This file is indexed.

/usr/share/perl5/Math/BigInt/Calc.pm is in libmath-bigint-perl 1.999715-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
package Math::BigInt::Calc;

use 5.006001;
use strict;
use warnings;

our $VERSION = '1.999715';
$VERSION = eval $VERSION;

# Package to store unsigned big integers in decimal and do math with them

# Internally the numbers are stored in an array with at least 1 element, no
# leading zero parts (except the first) and in base 1eX where X is determined
# automatically at loading time to be the maximum possible value

# todo:
# - fully remove funky $# stuff in div() (maybe - that code scares me...)

# USE_MUL: due to problems on certain os (os390, posix-bc) "* 1e-5" is used
# instead of "/ 1e5" at some places, (marked with USE_MUL). Other platforms
# BS2000, some Crays need USE_DIV instead.
# The BEGIN block is used to determine which of the two variants gives the
# correct result.

# Beware of things like:
# $i = $i * $y + $car; $car = int($i / $BASE); $i = $i % $BASE;
# This works on x86, but fails on ARM (SA1100, iPAQ) due to who knows what
# reasons. So, use this instead (slower, but correct):
# $i = $i * $y + $car; $car = int($i / $BASE); $i -= $BASE * $car;

##############################################################################
# global constants, flags and accessory

# announce that we are compatible with MBI v1.83 and up
sub api_version () { 2; }
 
# constants for easier life
my ($BASE,$BASE_LEN,$RBASE,$MAX_VAL);
my ($AND_BITS,$XOR_BITS,$OR_BITS);
my ($AND_MASK,$XOR_MASK,$OR_MASK);

sub _base_len 
  {
  # Set/get the BASE_LEN and assorted other, connected values.
  # Used only by the testsuite, the set variant is used only by the BEGIN
  # block below:
  shift;

  my ($b, $int) = @_;
  if (defined $b)
    {
    # avoid redefinitions
    undef &_mul;
    undef &_div;

    if ($] >= 5.008 && $int && $b > 7)
      {
      $BASE_LEN = $b;
      *_mul = \&_mul_use_div_64;
      *_div = \&_div_use_div_64;
      $BASE = int("1e".$BASE_LEN);
      $MAX_VAL = $BASE-1;
      return $BASE_LEN unless wantarray;
      return ($BASE_LEN, $BASE, $AND_BITS, $XOR_BITS, $OR_BITS, $BASE_LEN, $MAX_VAL,);
      }

    # find whether we can use mul or div in mul()/div()
    $BASE_LEN = $b+1;
    my $caught = 0;
    while (--$BASE_LEN > 5)
      {
      $BASE = int("1e".$BASE_LEN);
      $RBASE = abs('1e-'.$BASE_LEN);			# see USE_MUL
      $caught = 0;
      $caught += 1 if (int($BASE * $RBASE) != 1);	# should be 1
      $caught += 2 if (int($BASE / $BASE) != 1);	# should be 1
      last if $caught != 3;
      }
    $BASE = int("1e".$BASE_LEN);
    $RBASE = abs('1e-'.$BASE_LEN);			# see USE_MUL
    $MAX_VAL = $BASE-1;
   
    # ($caught & 1) != 0 => cannot use MUL
    # ($caught & 2) != 0 => cannot use DIV
    if ($caught == 2)				# 2
      {
      # must USE_MUL since we cannot use DIV
      *_mul = \&_mul_use_mul;
      *_div = \&_div_use_mul;
      }
    else					# 0 or 1
      {
      # can USE_DIV instead
      *_mul = \&_mul_use_div;
      *_div = \&_div_use_div;
      }
    }
  return $BASE_LEN unless wantarray;
  return ($BASE_LEN, $BASE, $AND_BITS, $XOR_BITS, $OR_BITS, $BASE_LEN, $MAX_VAL);
  }

sub _new {
    # Given a string representing an integer, returns a reference to an array
    # of integers, where each integer represents a chunk of the original input
    # integer. Assumes normalized value as input.

    my ($proto, $str) = @_;

    my $input_len = length($str) - 1;

    # Shortcut for small numbers.
    return [ int($str) ] if $input_len < $BASE_LEN;

    my $format = "a" . (($input_len % $BASE_LEN) + 1);
    $format .= $] < 5.008 ? "a$BASE_LEN" x int($input_len / $BASE_LEN)
                          : "(a$BASE_LEN)*";

    [ reverse(map { 0 + $_ } unpack($format, $str)) ];
}

BEGIN
  {
  # from Daniel Pfeiffer: determine largest group of digits that is precisely
  # multipliable with itself plus carry
  # Test now changed to expect the proper pattern, not a result off by 1 or 2
  my ($e, $num) = 3;	# lowest value we will use is 3+1-1 = 3
  do {
      $num = '9' x ++$e;
      $num *= $num + 1;
  } while $num =~ /9{$e}0{$e}/;		# must be a certain pattern
  $e--; 				# last test failed, so retract one step
  # the limits below brush the problems with the test above under the rug:
  # the test should be able to find the proper $e automatically
  $e = 5 if $^O =~ /^uts/;	# UTS get's some special treatment
  $e = 5 if $^O =~ /^unicos/;	# unicos is also problematic (6 seems to work
				# there, but we play safe)

  my $int = 0;
  if ($e > 7)
    {
    use integer;
    my $e1 = 7;
    $num = 7;
    do 
      {
      $num = ('9' x ++$e1) + 0;
      $num *= $num + 1;
      } while ("$num" =~ /9{$e1}0{$e1}/);	# must be a certain pattern
    $e1--; 					# last test failed, so retract one step
    if ($e1 > 7)
      { 
      $int = 1; $e = $e1; 
      }
    }
 
  __PACKAGE__->_base_len($e,$int);	# set and store

  use integer;
  # find out how many bits _and, _or and _xor can take (old default = 16)
  # I don't think anybody has yet 128 bit scalars, so let's play safe.
  local $^W = 0;	# don't warn about 'nonportable number'
  $AND_BITS = 15; $XOR_BITS = 15; $OR_BITS = 15;

  # find max bits, we will not go higher than numberofbits that fit into $BASE
  # to make _and etc simpler (and faster for smaller, slower for large numbers)
  my $max = 16;
  while (2 ** $max < $BASE) { $max++; }
  {
    no integer;
    $max = 16 if $] < 5.006;	# older Perls might not take >16 too well
  }
  my ($x,$y,$z);
  do {
    $AND_BITS++;
    $x = CORE::oct('0b' . '1' x $AND_BITS); $y = $x & $x;
    $z = (2 ** $AND_BITS) - 1;
    } while ($AND_BITS < $max && $x == $z && $y == $x);
  $AND_BITS --;						# retreat one step
  do {
    $XOR_BITS++;
    $x = CORE::oct('0b' . '1' x $XOR_BITS); $y = $x ^ 0;
    $z = (2 ** $XOR_BITS) - 1;
    } while ($XOR_BITS < $max && $x == $z && $y == $x);
  $XOR_BITS --;						# retreat one step
  do {
    $OR_BITS++;
    $x = CORE::oct('0b' . '1' x $OR_BITS); $y = $x | $x;
    $z = (2 ** $OR_BITS) - 1;
    } while ($OR_BITS < $max && $x == $z && $y == $x);
  $OR_BITS --;						# retreat one step
  
  $AND_MASK = __PACKAGE__->_new( ( 2 ** $AND_BITS ));
  $XOR_MASK = __PACKAGE__->_new( ( 2 ** $XOR_BITS ));
  $OR_MASK = __PACKAGE__->_new( ( 2 ** $OR_BITS ));

  # We can compute the approximate length no faster than the real length:
  *_alen = \&_len;
  }

###############################################################################

sub _zero
  {
  # create a zero
  [ 0 ];
  }

sub _one
  {
  # create a one
  [ 1 ];
  }

sub _two
  {
  # create a two (used internally for shifting)
  [ 2 ];
  }

sub _ten
  {
  # create a 10 (used internally for shifting)
  [ 10 ];
  }

sub _1ex
  {
  # create a 1Ex
  my $rem = $_[1] % $BASE_LEN;		# remainder
  my $parts = $_[1] / $BASE_LEN;	# parts

  # 000000, 000000, 100 
  [ (0) x $parts, '1' . ('0' x $rem) ];
  }

sub _copy
  {
  # make a true copy
  [ @{$_[1]} ];
  }

# catch and throw away
sub import { }

##############################################################################
# convert back to string and number

sub _str {
    # Convert number from internal base 1eN format to string format. Internal
    # format is always normalized, i.e., no leading zeros.

    my $ary = $_[1];
    my $idx = $#$ary;             # index of last element

    if ($idx < 0) {               # should not happen
        require Carp;
        Carp::croak("$_[1] has no elements");
    }

    # Handle first one differently, since it should not have any leading zeros.
    my $ret = int($ary->[$idx]);
    if ($idx > 0) {
        $idx--;
        # Interestingly, the pre-padd method uses more time
        # the old grep variant takes longer (14 vs. 10 sec)
        my $z = '0' x ($BASE_LEN - 1);
        while ($idx >= 0) {
            $ret .= substr($z . $ary->[$idx], -$BASE_LEN);
            $idx--;
        }
    }
    $ret;
}

sub _num
  {
    # Make a Perl scalar number (int/float) from a BigInt object.
    my $x = $_[1];

    return 0 + $x->[0] if scalar @$x == 1;      # below $BASE

    # Start with the most significant element and work towards the least
    # significant element. Avoid multiplying "inf" (which happens if the number
    # overflows) with "0" (if there are zero elements in $x) since this gives
    # "nan" which propagates to the output.

    my $num = 0;
    for (my $i = $#$x ; $i >= 0 ; --$i) {
        $num *= $BASE;
        $num += $x -> [$i];
    }
    return $num;
  }

##############################################################################
# actual math code

sub _add {
    # (ref to int_num_array, ref to int_num_array)
    #
    # Routine to add two base 1eX numbers stolen from Knuth Vol 2 Algorithm A
    # pg 231. There are separate routines to add and sub as per Knuth pg 233.
    # This routine modifies array x, but not y.

    my ($c, $x, $y) = @_;

    return $x if @$y == 1 && $y->[0] == 0;      # $x + 0 => $x
    if (@$x == 1 && $x->[0] == 0) {             # 0 + $y => $y->copy
        # Twice as slow as $x = [ @$y ], but necessary to modify $x in-place.
        @$x = @$y;
        return $x;
    }

    # For each in Y, add Y to X and carry. If after that, something is left in
    # X, foreach in X add carry to X and then return X, carry. Trades one
    # "$j++" for having to shift arrays.
    my $i;
    my $car = 0;
    my $j = 0;
    for $i (@$y) {
        $x->[$j] -= $BASE if $car = (($x->[$j] += $i + $car) >= $BASE) ? 1 : 0;
        $j++;
    }
    while ($car != 0) {
        $x->[$j] -= $BASE if $car = (($x->[$j] += $car) >= $BASE) ? 1 : 0;
        $j++;
    }
    $x;
}

sub _inc {
    # (ref to int_num_array, ref to int_num_array)
    # Add 1 to $x, modify $x in place
    my ($c, $x) = @_;

    for my $i (@$x) {
        return $x if ($i += 1) < $BASE;		# early out
        $i = 0;					# overflow, next
    }
    push @$x, 1 if $x->[-1] == 0;		# last overflowed, so extend
    $x;
}

sub _dec {
    # (ref to int_num_array, ref to int_num_array)
    # Sub 1 from $x, modify $x in place
    my ($c, $x) = @_;

    my $MAX = $BASE - 1;			# since MAX_VAL based on BASE
    for my $i (@$x) {
        last if ($i -= 1) >= 0;			# early out
        $i = $MAX;				# underflow, next
    }
    pop @$x if $x->[-1] == 0 && @$x > 1;	# last underflowed (but leave 0)
    $x;
}

sub _sub {
    # (ref to int_num_array, ref to int_num_array, swap)
    #
    # Subtract base 1eX numbers -- stolen from Knuth Vol 2 pg 232, $x > $y
    # subtract Y from X by modifying x in place
    my ($c, $sx, $sy, $s) = @_;

    my $car = 0;
    my $i;
    my $j = 0;
    if (!$s) {
        for $i (@$sx) {
            last unless defined $sy->[$j] || $car;
            $i += $BASE if $car = (($i -= ($sy->[$j] || 0) + $car) < 0);
            $j++;
        }
        # might leave leading zeros, so fix that
        return __strip_zeros($sx);
    }
    for $i (@$sx) {
        # We can't do an early out if $x < $y, since we need to copy the high
        # chunks from $y. Found by Bob Mathews.
        #last unless defined $sy->[$j] || $car;
        $sy->[$j] += $BASE
          if $car = ($sy->[$j] = $i - ($sy->[$j] || 0) - $car) < 0;
        $j++;
    }
    # might leave leading zeros, so fix that
    __strip_zeros($sy);
}

sub _mul_use_mul
  {
  # (ref to int_num_array, ref to int_num_array)
  # multiply two numbers in internal representation
  # modifies first arg, second need not be different from first
  my ($c,$xv,$yv) = @_;

  if (@$yv == 1)
    {
    # shortcut for two very short numbers (improved by Nathan Zook)
    # works also if xv and yv are the same reference, and handles also $x == 0
    if (@$xv == 1)
      {
      if (($xv->[0] *= $yv->[0]) >= $BASE)
         {
         $xv->[0] = $xv->[0] - ($xv->[1] = int($xv->[0] * $RBASE)) * $BASE;
         };
      return $xv;
      }
    # $x * 0 => 0
    if ($yv->[0] == 0)
      {
      @$xv = (0);
      return $xv;
      }
    # multiply a large number a by a single element one, so speed up
    my $y = $yv->[0]; my $car = 0;
    foreach my $i (@$xv)
      {
      $i = $i * $y + $car; $car = int($i * $RBASE); $i -= $car * $BASE;
      }
    push @$xv, $car if $car != 0;
    return $xv;
    }
  # shortcut for result $x == 0 => result = 0
  return $xv if ( ((@$xv == 1) && ($xv->[0] == 0)) ); 

  # since multiplying $x with $x fails, make copy in this case
  $yv = [@$xv] if $xv == $yv;	# same references?

  my @prod = (); my ($prod,$car,$cty,$xi,$yi);

  for $xi (@$xv)
    {
    $car = 0; $cty = 0;

    # slow variant
#    for $yi (@$yv)
#      {
#      $prod = $xi * $yi + ($prod[$cty] || 0) + $car;
#      $prod[$cty++] =
#       $prod - ($car = int($prod * RBASE)) * $BASE;  # see USE_MUL
#      }
#    $prod[$cty] += $car if $car; # need really to check for 0?
#    $xi = shift @prod;

    # faster variant
    # looping through this if $xi == 0 is silly - so optimize it away!
    $xi = (shift @prod || 0), next if $xi == 0;
    for $yi (@$yv)
      {
      $prod = $xi * $yi + ($prod[$cty] || 0) + $car;
##     this is actually a tad slower
##        $prod = $prod[$cty]; $prod += ($car + $xi * $yi);	# no ||0 here
      $prod[$cty++] =
       $prod - ($car = int($prod * $RBASE)) * $BASE;  # see USE_MUL
      }
    $prod[$cty] += $car if $car; # need really to check for 0?
    $xi = shift @prod || 0;	# || 0 makes v5.005_3 happy
    }
  push @$xv, @prod;
  # can't have leading zeros
#  __strip_zeros($xv);
  $xv;
  }                                                                             

sub _mul_use_div_64
  {
  # (ref to int_num_array, ref to int_num_array)
  # multiply two numbers in internal representation
  # modifies first arg, second need not be different from first
  # works for 64 bit integer with "use integer"
  my ($c,$xv,$yv) = @_;

  use integer;
  if (@$yv == 1)
    {
    # shortcut for two small numbers, also handles $x == 0
    if (@$xv == 1)
      {
      # shortcut for two very short numbers (improved by Nathan Zook)
      # works also if xv and yv are the same reference, and handles also $x == 0
      if (($xv->[0] *= $yv->[0]) >= $BASE)
          {
          $xv->[0] =
              $xv->[0] - ($xv->[1] = $xv->[0] / $BASE) * $BASE;
          };
      return $xv;
      }
    # $x * 0 => 0
    if ($yv->[0] == 0)
      {
      @$xv = (0);
      return $xv;
      }
    # multiply a large number a by a single element one, so speed up
    my $y = $yv->[0]; my $car = 0;
    foreach my $i (@$xv)
      {
      #$i = $i * $y + $car; $car = $i / $BASE; $i -= $car * $BASE;
      $i = $i * $y + $car; $i -= ($car = $i / $BASE) * $BASE;
      }
    push @$xv, $car if $car != 0;
    return $xv;
    }
  # shortcut for result $x == 0 => result = 0
  return $xv if ( ((@$xv == 1) && ($xv->[0] == 0)) ); 

  # since multiplying $x with $x fails, make copy in this case
  $yv = [@$xv] if $xv == $yv;	# same references?

  my @prod = (); my ($prod,$car,$cty,$xi,$yi);
  for $xi (@$xv)
    {
    $car = 0; $cty = 0;
    # looping through this if $xi == 0 is silly - so optimize it away!
    $xi = (shift @prod || 0), next if $xi == 0;
    for $yi (@$yv)
      {
      $prod = $xi * $yi + ($prod[$cty] || 0) + $car;
      $prod[$cty++] = $prod - ($car = $prod / $BASE) * $BASE;
      }
    $prod[$cty] += $car if $car; # need really to check for 0?
    $xi = shift @prod || 0;	# || 0 makes v5.005_3 happy
    }
  push @$xv, @prod;
  $xv;
  }                                                                             

sub _mul_use_div
  {
  # (ref to int_num_array, ref to int_num_array)
  # multiply two numbers in internal representation
  # modifies first arg, second need not be different from first
  my ($c,$xv,$yv) = @_;

  if (@$yv == 1)
    {
    # shortcut for two small numbers, also handles $x == 0
    if (@$xv == 1)
      {
      # shortcut for two very short numbers (improved by Nathan Zook)
      # works also if xv and yv are the same reference, and handles also $x == 0
      if (($xv->[0] *= $yv->[0]) >= $BASE)
          {
          $xv->[0] =
              $xv->[0] - ($xv->[1] = int($xv->[0] / $BASE)) * $BASE;
          };
      return $xv;
      }
    # $x * 0 => 0
    if ($yv->[0] == 0)
      {
      @$xv = (0);
      return $xv;
      }
    # multiply a large number a by a single element one, so speed up
    my $y = $yv->[0]; my $car = 0;
    foreach my $i (@$xv)
      {
      $i = $i * $y + $car; $car = int($i / $BASE); $i -= $car * $BASE;
      # This (together with use integer;) does not work on 32-bit Perls
      #$i = $i * $y + $car; $i -= ($car = $i / $BASE) * $BASE;
      }
    push @$xv, $car if $car != 0;
    return $xv;
    }
  # shortcut for result $x == 0 => result = 0
  return $xv if ( ((@$xv == 1) && ($xv->[0] == 0)) ); 

  # since multiplying $x with $x fails, make copy in this case
  $yv = [@$xv] if $xv == $yv;	# same references?

  my @prod = (); my ($prod,$car,$cty,$xi,$yi);
  for $xi (@$xv)
    {
    $car = 0; $cty = 0;
    # looping through this if $xi == 0 is silly - so optimize it away!
    $xi = (shift @prod || 0), next if $xi == 0;
    for $yi (@$yv)
      {
      $prod = $xi * $yi + ($prod[$cty] || 0) + $car;
      $prod[$cty++] = $prod - ($car = int($prod / $BASE)) * $BASE;
      }
    $prod[$cty] += $car if $car; # need really to check for 0?
    $xi = shift @prod || 0;	# || 0 makes v5.005_3 happy
    }
  push @$xv, @prod;
  # can't have leading zeros
#  __strip_zeros($xv);
  $xv;
  }                                                                             

sub _div_use_mul
  {
  # ref to array, ref to array, modify first array and return remainder if 
  # in list context

  # see comments in _div_use_div() for more explanations

  my ($c,$x,$yorg) = @_;
  
  # the general div algorithm here is about O(N*N) and thus quite slow, so
  # we first check for some special cases and use shortcuts to handle them.

  # This works, because we store the numbers in a chunked format where each
  # element contains 5..7 digits (depending on system).

  # if both numbers have only one element:
  if (@$x == 1 && @$yorg == 1)
    {
    # shortcut, $yorg and $x are two small numbers
    if (wantarray)
      {
      my $r = [ $x->[0] % $yorg->[0] ];
      $x->[0] = int($x->[0] / $yorg->[0]);
      return ($x,$r); 
      }
    else
      {
      $x->[0] = int($x->[0] / $yorg->[0]);
      return $x; 
      }
    }

  # if x has more than one, but y has only one element:
  if (@$yorg == 1)
    {
    my $rem;
    $rem = _mod($c,[ @$x ],$yorg) if wantarray;

    # shortcut, $y is < $BASE
    my $j = scalar @$x; my $r = 0; 
    my $y = $yorg->[0]; my $b;
    while ($j-- > 0)
      {
      $b = $r * $BASE + $x->[$j];
      $x->[$j] = int($b/$y);
      $r = $b % $y;
      }
    pop @$x if @$x > 1 && $x->[-1] == 0;	# splice up a leading zero 
    return ($x,$rem) if wantarray;
    return $x;
    }

  # now x and y have more than one element

  # check whether y has more elements than x, if yet, the result will be 0
  if (@$yorg > @$x)
    {
    my $rem;
    $rem = [@$x] if wantarray;                  # make copy
    splice (@$x,1);                             # keep ref to original array
    $x->[0] = 0;                                # set to 0
    return ($x,$rem) if wantarray;              # including remainder?
    return $x;					# only x, which is [0] now
    }
  # check whether the numbers have the same number of elements, in that case
  # the result will fit into one element and can be computed efficiently
  if (@$yorg == @$x)
    {
    my $rem;
    # if $yorg has more digits than $x (it's leading element is longer than
    # the one from $x), the result will also be 0:
    if (length(int($yorg->[-1])) > length(int($x->[-1])))
      {
      $rem = [@$x] if wantarray;		# make copy
      splice (@$x,1);				# keep ref to org array
      $x->[0] = 0;				# set to 0
      return ($x,$rem) if wantarray;		# including remainder?
      return $x;
      }
    # now calculate $x / $yorg
    if (length(int($yorg->[-1])) == length(int($x->[-1])))
      {
      # same length, so make full compare

      my $a = 0; my $j = scalar @$x - 1;
      # manual way (abort if unequal, good for early ne)
      while ($j >= 0)
        {
        last if ($a = $x->[$j] - $yorg->[$j]); $j--;
        }
      # $a contains the result of the compare between X and Y
      # a < 0: x < y, a == 0: x == y, a > 0: x > y
      if ($a <= 0)
        {
        $rem = [ 0 ];                   # a = 0 => x == y => rem 0
        $rem = [@$x] if $a != 0;        # a < 0 => x < y => rem = x
        splice(@$x,1);                  # keep single element
        $x->[0] = 0;                    # if $a < 0
        $x->[0] = 1 if $a == 0;         # $x == $y
        return ($x,$rem) if wantarray;
        return $x;
        }
      # $x >= $y, so proceed normally
      }
    }

  # all other cases:

  my $y = [ @$yorg ];				# always make copy to preserve

  my ($car,$bar,$prd,$dd,$xi,$yi,@q,$v2,$v1,@d,$tmp,$q,$u2,$u1,$u0);

  $car = $bar = $prd = 0;
  if (($dd = int($BASE/($y->[-1]+1))) != 1) 
    {
    for $xi (@$x) 
      {
      $xi = $xi * $dd + $car;
      $xi -= ($car = int($xi * $RBASE)) * $BASE;	# see USE_MUL
      }
    push(@$x, $car); $car = 0;
    for $yi (@$y) 
      {
      $yi = $yi * $dd + $car;
      $yi -= ($car = int($yi * $RBASE)) * $BASE;	# see USE_MUL
      }
    }
  else 
    {
    push(@$x, 0);
    }
  @q = (); ($v2,$v1) = @$y[-2,-1];
  $v2 = 0 unless $v2;
  while ($#$x > $#$y) 
    {
    ($u2,$u1,$u0) = @$x[-3..-1];
    $u2 = 0 unless $u2;
    #warn "oups v1 is 0, u0: $u0 $y->[-2] $y->[-1] l ",scalar @$y,"\n"
    # if $v1 == 0;
    $q = (($u0 == $v1) ? $MAX_VAL : int(($u0*$BASE+$u1)/$v1));
    --$q while ($v2*$q > ($u0*$BASE+$u1-$q*$v1)*$BASE+$u2);
    if ($q)
      {
      ($car, $bar) = (0,0);
      for ($yi = 0, $xi = $#$x-$#$y-1; $yi <= $#$y; ++$yi,++$xi) 
        {
        $prd = $q * $y->[$yi] + $car;
        $prd -= ($car = int($prd * $RBASE)) * $BASE;	# see USE_MUL
	$x->[$xi] += $BASE if ($bar = (($x->[$xi] -= $prd + $bar) < 0));
	}
      if ($x->[-1] < $car + $bar) 
        {
        $car = 0; --$q;
	for ($yi = 0, $xi = $#$x-$#$y-1; $yi <= $#$y; ++$yi,++$xi) 
          {
	  $x->[$xi] -= $BASE
	   if ($car = (($x->[$xi] += $y->[$yi] + $car) >= $BASE));
	  }
	}   
      }
    pop(@$x);
    unshift(@q, $q);
    }
  if (wantarray) 
    {
    @d = ();
    if ($dd != 1)  
      {
      $car = 0; 
      for $xi (reverse @$x) 
        {
        $prd = $car * $BASE + $xi;
        $car = $prd - ($tmp = int($prd / $dd)) * $dd; # see USE_MUL
        unshift(@d, $tmp);
        }
      }
    else 
      {
      @d = @$x;
      }
    @$x = @q;
    my $d = \@d; 
    __strip_zeros($x);
    __strip_zeros($d);
    return ($x,$d);
    }
  @$x = @q;
  __strip_zeros($x);
  $x;
  }

sub _div_use_div_64
  {
  # ref to array, ref to array, modify first array and return remainder if 
  # in list context
  # This version works on 64 bit integers
  my ($c,$x,$yorg) = @_;

  use integer;
  # the general div algorithm here is about O(N*N) and thus quite slow, so
  # we first check for some special cases and use shortcuts to handle them.

  # This works, because we store the numbers in a chunked format where each
  # element contains 5..7 digits (depending on system).

  # if both numbers have only one element:
  if (@$x == 1 && @$yorg == 1)
    {
    # shortcut, $yorg and $x are two small numbers
    if (wantarray)
      {
      my $r = [ $x->[0] % $yorg->[0] ];
      $x->[0] = int($x->[0] / $yorg->[0]);
      return ($x,$r); 
      }
    else
      {
      $x->[0] = int($x->[0] / $yorg->[0]);
      return $x; 
      }
    }
  # if x has more than one, but y has only one element:
  if (@$yorg == 1)
    {
    my $rem;
    $rem = _mod($c,[ @$x ],$yorg) if wantarray;

    # shortcut, $y is < $BASE
    my $j = scalar @$x; my $r = 0; 
    my $y = $yorg->[0]; my $b;
    while ($j-- > 0)
      {
      $b = $r * $BASE + $x->[$j];
      $x->[$j] = int($b/$y);
      $r = $b % $y;
      }
    pop @$x if @$x > 1 && $x->[-1] == 0;	# splice up a leading zero 
    return ($x,$rem) if wantarray;
    return $x;
    }
  # now x and y have more than one element

  # check whether y has more elements than x, if yet, the result will be 0
  if (@$yorg > @$x)
    {
    my $rem;
    $rem = [@$x] if wantarray;			# make copy
    splice (@$x,1);				# keep ref to original array
    $x->[0] = 0;				# set to 0
    return ($x,$rem) if wantarray;		# including remainder?
    return $x;					# only x, which is [0] now
    }
  # check whether the numbers have the same number of elements, in that case
  # the result will fit into one element and can be computed efficiently
  if (@$yorg == @$x)
    {
    my $rem;
    # if $yorg has more digits than $x (it's leading element is longer than
    # the one from $x), the result will also be 0:
    if (length(int($yorg->[-1])) > length(int($x->[-1])))
      {
      $rem = [@$x] if wantarray;		# make copy
      splice (@$x,1);				# keep ref to org array
      $x->[0] = 0;				# set to 0
      return ($x,$rem) if wantarray;		# including remainder?
      return $x;
      }
    # now calculate $x / $yorg

    if (length(int($yorg->[-1])) == length(int($x->[-1])))
      {
      # same length, so make full compare

      my $a = 0; my $j = scalar @$x - 1;
      # manual way (abort if unequal, good for early ne)
      while ($j >= 0)
        {
        last if ($a = $x->[$j] - $yorg->[$j]); $j--;
        }
      # $a contains the result of the compare between X and Y
      # a < 0: x < y, a == 0: x == y, a > 0: x > y
      if ($a <= 0)
        {
        $rem = [ 0 ];			# a = 0 => x == y => rem 0
        $rem = [@$x] if $a != 0;	# a < 0 => x < y => rem = x
        splice(@$x,1);			# keep single element
        $x->[0] = 0;			# if $a < 0
        $x->[0] = 1 if $a == 0; 	# $x == $y
        return ($x,$rem) if wantarray;	# including remainder?
        return $x;
        }
      # $x >= $y, so proceed normally

      }
    }

  # all other cases:

  my $y = [ @$yorg ];				# always make copy to preserve
 
  my ($car,$bar,$prd,$dd,$xi,$yi,@q,$v2,$v1,@d,$tmp,$q,$u2,$u1,$u0);

  $car = $bar = $prd = 0;
  if (($dd = int($BASE/($y->[-1]+1))) != 1) 
    {
    for $xi (@$x) 
      {
      $xi = $xi * $dd + $car;
      $xi -= ($car = int($xi / $BASE)) * $BASE;
      }
    push(@$x, $car); $car = 0;
    for $yi (@$y) 
      {
      $yi = $yi * $dd + $car;
      $yi -= ($car = int($yi / $BASE)) * $BASE;
      }
    }
  else 
    {
    push(@$x, 0);
    }

  # @q will accumulate the final result, $q contains the current computed
  # part of the final result

  @q = (); ($v2,$v1) = @$y[-2,-1];
  $v2 = 0 unless $v2;
  while ($#$x > $#$y) 
    {
    ($u2,$u1,$u0) = @$x[-3..-1];
    $u2 = 0 unless $u2;
    #warn "oups v1 is 0, u0: $u0 $y->[-2] $y->[-1] l ",scalar @$y,"\n"
    # if $v1 == 0;
    $q = (($u0 == $v1) ? $MAX_VAL : int(($u0*$BASE+$u1)/$v1));
    --$q while ($v2*$q > ($u0*$BASE+$u1-$q*$v1)*$BASE+$u2);
    if ($q)
      {
      ($car, $bar) = (0,0);
      for ($yi = 0, $xi = $#$x-$#$y-1; $yi <= $#$y; ++$yi,++$xi) 
        {
        $prd = $q * $y->[$yi] + $car;
        $prd -= ($car = int($prd / $BASE)) * $BASE;
	$x->[$xi] += $BASE if ($bar = (($x->[$xi] -= $prd + $bar) < 0));
	}
      if ($x->[-1] < $car + $bar) 
        {
        $car = 0; --$q;
	for ($yi = 0, $xi = $#$x-$#$y-1; $yi <= $#$y; ++$yi,++$xi) 
          {
	  $x->[$xi] -= $BASE
	   if ($car = (($x->[$xi] += $y->[$yi] + $car) >= $BASE));
	  }
	}   
      }
    pop(@$x); unshift(@q, $q);
    }
  if (wantarray) 
    {
    @d = ();
    if ($dd != 1)  
      {
      $car = 0; 
      for $xi (reverse @$x) 
        {
        $prd = $car * $BASE + $xi;
        $car = $prd - ($tmp = int($prd / $dd)) * $dd;
        unshift(@d, $tmp);
        }
      }
    else 
      {
      @d = @$x;
      }
    @$x = @q;
    my $d = \@d; 
    __strip_zeros($x);
    __strip_zeros($d);
    return ($x,$d);
    }
  @$x = @q;
  __strip_zeros($x);
  $x;
  }

sub _div_use_div
  {
  # ref to array, ref to array, modify first array and return remainder if 
  # in list context
  my ($c,$x,$yorg) = @_;

  # the general div algorithm here is about O(N*N) and thus quite slow, so
  # we first check for some special cases and use shortcuts to handle them.

  # This works, because we store the numbers in a chunked format where each
  # element contains 5..7 digits (depending on system).

  # if both numbers have only one element:
  if (@$x == 1 && @$yorg == 1)
    {
    # shortcut, $yorg and $x are two small numbers
    if (wantarray)
      {
      my $r = [ $x->[0] % $yorg->[0] ];
      $x->[0] = int($x->[0] / $yorg->[0]);
      return ($x,$r); 
      }
    else
      {
      $x->[0] = int($x->[0] / $yorg->[0]);
      return $x; 
      }
    }
  # if x has more than one, but y has only one element:
  if (@$yorg == 1)
    {
    my $rem;
    $rem = _mod($c,[ @$x ],$yorg) if wantarray;

    # shortcut, $y is < $BASE
    my $j = scalar @$x; my $r = 0; 
    my $y = $yorg->[0]; my $b;
    while ($j-- > 0)
      {
      $b = $r * $BASE + $x->[$j];
      $x->[$j] = int($b/$y);
      $r = $b % $y;
      }
    pop @$x if @$x > 1 && $x->[-1] == 0;	# splice up a leading zero 
    return ($x,$rem) if wantarray;
    return $x;
    }
  # now x and y have more than one element

  # check whether y has more elements than x, if yet, the result will be 0
  if (@$yorg > @$x)
    {
    my $rem;
    $rem = [@$x] if wantarray;			# make copy
    splice (@$x,1);				# keep ref to original array
    $x->[0] = 0;				# set to 0
    return ($x,$rem) if wantarray;		# including remainder?
    return $x;					# only x, which is [0] now
    }
  # check whether the numbers have the same number of elements, in that case
  # the result will fit into one element and can be computed efficiently
  if (@$yorg == @$x)
    {
    my $rem;
    # if $yorg has more digits than $x (it's leading element is longer than
    # the one from $x), the result will also be 0:
    if (length(int($yorg->[-1])) > length(int($x->[-1])))
      {
      $rem = [@$x] if wantarray;		# make copy
      splice (@$x,1);				# keep ref to org array
      $x->[0] = 0;				# set to 0
      return ($x,$rem) if wantarray;		# including remainder?
      return $x;
      }
    # now calculate $x / $yorg

    if (length(int($yorg->[-1])) == length(int($x->[-1])))
      {
      # same length, so make full compare

      my $a = 0; my $j = scalar @$x - 1;
      # manual way (abort if unequal, good for early ne)
      while ($j >= 0)
        {
        last if ($a = $x->[$j] - $yorg->[$j]); $j--;
        }
      # $a contains the result of the compare between X and Y
      # a < 0: x < y, a == 0: x == y, a > 0: x > y
      if ($a <= 0)
        {
        $rem = [ 0 ];			# a = 0 => x == y => rem 0
        $rem = [@$x] if $a != 0;	# a < 0 => x < y => rem = x
        splice(@$x,1);			# keep single element
        $x->[0] = 0;			# if $a < 0
        $x->[0] = 1 if $a == 0; 	# $x == $y
        return ($x,$rem) if wantarray;	# including remainder?
        return $x;
        }
      # $x >= $y, so proceed normally

      }
    }

  # all other cases:

  my $y = [ @$yorg ];				# always make copy to preserve
 
  my ($car,$bar,$prd,$dd,$xi,$yi,@q,$v2,$v1,@d,$tmp,$q,$u2,$u1,$u0);

  $car = $bar = $prd = 0;
  if (($dd = int($BASE/($y->[-1]+1))) != 1) 
    {
    for $xi (@$x) 
      {
      $xi = $xi * $dd + $car;
      $xi -= ($car = int($xi / $BASE)) * $BASE;
      }
    push(@$x, $car); $car = 0;
    for $yi (@$y) 
      {
      $yi = $yi * $dd + $car;
      $yi -= ($car = int($yi / $BASE)) * $BASE;
      }
    }
  else 
    {
    push(@$x, 0);
    }

  # @q will accumulate the final result, $q contains the current computed
  # part of the final result

  @q = (); ($v2,$v1) = @$y[-2,-1];
  $v2 = 0 unless $v2;
  while ($#$x > $#$y) 
    {
    ($u2,$u1,$u0) = @$x[-3..-1];
    $u2 = 0 unless $u2;
    #warn "oups v1 is 0, u0: $u0 $y->[-2] $y->[-1] l ",scalar @$y,"\n"
    # if $v1 == 0;
    $q = (($u0 == $v1) ? $MAX_VAL : int(($u0*$BASE+$u1)/$v1));
    --$q while ($v2*$q > ($u0*$BASE+$u1-$q*$v1)*$BASE+$u2);
    if ($q)
      {
      ($car, $bar) = (0,0);
      for ($yi = 0, $xi = $#$x-$#$y-1; $yi <= $#$y; ++$yi,++$xi) 
        {
        $prd = $q * $y->[$yi] + $car;
        $prd -= ($car = int($prd / $BASE)) * $BASE;
	$x->[$xi] += $BASE if ($bar = (($x->[$xi] -= $prd + $bar) < 0));
	}
      if ($x->[-1] < $car + $bar) 
        {
        $car = 0; --$q;
	for ($yi = 0, $xi = $#$x-$#$y-1; $yi <= $#$y; ++$yi,++$xi) 
          {
	  $x->[$xi] -= $BASE
	   if ($car = (($x->[$xi] += $y->[$yi] + $car) >= $BASE));
	  }
	}   
      }
    pop(@$x); unshift(@q, $q);
    }
  if (wantarray) 
    {
    @d = ();
    if ($dd != 1)  
      {
      $car = 0; 
      for $xi (reverse @$x) 
        {
        $prd = $car * $BASE + $xi;
        $car = $prd - ($tmp = int($prd / $dd)) * $dd;
        unshift(@d, $tmp);
        }
      }
    else 
      {
      @d = @$x;
      }
    @$x = @q;
    my $d = \@d; 
    __strip_zeros($x);
    __strip_zeros($d);
    return ($x,$d);
    }
  @$x = @q;
  __strip_zeros($x);
  $x;
  }

##############################################################################
# testing

sub _acmp {
    # Internal absolute post-normalized compare (ignore signs)
    # ref to array, ref to array, return <0, 0, >0
    # Arrays must have at least one entry; this is not checked for.
    my ($c, $cx, $cy) = @_;

    # shortcut for short numbers
    return (($cx->[0] <=> $cy->[0]) <=> 0)
      if @$cx == @$cy && @$cx == 1;

    # fast comp based on number of array elements (aka pseudo-length)
    my $lxy = (@$cx - @$cy)
      # or length of first element if same number of elements (aka difference 0)
      ||
        # need int() here because sometimes the last element is '00018' vs '18'
        (length(int($cx->[-1])) - length(int($cy->[-1])));

    return -1 if $lxy < 0;      # already differs, ret
    return  1 if $lxy > 0;      # ditto

    # manual way (abort if unequal, good for early ne)
    my $a;
    my $j = @$cx;
    while (--$j >= 0) {
        last if $a = $cx->[$j] - $cy->[$j];
    }
    $a <=> 0;
}

sub _len {
    # compute number of digits in base 10

    # int() because add/sub sometimes leaves strings (like '00005') instead of
    # '5' in this place, thus causing length() to report wrong length
    my $cx = $_[1];

    (@$cx - 1) * $BASE_LEN + length(int($cx->[-1]));
}

sub _digit {
    # Return the nth digit. Zero is rightmost, so _digit(123,0) gives 3.
    # Negative values count from the left, so _digit(123, -1) gives 1.
    my ($c, $x, $n) = @_;

    my $len = _len('', $x);

    $n += $len if $n < 0;               # -1 last, -2 second-to-last
    return "0" if $n < 0 || $n >= $len; # return 0 for digits out of range

    my $elem = int($n / $BASE_LEN);     # which array element
    my $digit = $n % $BASE_LEN;         # which digit in this element
    substr("$x->[$elem]", -$digit - 1, 1);
}

sub _zeros {
    # Return number of trailing zeros in decimal.
    # Check each array element for having 0 at end as long as elem == 0
    # Upon finding a elem != 0, stop.

    my $x = $_[1];

    return 0 if @$x == 1 && $x->[0] == 0;

    my $zeros = 0;
    my $elem;
    foreach my $e (@$x) {
        if ($e != 0) {
            $elem = "$e";               # preserve x
            $elem =~ s/.*?(0*$)/$1/;    # strip anything not zero
            $zeros *= $BASE_LEN;        # elems * 5
            $zeros += length($elem);    # count trailing zeros
            last;                       # early out
        }
        $zeros ++;                      # real else branch: 50% slower!
    }
    $zeros;
}

##############################################################################
# _is_* routines

sub _is_zero {
    # return true if arg is zero 
    @{$_[1]} == 1 && $_[1]->[0] == 0 ? 1 : 0;
}

sub _is_even {
    # return true if arg is even
    $_[1]->[0] & 1 ? 0 : 1;
}

sub _is_odd {
    # return true if arg is odd
    $_[1]->[0] & 1 ? 1 : 0;
}

sub _is_one {
    # return true if arg is one
    @{$_[1]} == 1 && $_[1]->[0] == 1 ? 1 : 0;
}

sub _is_two {
    # return true if arg is two 
    @{$_[1]} == 1 && $_[1]->[0] == 2 ? 1 : 0;
}

sub _is_ten {
    # return true if arg is ten 
    @{$_[1]} == 1 && $_[1]->[0] == 10 ? 1 : 0;
}

sub __strip_zeros {
    # Internal normalization function that strips leading zeros from the array.
    # Args: ref to array
    my $s = shift;

    my $cnt = @$s;              # get count of parts
    my $i = $cnt - 1;
    push @$s, 0 if $i < 0;	# div might return empty results, so fix it

    return $s if @$s == 1;	# early out

    #print "strip: cnt $cnt i $i\n";
    # '0', '3', '4', '0', '0',
    #  0    1    2    3    4
    # cnt = 5, i = 4
    # i = 4
    # i = 3
    # => fcnt = cnt - i (5-2 => 3, cnt => 5-1 = 4, throw away from 4th pos)
    # >= 1: skip first part (this can be zero)
    while ($i > 0) {
        last if $s->[$i] != 0;
        $i--;
    }
    $i++;
    splice @$s, $i if $i < $cnt;        # $i cant be 0
    $s;
}

###############################################################################
# check routine to test internal state for corruptions

sub _check {
    # used by the test suite
    my $x = $_[1];

    return "$x is not a reference" if !ref($x);

    # are all parts are valid?
    my $i = 0;
    my $j = @$x;
    my ($e, $try);
    while ($i < $j) {
        $e = $x->[$i]; $e = 'undef' unless defined $e;
        $try = '=~ /^[\+]?[0-9]+\$/; '."($x, $e)";
        last if $e !~ /^[+]?[0-9]+$/;
        $try = '=~ /^[\+]?[0-9]+\$/; '."($x, $e) (stringify)";
        last if "$e" !~ /^[+]?[0-9]+$/;
        $try = '=~ /^[\+]?[0-9]+\$/; '."($x, $e) (cat-stringify)";
        last if '' . "$e" !~ /^[+]?[0-9]+$/;
        $try = ' < 0 || >= $BASE; '."($x, $e)";
        last if $e <0 || $e >= $BASE;
        # This test is disabled, since new/bnorm and certain ops (like early out
        # in add/sub) are allowed/expected to leave '00000' in some elements.
        #$try = '=~ /^00+/; '."($x, $e)";
        #last if $e =~ /^00+/;
        $i++;
    }
    return "Illegal part '$e' at pos $i (tested: $try)" if $i < $j;
    0;
}

###############################################################################

sub _mod {
    # if possible, use mod shortcut
    my ($c, $x, $yo) = @_;

    # slow way since $y too big
    if (@$yo > 1) {
        my ($xo, $rem) = _div($c, $x, $yo);
        @$x = @$rem;
        return $x;
    }

    my $y = $yo->[0];

    # if both are single element arrays
    if (scalar @$x == 1) {
        $x->[0] %= $y;
        return $x;
    }

    # if @$x has more than one element, but @$y is a single element
    my $b = $BASE % $y;
    if ($b == 0) {
        # when BASE % Y == 0 then (B * BASE) % Y == 0
        # (B * BASE) % $y + A % Y => A % Y
        # so need to consider only last element: O(1)
        $x->[0] %= $y;
    } elsif ($b == 1) {
        # else need to go through all elements in @$x: O(N), but loop is a bit
        # simplified
        my $r = 0;
        foreach (@$x) {
            $r = ($r + $_) % $y;        # not much faster, but heh...
            #$r += $_ % $y; $r %= $y;
        }
        $r = 0 if $r == $y;
        $x->[0] = $r;
    } else {
        # else need to go through all elements in @$x: O(N)
        my $r = 0;
        my $bm = 1;
        foreach (@$x) {
            $r = ($_ * $bm + $r) % $y;
            $bm = ($bm * $b) % $y;

            #$r += ($_ % $y) * $bm;
            #$bm *= $b;
            #$bm %= $y;
            #$r %= $y;
        }
        $r = 0 if $r == $y;
        $x->[0] = $r;
    }
    @$x = $x->[0];		# keep one element of @$x
    return $x;
}

##############################################################################
# shifts

sub _rsft {
    my ($c, $x, $y, $n) = @_;

    if ($n != 10) {
        $n = _new($c, $n);
        return _div($c, $x, _pow($c, $n, $y));
    }

    # shortcut (faster) for shifting by 10)
    # multiples of $BASE_LEN
    my $dst = 0;                                            # destination
    my $src = _num($c, $y);                                 # as normal int
    my $xlen = (@$x - 1) * $BASE_LEN + length(int($x->[-1]));
    if ($src >= $xlen or ($src == $xlen and !defined $x->[1])) {
        # 12345 67890 shifted right by more than 10 digits => 0
        splice(@$x, 1);                 # leave only one element
        $x->[0] = 0;                    # set to zero
        return $x;
    }
    my $rem = $src % $BASE_LEN;         # remainder to shift
    $src = int($src / $BASE_LEN);       # source
    if ($rem == 0) {
        splice(@$x, 0, $src);           # even faster, 38.4 => 39.3
    } else {
        my $len = @$x - $src;           # elems to go
        my $vd;
        my $z = '0' x $BASE_LEN;
        $x->[@$x] = 0;                  # avoid || 0 test inside loop
        while ($dst < $len) {
            $vd = $z . $x->[$src];
            $vd = substr($vd, -$BASE_LEN, $BASE_LEN - $rem);
            $src++;
            $vd = substr($z . $x->[$src], -$rem, $rem) . $vd;
            $vd = substr($vd, -$BASE_LEN, $BASE_LEN) if length($vd) > $BASE_LEN;
            $x->[$dst] = int($vd);
            $dst++;
        }
        splice(@$x, $dst) if $dst > 0;          # kill left-over array elems
        pop @$x if $x->[-1] == 0 && @$x > 1;    # kill last element if 0
    }                                           # else rem == 0
    $x;
}

sub _lsft {
    my ($c, $x, $y, $n) = @_;

    if ($n != 10) {
        $n = _new($c, $n);
        return _mul($c, $x, _pow($c, $n, $y));
    }

    # shortcut (faster) for shifting by 10) since we are in base 10eX
    # multiples of $BASE_LEN:
    my $src = @$x;                              # source
    my $len = _num($c, $y);		        # shift-len as normal int
    my $rem = $len % $BASE_LEN;	        	# remainder to shift
    my $dst = $src + int($len / $BASE_LEN);     # destination
    my $vd;                                     # further speedup
    $x->[$src] = 0;                             # avoid first ||0 for speed
    my $z = '0' x $BASE_LEN;
    while ($src >= 0) {
        $vd = $x->[$src];
        $vd = $z . $vd;
        $vd = substr($vd, -$BASE_LEN + $rem, $BASE_LEN - $rem);
        $vd .= $src > 0 ? substr($z . $x->[$src - 1], -$BASE_LEN, $rem)
                        : '0' x $rem;
        $vd = substr($vd, -$BASE_LEN, $BASE_LEN) if length($vd) > $BASE_LEN;
        $x->[$dst] = int($vd);
        $dst--;
        $src--;
    }
    # set lowest parts to 0
    while ($dst >= 0) {
        $x->[$dst--] = 0;
    }
    # fix spurious last zero element
    splice @$x, -1 if $x->[-1] == 0;
    $x;
}

sub _pow {
    # power of $x to $y
    # ref to array, ref to array, return ref to array
    my ($c, $cx, $cy) = @_;

    if (@$cy == 1 && $cy->[0] == 0) {
        splice(@$cx, 1);
        $cx->[0] = 1;                   # y == 0 => x => 1
        return $cx;
    }

    if ((@$cx == 1 && $cx->[0] == 1) ||     #    x == 1
        (@$cy == 1 && $cy->[0] == 1))       # or y == 1
    {
        return $cx;
    }

    if (@$cx == 1 && $cx->[0] == 0) {
        splice (@$cx, 1);
        $cx->[0] = 0;                   # 0 ** y => 0 (if not y <= 0)
        return $cx;
    }

    my $pow2 = _one();

    my $y_bin = _as_bin($c, $cy);
    $y_bin =~ s/^0b//;
    my $len = length($y_bin);
    while (--$len > 0) {
        _mul($c, $pow2, $cx) if substr($y_bin, $len, 1) eq '1'; # is odd?
        _mul($c, $cx, $cx);
    }

    _mul($c, $cx, $pow2);
    $cx;
}

sub _nok {
    # Return binomial coefficient (n over k).
    # Given refs to arrays, return ref to array.
    # First input argument is modified.

    my ($c, $n, $k) = @_;

    # If k > n/2, or, equivalently, 2*k > n, compute nok(n, k) as
    # nok(n, n-k), to minimize the number if iterations in the loop.

    {
        my $twok = _mul($c, _two($c), _copy($c, $k));   # 2 * k
        if (_acmp($c, $twok, $n) > 0) {                 # if 2*k > n
            $k = _sub($c, _copy($c, $n), $k);           # k = n - k
        }
    }

    # Example:
    #
    # / 7 \       7!       1*2*3*4 * 5*6*7   5 * 6 * 7       6   7
    # |   | = --------- =  --------------- = --------- = 5 * - * -
    # \ 3 /   (7-3)! 3!    1*2*3*4 * 1*2*3   1 * 2 * 3       2   3

    if (_is_zero($c, $k)) {
        @$n = 1;
    }

    else {

        # Make a copy of the original n, since we'll be modifying n in-place.

        my $n_orig = _copy($c, $n);

        # n = 5, f = 6, d = 2 (cf. example above)

        _sub($c, $n, $k);
        _inc($c, $n);

        my $f = _copy($c, $n);
        _inc($c, $f);

        my $d = _two($c);

        # while f <= n (the original n, that is) ...

        while (_acmp($c, $f, $n_orig) <= 0) {

            # n = (n * f / d) == 5 * 6 / 2 (cf. example above)

            _mul($c, $n, $f);
            _div($c, $n, $d);

            # f = 7, d = 3 (cf. example above)

            _inc($c, $f);
            _inc($c, $d);
        }

    }

    return $n;
}

my @factorials = (
  1,
  1,
  2,
  2*3,
  2*3*4,
  2*3*4*5,
  2*3*4*5*6,
  2*3*4*5*6*7,
);

sub _fac
  {
  # factorial of $x
  # ref to array, return ref to array
  my ($c,$cx) = @_;

  if ((@$cx == 1) && ($cx->[0] <= 7))
    {
    $cx->[0] = $factorials[$cx->[0]];		# 0 => 1, 1 => 1, 2 => 2 etc.
    return $cx;
    }

  if ((@$cx == 1) && 		# we do this only if $x >= 12 and $x <= 7000
      ($cx->[0] >= 12 && $cx->[0] < 7000))
    {

  # Calculate (k-j) * (k-j+1) ... k .. (k+j-1) * (k + j)
  # See http://blogten.blogspot.com/2007/01/calculating-n.html
  # The above series can be expressed as factors:
  #   k * k - (j - i) * 2
  # We cache k*k, and calculate (j * j) as the sum of the first j odd integers

  # This will not work when N exceeds the storage of a Perl scalar, however,
  # in this case the algorithm would be way to slow to terminate, anyway.

  # As soon as the last element of $cx is 0, we split it up and remember
  # how many zeors we got so far. The reason is that n! will accumulate
  # zeros at the end rather fast.
  my $zero_elements = 0;

  # If n is even, set n = n -1
  my $k = _num($c,$cx); my $even = 1;
  if (($k & 1) == 0)
    {
    $even = $k; $k --;
    }
  # set k to the center point
  $k = ($k + 1) / 2;
#  print "k $k even: $even\n";
  # now calculate k * k
  my $k2 = $k * $k;
  my $odd = 1; my $sum = 1;
  my $i = $k - 1;
  # keep reference to x
  my $new_x = _new($c, $k * $even);
  @$cx = @$new_x;
  if ($cx->[0] == 0)
    {
    $zero_elements ++; shift @$cx;
    }
#  print STDERR "x = ", _str($c,$cx),"\n";
  my $BASE2 = int(sqrt($BASE))-1;
  my $j = 1; 
  while ($j <= $i)
    {
    my $m = ($k2 - $sum); $odd += 2; $sum += $odd; $j++;
    while ($j <= $i && ($m < $BASE2) && (($k2 - $sum) < $BASE2))
      {
      $m *= ($k2 - $sum);
      $odd += 2; $sum += $odd; $j++;
#      print STDERR "\n k2 $k2 m $m sum $sum odd $odd\n"; sleep(1);
      }
    if ($m < $BASE)
      {
      _mul($c,$cx,[$m]);
      }
    else
      {
      _mul($c,$cx,$c->_new($m));
      }
    if ($cx->[0] == 0)
      {
      $zero_elements ++; shift @$cx;
      }
#    print STDERR "Calculate $k2 - $sum = $m (x = ", _str($c,$cx),")\n";
    }
  # multiply in the zeros again
  unshift @$cx, (0) x $zero_elements; 
  return $cx;
  }

  # go forward until $base is exceeded
  # limit is either $x steps (steps == 100 means a result always too high) or
  # $base.
  my $steps = 100; $steps = $cx->[0] if @$cx == 1;
  my $r = 2; my $cf = 3; my $step = 2; my $last = $r;
  while ($r*$cf < $BASE && $step < $steps)
    {
    $last = $r; $r *= $cf++; $step++;
    }
  if ((@$cx == 1) && $step == $cx->[0])
    {
    # completely done, so keep reference to $x and return
    $cx->[0] = $r;
    return $cx;
    }
  
  # now we must do the left over steps
  my $n;					# steps still to do
  if (scalar @$cx == 1)
    {
    $n = $cx->[0];
    }
  else
    {
    $n = _copy($c,$cx);
    }

  # Set $cx to the last result below $BASE (but keep ref to $x)
  $cx->[0] = $last; splice (@$cx,1);
  # As soon as the last element of $cx is 0, we split it up and remember
  # how many zeors we got so far. The reason is that n! will accumulate
  # zeros at the end rather fast.
  my $zero_elements = 0;

  # do left-over steps fit into a scalar?
  if (ref $n eq 'ARRAY')
    {
    # No, so use slower inc() & cmp()
    # ($n is at least $BASE here)
    my $base_2 = int(sqrt($BASE)) - 1;
    #print STDERR "base_2: $base_2\n"; 
    while ($step < $base_2)
      {
      if ($cx->[0] == 0)
        {
        $zero_elements ++; shift @$cx;
        }
      my $b = $step * ($step + 1); $step += 2;
      _mul($c,$cx,[$b]);
      }
    $step = [$step];
    while (_acmp($c,$step,$n) <= 0)
      {
      if ($cx->[0] == 0)
        {
        $zero_elements ++; shift @$cx;
        }
      _mul($c,$cx,$step); _inc($c,$step);
      }
    }
  else
    {
    # Yes, so we can speed it up slightly
  
#    print "# left over steps $n\n";

    my $base_4 = int(sqrt(sqrt($BASE))) - 2;
    #print STDERR "base_4: $base_4\n";
    my $n4 = $n - 4; 
    while ($step < $n4 && $step < $base_4)
      {
      if ($cx->[0] == 0)
        {
        $zero_elements ++; shift @$cx;
        }
      my $b = $step * ($step + 1); $step += 2; $b *= $step * ($step + 1); $step += 2;
      _mul($c,$cx,[$b]);
      }
    my $base_2 = int(sqrt($BASE)) - 1;
    my $n2 = $n - 2; 
    #print STDERR "base_2: $base_2\n"; 
    while ($step < $n2 && $step < $base_2)
      {
      if ($cx->[0] == 0)
        {
        $zero_elements ++; shift @$cx;
        }
      my $b = $step * ($step + 1); $step += 2;
      _mul($c,$cx,[$b]);
      }
    # do what's left over
    while ($step <= $n)
      {
      _mul($c,$cx,[$step]); $step++;
      if ($cx->[0] == 0)
        {
        $zero_elements ++; shift @$cx;
        }
      }
    }
  # multiply in the zeros again
  unshift @$cx, (0) x $zero_elements;
  $cx;			# return result
  }

#############################################################################

sub _log_int
  {
  # calculate integer log of $x to base $base
  # ref to array, ref to array - return ref to array
  my ($c,$x,$base) = @_;

  # X == 0 => NaN
  return if (scalar @$x == 1 && $x->[0] == 0);
  # BASE 0 or 1 => NaN
  return if (scalar @$base == 1 && $base->[0] < 2);
  my $cmp = _acmp($c,$x,$base); # X == BASE => 1
  if ($cmp == 0)
    {
    splice (@$x,1); $x->[0] = 1;
    return ($x,1)
    }
  # X < BASE
  if ($cmp < 0)
    {
    splice (@$x,1); $x->[0] = 0;
    return ($x,undef);
    }

  my $x_org = _copy($c,$x);		# preserve x
  splice(@$x,1); $x->[0] = 1;		# keep ref to $x

  # Compute a guess for the result based on:
  # $guess = int ( length_in_base_10(X) / ( log(base) / log(10) ) )
  my $len = _len($c,$x_org);
  my $log = log($base->[-1]) / log(10);

  # for each additional element in $base, we add $BASE_LEN to the result,
  # based on the observation that log($BASE,10) is BASE_LEN and
  # log(x*y) == log(x) + log(y):
  $log += ((scalar @$base)-1) * $BASE_LEN;

  # calculate now a guess based on the values obtained above:
  my $res = int($len / $log);

  $x->[0] = $res;
  my $trial = _pow ($c, _copy($c, $base), $x);
  my $a = _acmp($c,$trial,$x_org);

#  print STDERR "# trial ", _str($c,$x)," was: $a (0 = exact, -1 too small, +1 too big)\n";

  # found an exact result?
  return ($x,1) if $a == 0;

  if ($a > 0)
    {
    # or too big
    _div($c,$trial,$base); _dec($c, $x);
    while (($a = _acmp($c,$trial,$x_org)) > 0)
      {
#      print STDERR "# big _log_int at ", _str($c,$x), "\n"; 
      _div($c,$trial,$base); _dec($c, $x);
      }
    # result is now exact (a == 0), or too small (a < 0)
    return ($x, $a == 0 ? 1 : 0);
    }

  # else: result was to small
  _mul($c,$trial,$base);

  # did we now get the right result?
  $a = _acmp($c,$trial,$x_org);

  if ($a == 0)				# yes, exactly
    {
    _inc($c, $x);
    return ($x,1); 
    }
  return ($x,0) if $a > 0;  

  # Result still too small (we should come here only if the estimate above
  # was very off base):
 
  # Now let the normal trial run obtain the real result
  # Simple loop that increments $x by 2 in each step, possible overstepping
  # the real result

  my $base_mul = _mul($c, _copy($c,$base), $base);	# $base * $base

  while (($a = _acmp($c,$trial,$x_org)) < 0)
    {
#    print STDERR "# small _log_int at ", _str($c,$x), "\n"; 
    _mul($c,$trial,$base_mul); _add($c, $x, [2]);
    }

  my $exact = 1;
  if ($a > 0)
    {
    # overstepped the result
    _dec($c, $x);
    _div($c,$trial,$base);
    $a = _acmp($c,$trial,$x_org);
    if ($a > 0)
      {
      _dec($c, $x);
      }
    $exact = 0 if $a != 0;		# a = -1 => not exact result, a = 0 => exact
    }
  
  ($x,$exact);				# return result
  }

# for debugging:
  use constant DEBUG => 0;
  my $steps = 0;
  sub steps { $steps };

sub _sqrt
  {
  # square-root of $x in place
  # Compute a guess of the result (by rule of thumb), then improve it via
  # Newton's method.
  my ($c,$x) = @_;

  if (scalar @$x == 1)
    {
    # fits into one Perl scalar, so result can be computed directly
    $x->[0] = int(sqrt($x->[0]));
    return $x;
    } 
  my $y = _copy($c,$x);
  # hopefully _len/2 is < $BASE, the -1 is to always undershot the guess
  # since our guess will "grow"
  my $l = int((_len($c,$x)-1) / 2);	

  my $lastelem = $x->[-1];					# for guess
  my $elems = scalar @$x - 1;
  # not enough digits, but could have more?
  if ((length($lastelem) <= 3) && ($elems > 1))
    {
    # right-align with zero pad
    my $len = length($lastelem) & 1;
    print "$lastelem => " if DEBUG;
    $lastelem .= substr($x->[-2] . '0' x $BASE_LEN,0,$BASE_LEN);
    # former odd => make odd again, or former even to even again
    $lastelem = $lastelem / 10 if (length($lastelem) & 1) != $len;
    print "$lastelem\n" if DEBUG;
    }

  # construct $x (instead of _lsft($c,$x,$l,10)
  my $r = $l % $BASE_LEN;	# 10000 00000 00000 00000 ($BASE_LEN=5)
  $l = int($l / $BASE_LEN);
  print "l =  $l " if DEBUG;

  splice @$x,$l;		# keep ref($x), but modify it

  # we make the first part of the guess not '1000...0' but int(sqrt($lastelem))
  # that gives us:
  # 14400 00000 => sqrt(14400) => guess first digits to be 120
  # 144000 000000 => sqrt(144000) => guess 379

  print "$lastelem (elems $elems) => " if DEBUG;
  $lastelem = $lastelem / 10 if ($elems & 1 == 1);		# odd or even?
  my $g = sqrt($lastelem); $g =~ s/\.//;			# 2.345 => 2345
  $r -= 1 if $elems & 1 == 0;					# 70 => 7

  # padd with zeros if result is too short
  $x->[$l--] = int(substr($g . '0' x $r,0,$r+1));
  print "now ",$x->[-1] if DEBUG;
  print " would have been ", int('1' . '0' x $r),"\n" if DEBUG;

  # If @$x > 1, we could compute the second elem of the guess, too, to create
  # an even better guess. Not implemented yet. Does it improve performance?
  $x->[$l--] = 0 while ($l >= 0);	# all other digits of guess are zero

  print "start x= ",_str($c,$x),"\n" if DEBUG;
  my $two = _two();
  my $last = _zero();
  my $lastlast = _zero();
  $steps = 0 if DEBUG;
  while (_acmp($c,$last,$x) != 0 && _acmp($c,$lastlast,$x) != 0)
    {
    $steps++ if DEBUG;
    $lastlast = _copy($c,$last);
    $last = _copy($c,$x);
    _add($c,$x, _div($c,_copy($c,$y),$x));
    _div($c,$x, $two );
    print " x= ",_str($c,$x),"\n" if DEBUG;
    }
  print "\nsteps in sqrt: $steps, " if DEBUG;
  _dec($c,$x) if _acmp($c,$y,_mul($c,_copy($c,$x),$x)) < 0;	# overshot? 
  print " final ",$x->[-1],"\n" if DEBUG;
  $x;
  }

sub _root
  {
  # take n'th root of $x in place (n >= 3)
  my ($c,$x,$n) = @_;
 
  if (scalar @$x == 1)
    {
    if (scalar @$n > 1)
      {
      # result will always be smaller than 2 so trunc to 1 at once
      $x->[0] = 1;
      }
    else
      {
      # fits into one Perl scalar, so result can be computed directly
      # cannot use int() here, because it rounds wrongly (try 
      # (81 ** 3) ** (1/3) to see what I mean)
      #$x->[0] = int( $x->[0] ** (1 / $n->[0]) );
      # round to 8 digits, then truncate result to integer
      $x->[0] = int ( sprintf ("%.8f", $x->[0] ** (1 / $n->[0]) ) );
      }
    return $x;
    } 

  # we know now that X is more than one element long

  # if $n is a power of two, we can repeatedly take sqrt($X) and find the
  # proper result, because sqrt(sqrt($x)) == root($x,4)
  my $b = _as_bin($c,$n);
  if ($b =~ /0b1(0+)$/)
    {
    my $count = CORE::length($1);	# 0b100 => len('00') => 2
    my $cnt = $count;			# counter for loop
    unshift (@$x, 0);			# add one element, together with one
					# more below in the loop this makes 2
    while ($cnt-- > 0)
      {
      # 'inflate' $X by adding one element, basically computing
      # $x * $BASE * $BASE. This gives us more $BASE_LEN digits for result
      # since len(sqrt($X)) approx == len($x) / 2.
      unshift (@$x, 0);
      # calculate sqrt($x), $x is now one element to big, again. In the next
      # round we make that two, again.
      _sqrt($c,$x);
      }
    # $x is now one element to big, so truncate result by removing it
    splice (@$x,0,1);
    } 
  else
    {
    # trial computation by starting with 2,4,8,16 etc until we overstep
    my $step;
    my $trial = _two();

    # while still to do more than X steps
    do
      {
      $step = _two();
      while (_acmp($c, _pow($c, _copy($c, $trial), $n), $x) < 0)
        {
        _mul ($c, $step, [2]);
        _add ($c, $trial, $step);
        }

      # hit exactly?
      if (_acmp($c, _pow($c, _copy($c, $trial), $n), $x) == 0)
        {
        @$x = @$trial;			# make copy while preserving ref to $x
        return $x;
        }
      # overstepped, so go back on step
      _sub($c, $trial, $step);
      } while (scalar @$step > 1 || $step->[0] > 128);

    # reset step to 2
    $step = _two();
    # add two, because $trial cannot be exactly the result (otherwise we would
    # already have found it)
    _add($c, $trial, $step);
 
    # and now add more and more (2,4,6,8,10 etc)
    while (_acmp($c, _pow($c, _copy($c, $trial), $n), $x) < 0)
      {
      _add ($c, $trial, $step);
      }

    # hit not exactly? (overstepped)
    if (_acmp($c, _pow($c, _copy($c, $trial), $n), $x) > 0)
      {
      _dec($c,$trial);
      }

    # hit not exactly? (overstepped)
    # 80 too small, 81 slightly too big, 82 too big
    if (_acmp($c, _pow($c, _copy($c, $trial), $n), $x) > 0)
      {
      _dec ($c, $trial); 
      }

    @$x = @$trial;			# make copy while preserving ref to $x
    return $x;
    }
  $x; 
  }

##############################################################################
# binary stuff

sub _and
  {
  my ($c,$x,$y) = @_;

  # the shortcut makes equal, large numbers _really_ fast, and makes only a
  # very small performance drop for small numbers (e.g. something with less
  # than 32 bit) Since we optimize for large numbers, this is enabled.
  return $x if _acmp($c,$x,$y) == 0;		# shortcut
  
  my $m = _one(); my ($xr,$yr);
  my $mask = $AND_MASK;

  my $x1 = $x;
  my $y1 = _copy($c,$y);			# make copy
  $x = _zero();
  my ($b,$xrr,$yrr);
  use integer;
  while (!_is_zero($c,$x1) && !_is_zero($c,$y1))
    {
    ($x1, $xr) = _div($c,$x1,$mask);
    ($y1, $yr) = _div($c,$y1,$mask);

    # make ints() from $xr, $yr
    # this is when the AND_BITS are greater than $BASE and is slower for
    # small (<256 bits) numbers, but faster for large numbers. Disabled
    # due to KISS principle

#    $b = 1; $xrr = 0; foreach (@$xr) { $xrr += $_ * $b; $b *= $BASE; }
#    $b = 1; $yrr = 0; foreach (@$yr) { $yrr += $_ * $b; $b *= $BASE; }
#    _add($c,$x, _mul($c, _new( $c, ($xrr & $yrr) ), $m) );
    
    # 0+ due to '&' doesn't work in strings
    _add($c,$x, _mul($c, [ 0+$xr->[0] & 0+$yr->[0] ], $m) );
    _mul($c,$m,$mask);
    }
  $x;
  }

sub _xor
  {
  my ($c,$x,$y) = @_;

  return _zero() if _acmp($c,$x,$y) == 0;	# shortcut (see -and)

  my $m = _one(); my ($xr,$yr);
  my $mask = $XOR_MASK;

  my $x1 = $x;
  my $y1 = _copy($c,$y);			# make copy
  $x = _zero();
  my ($b,$xrr,$yrr);
  use integer;
  while (!_is_zero($c,$x1) && !_is_zero($c,$y1))
    {
    ($x1, $xr) = _div($c,$x1,$mask);
    ($y1, $yr) = _div($c,$y1,$mask);
    # make ints() from $xr, $yr (see _and())
    #$b = 1; $xrr = 0; foreach (@$xr) { $xrr += $_ * $b; $b *= $BASE; }
    #$b = 1; $yrr = 0; foreach (@$yr) { $yrr += $_ * $b; $b *= $BASE; }
    #_add($c,$x, _mul($c, _new( $c, ($xrr ^ $yrr) ), $m) );

    # 0+ due to '^' doesn't work in strings
    _add($c,$x, _mul($c, [ 0+$xr->[0] ^ 0+$yr->[0] ], $m) );
    _mul($c,$m,$mask);
    }
  # the loop stops when the shorter of the two numbers is exhausted
  # the remainder of the longer one will survive bit-by-bit, so we simple
  # multiply-add it in
  _add($c,$x, _mul($c, $x1, $m) ) if !_is_zero($c,$x1);
  _add($c,$x, _mul($c, $y1, $m) ) if !_is_zero($c,$y1);
  
  $x;
  }

sub _or
  {
  my ($c,$x,$y) = @_;

  return $x if _acmp($c,$x,$y) == 0;		# shortcut (see _and)

  my $m = _one(); my ($xr,$yr);
  my $mask = $OR_MASK;

  my $x1 = $x;
  my $y1 = _copy($c,$y);			# make copy
  $x = _zero();
  my ($b,$xrr,$yrr);
  use integer;
  while (!_is_zero($c,$x1) && !_is_zero($c,$y1))
    {
    ($x1, $xr) = _div($c,$x1,$mask);
    ($y1, $yr) = _div($c,$y1,$mask);
    # make ints() from $xr, $yr (see _and())
#    $b = 1; $xrr = 0; foreach (@$xr) { $xrr += $_ * $b; $b *= $BASE; }
#    $b = 1; $yrr = 0; foreach (@$yr) { $yrr += $_ * $b; $b *= $BASE; }
#    _add($c,$x, _mul($c, _new( $c, ($xrr | $yrr) ), $m) );
    
    # 0+ due to '|' doesn't work in strings
    _add($c,$x, _mul($c, [ 0+$xr->[0] | 0+$yr->[0] ], $m) );
    _mul($c,$m,$mask);
    }
  # the loop stops when the shorter of the two numbers is exhausted
  # the remainder of the longer one will survive bit-by-bit, so we simple
  # multiply-add it in
  _add($c,$x, _mul($c, $x1, $m) ) if !_is_zero($c,$x1);
  _add($c,$x, _mul($c, $y1, $m) ) if !_is_zero($c,$y1);
  
  $x;
  }

sub _as_hex
  {
  # convert a decimal number to hex (ref to array, return ref to string)
  my ($c,$x) = @_;

  # fits into one element (handle also 0x0 case)
  return sprintf("0x%x",$x->[0]) if @$x == 1;

  my $x1 = _copy($c,$x);

  my $es = '';
  my ($xr, $h, $x10000);
  if ($] >= 5.006)
    {
    $x10000 = [ 0x10000 ]; $h = 'h4';
    }
  else
    {
    $x10000 = [ 0x1000 ]; $h = 'h3';
    }
  while (@$x1 != 1 || $x1->[0] != 0)		# _is_zero()
    {
    ($x1, $xr) = _div($c,$x1,$x10000);
    $es .= unpack($h,pack('V',$xr->[0]));
    }
  $es = reverse $es;
  $es =~ s/^[0]+//;   # strip leading zeros
  '0x' . $es;					# return result prepended with 0x
  }

sub _as_bin
  {
  # convert a decimal number to bin (ref to array, return ref to string)
  my ($c,$x) = @_;

  # fits into one element (and Perl recent enough), handle also 0b0 case
  # handle zero case for older Perls
  if ($] <= 5.005 && @$x == 1 && $x->[0] == 0)
    {
    my $t = '0b0'; return $t;
    }
  if (@$x == 1 && $] >= 5.006)
    {
    my $t = sprintf("0b%b",$x->[0]);
    return $t;
    }
  my $x1 = _copy($c,$x);

  my $es = '';
  my ($xr, $b, $x10000);
  if ($] >= 5.006)
    {
    $x10000 = [ 0x10000 ]; $b = 'b16';
    }
  else
    {
    $x10000 = [ 0x1000 ]; $b = 'b12';
    }
  while (!(@$x1 == 1 && $x1->[0] == 0))		# _is_zero()
    {
    ($x1, $xr) = _div($c,$x1,$x10000);
    $es .= unpack($b,pack('v',$xr->[0]));
    }
  $es = reverse $es;
  $es =~ s/^[0]+//;   # strip leading zeros
  '0b' . $es;					# return result prepended with 0b
  }

sub _as_oct
  {
  # convert a decimal number to octal (ref to array, return ref to string)
  my ($c,$x) = @_;

  # fits into one element (handle also 0 case)
  return sprintf("0%o",$x->[0]) if @$x == 1;

  my $x1 = _copy($c,$x);

  my $es = '';
  my $xr;
  my $x1000 = [ 0100000 ];
  while (@$x1 != 1 || $x1->[0] != 0)		# _is_zero()
    {
    ($x1, $xr) = _div($c,$x1,$x1000);
    $es .= reverse sprintf("%05o", $xr->[0]);
    }
  $es = reverse $es;
  $es =~ s/^0+//;   # strip leading zeros
  '0' . $es;					# return result prepended with 0
  }

sub _from_oct
  {
  # convert a octal number to decimal (string, return ref to array)
  my ($c,$os) = @_;

  # for older Perls, play safe
  my $m = [ 0100000 ];
  my $d = 5;					# 5 digits at a time

  my $mul = _one();
  my $x = _zero();

  my $len = int( (length($os)-1)/$d );		# $d digit parts, w/o the '0'
  my $val; my $i = -$d;
  while ($len >= 0)
    {
    $val = substr($os,$i,$d);			# get oct digits
    $val = CORE::oct($val);
    $i -= $d; $len --;
    my $adder = [ $val ];
    _add ($c, $x, _mul ($c, $adder, $mul ) ) if $val != 0;
    _mul ($c, $mul, $m ) if $len >= 0; 		# skip last mul
    }
  $x;
  }

sub _from_hex
  {
  # convert a hex number to decimal (string, return ref to array)
  my ($c,$hs) = @_;

  my $m = _new($c, 0x10000000);			# 28 bit at a time (<32 bit!)
  my $d = 7;					# 7 digits at a time
  if ($] <= 5.006)
    {
    # for older Perls, play safe
    $m = [ 0x10000 ];				# 16 bit at a time (<32 bit!)
    $d = 4;					# 4 digits at a time
    }

  my $mul = _one();
  my $x = _zero();

  my $len = int( (length($hs)-2)/$d );		# $d digit parts, w/o the '0x'
  my $val; my $i = -$d;
  while ($len >= 0)
    {
    $val = substr($hs,$i,$d);			# get hex digits
    $val =~ s/^0x// if $len == 0;		# for last part only because
    $val = CORE::hex($val);			# hex does not like wrong chars
    $i -= $d; $len --;
    my $adder = [ $val ];
    # if the resulting number was to big to fit into one element, create a
    # two-element version (bug found by Mark Lakata - Thanx!)
    if (CORE::length($val) > $BASE_LEN)
      {
      $adder = _new($c,$val);
      }
    _add ($c, $x, _mul ($c, $adder, $mul ) ) if $val != 0;
    _mul ($c, $mul, $m ) if $len >= 0; 		# skip last mul
    }
  $x;
  }

sub _from_bin
  {
  # convert a hex number to decimal (string, return ref to array)
  my ($c,$bs) = @_;

  # instead of converting X (8) bit at a time, it is faster to "convert" the
  # number to hex, and then call _from_hex.

  my $hs = $bs;
  $hs =~ s/^[+-]?0b//;					# remove sign and 0b
  my $l = length($hs);					# bits
  $hs = '0' x (8-($l % 8)) . $hs if ($l % 8) != 0;	# padd left side w/ 0
  my $h = '0x' . unpack('H*', pack ('B*', $hs));	# repack as hex
  
  $c->_from_hex($h);
  }

##############################################################################
# special modulus functions

sub _modinv
  {
  # modular multiplicative inverse
  my ($c,$x,$y) = @_;

  # modulo zero
  if (_is_zero($c, $y)) {
      return (undef, undef);
  }

  # modulo one
  if (_is_one($c, $y)) {
      return (_zero($c), '+');
  }

  my $u = _zero($c);
  my $v = _one($c);
  my $a = _copy($c,$y);
  my $b = _copy($c,$x);

  # Euclid's Algorithm for bgcd(), only that we calc bgcd() ($a) and the result
  # ($u) at the same time. See comments in BigInt for why this works.
  my $q;
  my $sign = 1;
  {
      ($a, $q, $b) = ($b, _div($c, $a, $b));        # step 1
      last if _is_zero($c, $b);

      my $t = _add($c,                              # step 2:
                   _mul($c, _copy($c, $v), $q) ,    #  t =   v * q
                   $u );                            #      + u
      $u = $v;                                      #  u = v
      $v = $t;                                      #  v = t
      $sign = -$sign;
      redo;
  }

  # if the gcd is not 1, then return NaN
  return (undef, undef) unless _is_one($c, $a);

  ($v, $sign == 1 ? '+' : '-');
  }

sub _modpow
  {
  # modulus of power ($x ** $y) % $z
  my ($c,$num,$exp,$mod) = @_;

  # a^b (mod 1) = 0 for all a and b
  if (_is_one($c,$mod))
    {
        @$num = 0;
        return $num;
    }

  # 0^a (mod m) = 0 if m != 0, a != 0
  # 0^0 (mod m) = 1 if m != 0
  if (_is_zero($c, $num)) {
      if (_is_zero($c, $exp)) {
          @$num = 1;
      } else {
          @$num = 0;
      }
      return $num;
  }

#  $num = _mod($c,$num,$mod);	# this does not make it faster

  my $acc = _copy($c,$num); my $t = _one();

  my $expbin = _as_bin($c,$exp); $expbin =~ s/^0b//;
  my $len = length($expbin);
  while (--$len >= 0)
    {
    if ( substr($expbin,$len,1) eq '1')			# is_odd
      {
      _mul($c,$t,$acc);
      $t = _mod($c,$t,$mod);
      }
    _mul($c,$acc,$acc);
    $acc = _mod($c,$acc,$mod);
    }
  @$num = @$t;
  $num;
  }

sub _gcd {
    # Greatest common divisor.

    my ($c, $x, $y) = @_;

    # gcd(0,0) = 0
    # gcd(0,a) = a, if a != 0

    if (@$x == 1 && $x->[0] == 0) {
        if (@$y == 1 && $y->[0] == 0) {
            @$x = 0;
        } else {
            @$x = @$y;
        }
        return $x;
    }

    # Until $y is zero ...

    until (@$y == 1 && $y->[0] == 0) {

        # Compute remainder.

        _mod($c, $x, $y);

        # Swap $x and $y.

        my $tmp = [ @$x ];
        @$x = @$y;
        $y = $tmp;      # no deref here; that would modify input $y
    }

    return $x;
}

##############################################################################
##############################################################################

1;
__END__

=pod

=head1 NAME

Math::BigInt::Calc - Pure Perl module to support Math::BigInt

=head1 SYNOPSIS

This library provides support for big integer calculations. It is not
intended to be used by other modules. Other modules which support the same
API (see below) can also be used to support Math::BigInt, like
Math::BigInt::GMP and Math::BigInt::Pari.

=head1 DESCRIPTION

In this library, the numbers are represented in base B = 10**N, where N is
the largest possible value that does not cause overflow in the intermediate
computations. The base B elements are stored in an array, with the least
significant element stored in array element zero. There are no leading zero
elements, except a single zero element when the number is zero.

For instance, if B = 10000, the number 1234567890 is represented internally
as [3456, 7890, 12].

=head1 THE Math::BigInt API

In order to allow for multiple big integer libraries, Math::BigInt was
rewritten to use a plug-in library for core math routines. Any module which
conforms to the API can be used by Math::BigInt by using this in your program:

	use Math::BigInt lib => 'libname';

'libname' is either the long name, like 'Math::BigInt::Pari', or only the short
version, like 'Pari'.

=head2 General Notes

A library only needs to deal with unsigned big integers. Testing of input
parameter validity is done by the caller, so there is no need to worry about
underflow (e.g., in C<_sub()> and C<_dec()>) nor about division by zero (e.g.,
in C<_div()>) or similar cases.

For some methods, the first parameter can be modified. That includes the
possibility that you return a reference to a completely different object
instead. Although keeping the reference and just changing its contents is
preferred over creating and returning a different reference.

Return values are always objects, strings, Perl scalars, or true/false for
comparison routines.

=head2 API version 1

The following methods must be defined in order to support the use by
Math::BigInt v1.70 or later.

=head3 API version

=over 4

=item I<api_version()>

Return API version as a Perl scalar, 1 for Math::BigInt v1.70, 2 for
Math::BigInt v1.83.

=back

=head3 Constructors

=over 4

=item I<_new(STR)>

Convert a string representing an unsigned decimal number to an object
representing the same number. The input is normalize, i.e., it matches
C<^(0|[1-9]\d*)$>.

=item I<_zero()>

Return an object representing the number zero.

=item I<_one()>

Return an object representing the number one.

=item I<_two()>

Return an object representing the number two.

=item I<_ten()>

Return an object representing the number ten.

=item I<_from_bin(STR)>

Return an object given a string representing a binary number. The input has a
'0b' prefix and matches the regular expression C<^0[bB](0|1[01]*)$>.

=item I<_from_oct(STR)>

Return an object given a string representing an octal number. The input has a
'0' prefix and matches the regular expression C<^0[1-7]*$>.

=item I<_from_hex(STR)>

Return an object given a string representing a hexadecimal number. The input
has a '0x' prefix and matches the regular expression
C<^0x(0|[1-9a-fA-F][\da-fA-F]*)$>.

=back

=head3 Mathematical functions

Each of these methods may modify the first input argument, except I<_bgcd()>,
which shall not modify any input argument, and I<_sub()> which may modify the
second input argument.

=over 4

=item I<_add(OBJ1, OBJ2)>

Returns the result of adding OBJ2 to OBJ1.

=item I<_mul(OBJ1, OBJ2)>

Returns the result of multiplying OBJ2 and OBJ1.

=item I<_div(OBJ1, OBJ2)>

Returns the result of dividing OBJ1 by OBJ2 and truncating the result to an
integer.

=item I<_sub(OBJ1, OBJ2, FLAG)>

=item I<_sub(OBJ1, OBJ2)>

Returns the result of subtracting OBJ2 by OBJ1. If C<flag> is false or omitted,
OBJ1 might be modified. If C<flag> is true, OBJ2 might be modified.

=item I<_dec(OBJ)>

Decrement OBJ by one.

=item I<_inc(OBJ)>

Increment OBJ by one.

=item I<_mod(OBJ1, OBJ2)>

Return OBJ1 modulo OBJ2, i.e., the remainder after dividing OBJ1 by OBJ2.

=item I<_sqrt(OBJ)>

Return the square root of the object, truncated to integer.

=item I<_root(OBJ, N)>

Return Nth root of the object, truncated to int. N is E<gt>= 3.

=item I<_fac(OBJ)>

Return factorial of object (1*2*3*4*...).

=item I<_pow(OBJ1, OBJ2)>

Return OBJ1 to the power of OBJ2. By convention, 0**0 = 1.

=item I<_modinv(OBJ1, OBJ2)>

Return modular multiplicative inverse, i.e., return OBJ3 so that

    (OBJ3 * OBJ1) % OBJ2 = 1 % OBJ2

The result is returned as two arguments. If the modular multiplicative
inverse does not exist, both arguments are undefined. Otherwise, the
arguments are a number (object) and its sign ("+" or "-").

The output value, with its sign, must either be a positive value in the
range 1,2,...,OBJ2-1 or the same value subtracted OBJ2. For instance, if the
input arguments are objects representing the numbers 7 and 5, the method
must either return an object representing the number 3 and a "+" sign, since
(3*7) % 5 = 1 % 5, or an object representing the number 2 and "-" sign,
since (-2*7) % 5 = 1 % 5.

=item I<_modpow(OBJ1, OBJ2, OBJ3)>

Return modular exponentiation, (OBJ1 ** OBJ2) % OBJ3.

=item I<_rsft(OBJ, N, B)>

Shift object N digits right in base B and return the resulting object. This is
equivalent to performing integer division by B**N and discarding the remainder,
except that it might be much faster, depending on how the number is represented
internally.

For instance, if the object $obj represents the hexadecimal number 0xabcde,
then C<_rsft($obj, 2, 16)> returns an object representing the number 0xabc. The
"remainer", 0xde, is discarded and not returned.

=item I<_lsft(OBJ, N, B)>

Shift the object N digits left in base B. This is equivalent to multiplying by
B**N, except that it might be much faster, depending on how the number is
represented internally.

=item I<_log_int(OBJ, B)>

Return integer log of OBJ to base BASE. This method has two output arguments,
the OBJECT and a STATUS. The STATUS is Perl scalar; it is 1 if OBJ is the exact
result, 0 if the result was truncted to give OBJ, and undef if it is unknown
whether OBJ is the exact result.

=item I<_gcd(OBJ1, OBJ2)>

Return the greatest common divisor of OBJ1 and OBJ2.

=back

=head3 Bitwise operators

Each of these methods may modify the first input argument.

=over 4

=item I<_and(OBJ1, OBJ2)>

Return bitwise and. If necessary, the smallest number is padded with leading
zeros.

=item I<_or(OBJ1, OBJ2)>

Return bitwise or. If necessary, the smallest number is padded with leading
zeros.

=item I<_xor(OBJ1, OBJ2)>

Return bitwise exclusive or. If necessary, the smallest number is padded
with leading zeros.

=back

=head3 Boolean operators

=over 4

=item I<_is_zero(OBJ)>

Returns a true value if OBJ is zero, and false value otherwise.

=item I<_is_one(OBJ)>

Returns a true value if OBJ is one, and false value otherwise.

=item I<_is_two(OBJ)>

Returns a true value if OBJ is two, and false value otherwise.

=item I<_is_ten(OBJ)>

Returns a true value if OBJ is ten, and false value otherwise.

=item I<_is_even(OBJ)>

Return a true value if OBJ is an even integer, and a false value otherwise.

=item I<_is_odd(OBJ)>

Return a true value if OBJ is an even integer, and a false value otherwise.

=item I<_acmp(OBJ1, OBJ2)>

Compare OBJ1 and OBJ2 and return -1, 0, or 1, if OBJ1 is less than, equal
to, or larger than OBJ2, respectively.

=back

=head3 String conversion

=over 4

=item I<_str(OBJ)>

Return a string representing the object. The returned string should have no
leading zeros, i.e., it should match C<^(0|[1-9]\d*)$>.

=item I<_as_bin(OBJ)>

Return the binary string representation of the number. The string must have a
'0b' prefix.

=item I<_as_oct(OBJ)>

Return the octal string representation of the number. The string must have
a '0x' prefix.

Note: This method was required from Math::BigInt version 1.78, but the required
API version number was not incremented, so there are older libraries that
support API version 1, but do not support C<_as_oct()>.

=item I<_as_hex(OBJ)>

Return the hexadecimal string representation of the number. The string must
have a '0x' prefix.

=back

=head3 Numeric conversion

=over 4

=item I<_num(OBJ)>

Given an object, return a Perl scalar number (int/float) representing this
number.

=back

=head3 Miscellaneous

=over 4

=item I<_copy(OBJ)>

Return a true copy of the object.

=item I<_len(OBJ)>

Returns the number of the decimal digits in the number. The output is a
Perl scalar.

=item I<_zeros(OBJ)>

Return the number of trailing decimal zeros. The output is a Perl scalar.

=item I<_digit(OBJ, N)>

Return the Nth digit as a Perl scalar. N is a Perl scalar, where zero refers to
the rightmost (least significant) digit, and negative values count from the
left (most significant digit). If $obj represents the number 123, then
I<_digit($obj, 0)> is 3 and I<_digit(123, -1)> is 1.

=item I<_check(OBJ)>

Return a true value if the object is OK, and a false value otherwise. This is a
check routine to test the internal state of the object for corruption.

=back

=head2 API version 2

The following methods are required for an API version of 2 or greater.

=head3 Constructors

=over 4

=item I<_1ex(N)>

Return an object representing the number 10**N where N E<gt>= 0 is a Perl
scalar.

=back

=head3 Mathematical functions

=over 4

=item I<_nok(OBJ1, OBJ2)>

Return the binomial coefficient OBJ1 over OBJ1.

=back

=head3 Miscellaneous

=over 4

=item I<_alen(OBJ)>

Return the approximate number of decimal digits of the object. The
output is one Perl scalar. This estimate must be greater than or equal
to what C<_len()> returns.

=back

=head2 API optional methods

The following methods are optional, and can be defined if the underlying lib
has a fast way to do them. If undefined, Math::BigInt will use pure Perl (hence
slow) fallback routines to emulate these:

=head3 Signed bitwise operators.

Each of these methods may modify the first input argument.

=over 4

=item I<_signed_or(OBJ1, OBJ2, SIGN1, SIGN2)>

Return the signed bitwise or.

=item I<_signed_and(OBJ1, OBJ2, SIGN1, SIGN2)>

Return the signed bitwise and.

=item I<_signed_xor(OBJ1, OBJ2, SIGN1, SIGN2)>

Return the signed bitwise exclusive or.

=back

=head1 WRAP YOUR OWN

If you want to port your own favourite c-lib for big numbers to the
Math::BigInt interface, you can take any of the already existing modules as
a rough guideline. You should really wrap up the latest BigInt and BigFloat
testsuites with your module, and replace in them any of the following:

	use Math::BigInt;

by this:

	use Math::BigInt lib => 'yourlib';

This way you ensure that your library really works 100% within Math::BigInt.

=head1 BUGS

Please report any bugs or feature requests to
C<bug-math-bigint at rt.cpan.org>, or through the web interface at
L<https://rt.cpan.org/Ticket/Create.html?Queue=Math-BigInt>
(requires login).
We will be notified, and then you'll automatically be notified of progress on
your bug as I make changes.

=head1 SUPPORT

You can find documentation for this module with the perldoc command.

    perldoc Math::BigInt::Calc

You can also look for information at:

=over 4

=item * RT: CPAN's request tracker

L<https://rt.cpan.org/Public/Dist/Display.html?Name=Math-BigInt>

=item * AnnoCPAN: Annotated CPAN documentation

L<http://annocpan.org/dist/Math-BigInt>

=item * CPAN Ratings

L<http://cpanratings.perl.org/dist/Math-BigInt>

=item * Search CPAN

L<http://search.cpan.org/dist/Math-BigInt/>

=item * CPAN Testers Matrix

L<http://matrix.cpantesters.org/?dist=Math-BigInt>

=item * The Bignum mailing list

=over 4

=item * Post to mailing list

C<bignum at lists.scsys.co.uk>

=item * View mailing list

L<http://lists.scsys.co.uk/pipermail/bignum/>

=item * Subscribe/Unsubscribe

L<http://lists.scsys.co.uk/cgi-bin/mailman/listinfo/bignum>

=back

=back

=head1 LICENSE

This program is free software; you may redistribute it and/or modify it under
the same terms as Perl itself. 

=head1 AUTHORS

=over 4

=item *

Original math code by Mark Biggar, rewritten by Tels L<http://bloodgate.com/>
in late 2000.

=item *

Separated from BigInt and shaped API with the help of John Peacock.

=item *

Fixed, speed-up, streamlined and enhanced by Tels 2001 - 2007.

=item *

API documentation corrected and extended by Peter John Acklam,
E<lt>pjacklam@online.noE<gt>

=back

=head1 SEE ALSO

L<Math::BigInt>, L<Math::BigFloat>,
L<Math::BigInt::GMP>, L<Math::BigInt::FastCalc> and L<Math::BigInt::Pari>.

=cut