};
if ($curOp =~ /^[\^\/*\-+]$/) {
# Dual operand. Look at last op to see if we need brackets.
my $brackets = ($curOp eq '^' && $lastOp =~ /[\/*+\-]/ ||
$curOp =~ /[\/*]/ && $lastOp =~ /[*+\-]/ ||
$curOp =~ /[+\-]/ && $lastOp =~ /[+\-]/ ||
!(defined($lastOp)) || $lastOp eq '(')
? 0 : 1;
# Pretty-print each operand, adding spaces around + and - ops.
my $pretty = '';
$pretty .= '(' if $brackets;
$pretty .= $self->prettyPrint($tree->{'operand1'}, $curOp);
$pretty .= ($curOp =~ /[+\-]/ ? ' ' : '') . $curOp . ($curOp =~ /[+\-]/ ? ' ' : '');
$pretty .= $self->prettyPrint($tree->{'operand2'}, $curOp);
$pretty .= ')' if $brackets;
return $pretty;
} else {
# Single operand, e.g. function.
return $curOp . '(' . $self->prettyPrint($tree->{'operand1'}, '(') . ')';
}
}
}
# recSimplify recursively walks a tree and simplifies the branches, then the current
# node.
# ########################################################################################
sub recSimplify {
# Get invocant, variable and tree.
my ($self, $tree) = @_;
# If it's just a node, return it. We can't do a great deal with nodes.
return $tree unless ref $tree;
# Pull out left and right branches for neatness.
my ($left, $right) = ($tree->{'operand1'}, $tree->{'operand2'});
## RECURSIVELY SIMPLIFTY TREES
$left = $self->recSimplify($left);
$right = $self->recSimplify($right);
## CONSTANT EVALUATION
# Get any available numeric evaluations of the left and right branches.
my $leftval = $self->numericEvaluation($left);
my $rightval = $self->numericEvaluation($right);
# If they have a numeric evaluation, assign them to the actual values.
$left = $leftval if defined($leftval);
$right = $rightval if defined($rightval);
## SHIFTING NEGATIVES
## These simplifications are not "the final word", indeed dealing with them
## allows further simplifications to take place. So we modify the tree "in
## place".
# x - (-y) = x + y
if ($tree->{'operation'} eq '-') {
if (!(ref $right) && $right =~ /^-(.+)$/) {
$tree->{'operation'} = '+';
$right = $1;
} elsif (ref $right && $right->{'operation'} =~ /^-(.+)$/) {
$tree->{'operation'} = '+';
$right->{'operation'} = $1;
}
}
# x + (-y) = x - y
elsif ($tree->{'operation'} eq '+') {
if (!(ref $right) && $right =~ /^-(.+)$/) {
$tree->{'operation'} = '-';
$right = $1;
} elsif (ref $right && $right->{'operation'} =~ /^-(.+)$/) {
$tree->{'operation'} = '-';
$right->{'operation'} = $1;
}
}
# x - -y*z = x + y*z
if ($tree->{'operation'} eq '-' && ref $right && $right->{'operation'} eq '*') {
if (!(ref $right->{'operand1'}) && $right->{'operand1'} =~ /^-(.+)$/) {
$tree->{'operation'} = '+';
$right->{'operand1'} = $1;
} elsif (ref($right->{'operand1'}) && $right->{'operand1'}->{'operation'} =~ /^-(.+)$/) {
$tree->{'operation'} = '+';
$right->{'operand1'}->{'operation'} = $1;
}
}
# x + -y*z = x - y*z
elsif ($tree->{'operation'} eq '+' && ref $right && $right->{'operation'} eq '*') {
if (!(ref $right->{'operand1'}) && $right->{'operand1'} =~ /^-(.+)$/) {
$tree->{'operation'} = '-';
$right->{'operand1'} = $1;
} elsif (ref $right->{'operand1'} && $right->{'operand1'}->{'operation'} =~ /^-(.+)$/) {
$tree->{'operation'} = '-';
$right->{'operand1'}->{'operation'} = $1;
}
}
## MIGRATE CONSTANTS UP THE TREE
# x * c = c * x
if ($tree->{'operation'} eq '*' && !ref($right) && $right =~ /^-?\d+(\.\d+)?$/) {
($left, $right) = ($right, $left);
# x * c * y = c * x * y
} elsif ($tree->{'operation'} eq '*' && ref $right && $right->{'operation'} eq '*' &&
$right->{'operand1'} =~ /^-?\d+(\.\d+)?$/) {
($left, $right->{'operand1'}) = ($right->{'operand1'}, $left);
# x * y * c = x * c * y
} elsif ($tree->{'operation'} eq '*' && ref $right && $right->{'operation'} eq '*' &&
$right->{'operand2'} =~ /^-?\d+(\.\d+)?$/) {
($right->{'operand1'}, $right->{'operand2'}) = ($right->{'operand2'}, $right->{'operand1'});
}
## NULL OPERATORS
# 0 + x = x + 0 = x
if ($tree->{'operation'} eq '+' && (!(ref $left) && $left eq '0')) {
return $right;
}
if ($tree->{'operation'} eq '+' && (!(ref $right) && $right eq '0')) {
return $left;
}
# x - 0 = x
if ($tree->{'operation'} eq '-' && (!(ref $right) && $right eq '0')) {
return $left;
}
# x - 0 + y = x - y
# x + 0 + y = x + y
if ($tree->{'operation'} =~ /^[+-]$/ && ref $right && $right->{'operation'} =~ /^[+-]$/ &&
!(ref $right->{'operand1'}) && $right->{'operand1'} eq '0') {
$right = $right->{'operand2'};
}
# 1 * x = x * 1 = x
if ($tree->{'operation'} eq '*' && (!(ref $left) && $left eq '1')) {
return $right;
}
if ($tree->{'operation'} eq '*' && (!(ref $right) && $right eq '1')) {
return $left;
}
# x / 1 = x
if ($tree->{'operation'} eq '/' && (!(ref $right) && $right eq '1')) {
return $left;
}
# x ^ 1 = x
if ($tree->{'operation'} eq '^' && (!(ref $right) && $right eq '1')) {
return $left;
}
## EFFECTS OF ZERO
# x ^ 0 = 1
if ($tree->{'operation'} eq '^' && (!(ref $right) && $right eq '0')) {
return 1;
}
# 0 * x = x * 0 = 0
if ($tree->{'operation'} eq '*' && (!(ref $left) && $left eq '0')) {
return 0;
}
if ($tree->{'operation'} eq '*' && (!(ref $right) && $right eq '0')) {
return 0;
}
# 0 / x = 0
if ($tree->{'operation'} eq '/' && (!(ref $left) && $left eq '0')) {
return 0;
}
## DIVISION OF AN EXPRESSION BY ITSELF
# x / x = 1
if ($tree->{'operation'} eq '/' && $self->isIdentical($left, $right)) {
return 1;
}
## SUBTRACTION OF AN EXPRESSION FROM ITSELF
# x - x = 0
if ($tree->{'operation'} eq '-' && $self->isIdentical($left, $right)) {
return 0;
}
## DEEP NUMERICAL CONSTANT COMBINATION
# n * (m * x) = (o * x) where o = nm
if ($tree->{'operation'} eq '*' && ref($right) && $right->{'operation'} eq '*' &&
!(ref($left)) && $left =~ /^-?\d+(\.\d+)?$/ && $right->{'operand1'} =~ /^-?\d+(\.\d+)?$/) {
return {
operation => '*',
operand1 => ($left * $right->{'operand1'}),
operand2 => $right->{'operand2'}
};
# n * (x * m) = (o * x) where o = nm
} elsif ($tree->{'operation'} eq '*' && ref($right) && $right->{'operation'} eq '*' &&
!(ref($left)) && $left =~ /^-?\d+(\.\d+)?$/ && $right->{'operand2'} =~ /^-?\d+(\.\d+)?$/) {
return {
operation => '*',
operand1 => ($left * $right->{'operand2'}),
operand2 => $right->{'operand1'}
};
# (m * x) * n = (o * x) where o = nm
} elsif ($tree->{'operation'} eq '*' && ref($left) && $left->{'operation'} eq '*' &&
!(ref($right)) && $right =~ /^-?\d+(\.\d+)?$/ && $left->{'operand1'} =~ /^-?\d+(\.\d+)?$/) {
return {
operation => '*',
operand1 => ($right * $left->{'operand1'}),
operand2 => $right->{'operand2'}
};
# (x * m) * n = (o * x) where o = nm
} elsif ($tree->{'operation'} eq '*' && ref($left) && $left->{'operation'} eq '*' &&
!(ref($right)) && $right =~ /^-?\d+(\.\d+)?$/ && $left->{'operand2'} =~ /^-?\d+(\.\d+)?$/) {
return {
operation => '*',
operand1 => ($right * $left->{'operand2'}),
operand2 => $right->{'operand1'}
};
}
## NATURAL LOGARITHM AND EXPONENTIATION INVERSTION
# exp(ln(f(x))) = f(x)
if ($tree->{'operation'} =~ /^-?exp$/ && ref($left) && $left->{'operation'} =~ /^ln$/) {
if ($tree->{'operation'} =~ /^-/) {
return {
operation => '*',
operand1 => "-1",
operand2 => $left->{'operand1'}
};
} else {
return $left->{'operand1'};
}
}
# ln(exp(f(x))) = f(x)
if ($tree->{'operation'} =~ /^-?ln$/ && ref($left) && $left->{'operation'} =~ /^exp$/) {
if ($tree->{'operation'} =~ /^-/) {
return {
operation => '*',
operand1 => "-1",
operand2 => $left->{'operand1'}
};
} else {
return $left->{'operand1'};
}
}
## MULTIPLICATION CHAINS BECOME POWERS
# e * e = e^2
if ($tree->{'operation'} eq '*' && $self->isIdentical($left, $right)) {
return {
operation => '^',
operand1 => $left,
operand2 => 2
};
}
# -e * e = -(e^2)
elsif ($tree->{'operation'} eq '*') {
# Check if left is negative.
if (ref $left && $left->{'operation'} =~ /^-(.+)$/) {
$left->{'operation'} = $1;
if ($self->isIdentical($left, $right)) {
return {
operation => '-',
operand1 => 0,
operand2 => {
operation => '^',
operand1 => $left,
operand2 => 2
}
};
} else {
$left->{'operation'} = "-$1";
}
} elsif (!(ref $left) && $left =~ /^-(.+)$/) {
$left = $1;
if ($self->isIdentical($left, $right)) {
return {
operation => '-',
operand1 => 0,
operand2 => {
operation => '^',
operand1 => $left,
operand2 => 2
}
};
} else {
$left = "-$1";
}
}
}
## TRIG IDENTITIES
# cos^2 - sin^2 = 1
if ($tree->{'operation'} eq '-' && ref $left && ref $right &&
$left->{'operation'} eq '^' && $right->{'operation'} eq '^' &&
(!ref $left->{'operand2'}) && $left->{'operand2'} == 2 &&
(!ref $right->{'operand2'}) && $right->{'operand2'} == 2 &&
ref $left->{'operand1'} && $left->{'operand1'}->{'operation'} =~ /-?cos$/ &&
ref $right->{'operand1'} && $right->{'operand1'}->{'operation'} =~ /-?sin$/ &&
$self->isIdentical($left->{'operand1'}->{'operand1'}, $right->{'operand1'}->{'operand1'})) {
return 1;
}
## NO SIMPLIFICATION POSSIBLE - BUILD NEW TREE OF SIMPLIFIED SUBTREES
# If we get here, just build and return a new tree, which may have no changes.
return {
operation => $tree->{'operation'},
operand1 => $left,
operand2 => $right
};
}
# Evaluate tree simply subs a list of values in to numerically evaluate the tree.
# ########################################################################################
sub evaluateTree {
# Get invocant, tree and mappings.
my $self = shift;
my $tree = shift;
my %mapping = @_;
# If we've got a numerical constant, just return it.
if (!ref($tree) && $tree =~ /^-?\d+(\.\d+)?$/) {
return $tree;
# If we've got an atom, look it up in the mapping; die if we fail.
} elsif (!ref($tree)) {
my $val = $mapping{$tree};
if (defined($val)) {
return $val;
} else {
die; "No mapping for $tree";
}
# +
} elsif ($tree->{'operation'} eq '+') {
return $self->evaluateTree($tree->{'operand1'}, %mapping) + $self->evaluateTree($tree->{'operand2'}, %mapping);
# -
} elsif ($tree->{'operation'} eq '-') {
return $self->evaluateTree($tree->{'operand1'}, %mapping) - $self->evaluateTree($tree->{'operand2'}, %mapping);
# *
} elsif ($tree->{'operation'} eq '*') {
return $self->evaluateTree($tree->{'operand1'}, %mapping) * $self->evaluateTree($tree->{'operand2'}, %mapping);
# /
} elsif ($tree->{'operation'} eq '/') {
return $self->evaluateTree($tree->{'operand1'}, %mapping) / $self->evaluateTree($tree->{'operand2'}, %mapping);
# ^
} elsif ($tree->{'operation'} eq '^') {
return $self->evaluateTree($tree->{'operand1'}, %mapping) ** $self->evaluateTree($tree->{'operand2'}, %mapping);
# ln
} elsif ($tree->{'operation'} =~ /^(-?)ln$/) {
return ($1 ? -1 : 1) * log($self->evaluateTree($tree->{'operand1'}, %mapping));
# exp
} elsif ($tree->{'operation'} =~ /^(-?)exp$/) {
return ($1 ? -1 : 1) * exp($self->evaluateTree($tree->{'operand1'}, %mapping));
# sin
} elsif ($tree->{'operation'} =~ /^(-?)sin$/) {
return ($1 ? -1 : 1) * sin($self->evaluateTree($tree->{'operand1'}, %mapping));
# cos
} elsif ($tree->{'operation'} =~ /^(-?)cos$/) {
return ($1 ? -1 : 1) * cos($self->evaluateTree($tree->{'operand1'}, %mapping));
# tan
} elsif ($tree->{'operation'} =~ /^(-?)tan$/) {
my $val = $self->evaluateTree($tree->{'operand1'}, %mapping);
return ($1 ? -1 : 1) * (sin($val) / cos($val));
# sec
} elsif ($tree->{'operation'} =~ /^(-?)sec$/) {
my $val = $self->evaluateTree($tree->{'operand1'}, %mapping);
return ($1 ? -1 : 1) * (1 / cos($val));
# cosec
} elsif ($tree->{'operation'} =~ /^(-?)cosec$/) {
my $val = $self->evaluateTree($tree->{'operand1'}, %mapping);
return ($1 ? -1 : 1) * (1 / sin($val));
# cot
} elsif ($tree->{'operation'} =~ /^(-?)cot$/) {
my $val = $self->evaluateTree($tree->{'operand1'}, %mapping);
return ($1 ? -1 : 1) * (cos($val) / sin($val));
# asin
} elsif ($tree->{'operation'} =~ /^(-?)asin$/) {
my $val = $self->evaluateTree($tree->{'operand1'}, %mapping);
return ($1 ? -1 : 1) * atan2($val, sqrt(1 - $val * $val));
# acos
} elsif ($tree->{'operation'} =~ /^(-?)acos$/) {
my $val = $self->evaluateTree($tree->{'operand1'}, %mapping);
return ($1 ? -1 : 1) * atan2(sqrt(1 - $val * $val), $val);
# atan
} elsif ($tree->{'operation'} =~ /^(-?)atan$/) {
my $val = $self->evaluateTree($tree->{'operand1'}, %mapping);
return ($1 ? -1 : 1) * atan2($val, 1);
# sinh
} elsif ($tree->{'operation'} =~ /^(-?)sinh$/) {
my $val = $self->evaluateTree($tree->{'operand1'}, %mapping);
return ($1 ? -1 : 1) * ((exp($val) - exp(-$val)) / 2);
# cosh
} elsif ($tree->{'operation'} =~ /^(-?)cosh$/) {
my $val = $self->evaluateTree($tree->{'operand1'}, %mapping);
return ($1 ? -1 : 1) * ((exp($val) + exp(-$val)) / 2);
# tanh
} elsif ($tree->{'operation'} =~ /^(-?)tanh$/) {
my $val = $self->evaluateTree($tree->{'operand1'}, %mapping);
return ($1 ? -1 : 1) * ((exp($val) - exp(-$val)) / (exp($val) + exp(-$val)));
# sech
} elsif ($tree->{'operation'} =~ /^(-?)sech$/) {
my $val = $self->evaluateTree($tree->{'operand1'}, %mapping);
return ($1 ? -1 : 1) * (2 / (exp($val) + exp(-$val)));
# cosech
} elsif ($tree->{'operation'} =~ /^(-?)cosech$/) {
my $val = $self->evaluateTree($tree->{'operand1'}, %mapping);
return ($1 ? -1 : 1) * (2 / (exp($val) - exp(-$val)));
# coth
} elsif ($tree->{'operation'} =~ /^(-?)coth$/) {
my $val = $self->evaluateTree($tree->{'operand1'}, %mapping);
return ($1 ? -1 : 1) * ((exp($val) + exp(-$val)) / (exp($val) - exp(-$val)));
# asinh
} elsif ($tree->{'operation'} =~ /^(-?)asinh$/) {
my $val = $self->evaluateTree($tree->{'operand1'}, %mapping);
return ($1 ? -1 : 1) * log($val + sqrt($val * $val + 1));
# acosh
} elsif ($tree->{'operation'} =~ /^(-?)acosh$/) {
my $val = $self->evaluateTree($tree->{'operand1'}, %mapping);
return ($1 ? -1 : 1) * log($val + sqrt(($val * $val >= 1 ? $val * $val : -($val * $val)) - 1));
# atanh
} elsif ($tree->{'operation'} =~ /^(-?)atanh$/) {
my $val = $self->evaluateTree($tree->{'operand1'}, %mapping);
return ($1 ? -0.5 : 0.5) * (log(1 + $val) + log(1 - $val));
# Otherwise, fail.
} else {
die "Cannot evaluate $tree->{'operation'}";
}
}
# higherPrecedence(a, b) returns true if a has higher or equal precedence than b.
# ########################################################################################
sub higherPrecedence {
# Get invocant and parameters.
my ($self, $a, $b) = @_;
# Do precedence check.
if ($a eq '^') {
return 1;
} elsif ($a eq '/' && $b =~ /\/|\*|\+|-/) {
return 1;
} elsif ($a eq '*' && $b =~ /\*|\+|-/) {
return 1;
} elsif ($a eq '+' && $b =~ /\+|-/) {
return 1;
} elsif ($a eq '-' && $b eq '-') {
return 1;
}
# If we get here, precedence is lower.
return 0;
}
# isConstant takes a tree and a variable, checks if it's dependent on that variable and
# returns 1 if so and 0 if not.
# ########################################################################################
sub isConstant {
# Get invocant, variable and tree.
my ($self, $variable, $tree) = @_;
# If the tree is undefined, we've run off the end of it, which means it was all constant.
return 1 unless defined($tree);
# If we have a ref...
if (ref $tree) {
return ($self->isConstant($variable, $tree->{'operand1'}) && $self->isConstant($variable, $tree->{'operand2'}));
} else {
# Atom. But is it the variable?
return $tree eq $variable || $tree eq "-$variable" ? 0 : 1;
}
}
# Numeric Evaluation takes a tree and, provided it is constant and all constants are
# numeric, calculates the value of the tree. Returns undef if numeric evaluation is
# not possible.
# ########################################################################################
sub numericEvaluation {
# Get invocant and tree.
my ($self, $tree) = @_;
# If the tree is a value...
unless (ref $tree) {
# If it's numeric, return it.
return $tree =~ /^-?\d+(\.\d+)?$/ ? $tree : undef;
} else {
# Attempt to numerically evaluate each branch.
my $leftval = $self->numericEvaluation($tree->{'operand1'});
my $rightval = $self->numericEvaluation($tree->{'operand2'});
# If it's an addition op and both values are numeric...
if ($tree->{'operation'} eq '+' && defined($leftval) && defined($rightval)) {
# Add and return.
return $leftval + $rightval;
# If it's a subtraction op and both values are numeric...
} elsif ($tree->{'operation'} eq '-' && defined($leftval) && defined($rightval)) {
# Subtract and return.
return $leftval - $rightval;
# If it's a multiplication op and both values are numeric...
} elsif ($tree->{'operation'} eq '*' && defined($leftval) && defined($rightval)) {
# Multiply and return.
return $leftval * $rightval;
# If it's a power op and both values are numeric...
} elsif ($tree->{'operation'} eq '^' && defined($leftval) && defined($rightval)) {
# Multiply and return.
return $leftval ^ $rightval;
# Otherwise, we can't do numerical operations. Return undef.
} else {
return undef;
}
}
}
# isIdentical takes two trees and checks if they are identical. Note that identical might
# not mean equal.
# ########################################################################################
sub isIdentical {
# Get invocant and trees.
my ($self, $treeA, $treeB) = @_;
# If both are not references and they are the same...
if (!ref($treeA) && !ref($treeB) && $treeA eq $treeB) {
return 1;
# If they are both references and have the same operators...
} elsif (ref($treeA) && ref($treeB) && $treeA->{'operation'} eq $treeB->{'operation'}) {
# Recursively compare the subtrees.
my $leftcomp = $self->isIdentical($treeA->{'operand1'}, $treeB->{'operand1'});
my $rightcomp = $self->isIdentical($treeA->{'operand2'}, $treeB->{'operand2'});
return $leftcomp && $rightcomp ? 1 : 0;
# Otherwise, they must not be the same.
} else {
return 0;
}
}
# deepCopy creates a deep copy of an expression tree. You'd never have guessed, huh?
# ########################################################################################
sub deepCopy {
# Get invocant and what is being copied.
my ($self, $tree) = @_;
# If it's a reference...
if (ref $tree) {
# Copy.
return {
operation => $tree->{'operation'},
operand1 => $self->deepCopy($tree->{'operand1'}),
operand2 => $self->deepCopy($tree->{'operand2'}),
};
} else {
# Just a value. Return.
return $tree;
}
}
# isProperlyNested checks if the brackets in an expression are properly nested.
# ########################################################################################
sub isProperlyNested {
# Get invocant and string to check.
my ($self, $check) = @_;
# Do the check.
my $valid = 1;
my $bracketDepth = 0;
for (split(//, $check)) {
$bracketDepth++ if /\(/;
$bracketDepth-- if /\)/;
return 0 if $bracketDepth < 0;
}
return $bracketDepth == 0 ? 1 : 0;
}
1;
|