This file is indexed.

/usr/share/doc/libghc-reducers-doc/html/reducers.txt is in libghc-reducers-doc 3.12.1-1build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
-- Hoogle documentation, generated by Haddock
-- See Hoogle, http://www.haskell.org/hoogle/


-- | Semigroups, specialized containers and a general map/reduce framework
--   
--   Semigroups, specialized containers and a general map/reduce framework
@package reducers
@version 3.12.1

module Data.Semigroup.Instances
instance Data.FingerTree.Measured v a => Data.Semigroup.Semigroup (Data.FingerTree.FingerTree v a)


-- | A <tt>c</tt>-<a>Reducer</a> is a <a>Semigroup</a> with a canonical
--   mapping from <tt>c</tt> to the Semigroup.
module Data.Semigroup.Reducer

-- | This type may be best read infix. A <tt>c <a>Reducer</a> m</tt> is a
--   <a>Semigroup</a> <tt>m</tt> that maps values of type <tt>c</tt>
--   through <tt>unit</tt> to values of type <tt>m</tt>. A
--   <tt>c</tt>-<a>Reducer</a> may also supply operations which tack-on
--   another <tt>c</tt> to an existing <a>Monoid</a> <tt>m</tt> on the left
--   or right. These specialized reductions may be more efficient in some
--   scenarios and are used when appropriate by a <tt>Generator</tt>. The
--   names <a>cons</a> and <a>snoc</a> work by analogy to the synonymous
--   operations in the list monoid.
--   
--   This class deliberately avoids functional-dependencies, so that () can
--   be a <tt>c</tt>-Reducer for all <tt>c</tt>, and so many common
--   reducers can work over multiple types, for instance, First and Last
--   may reduce both <tt>a</tt> and <a>Maybe</a> <tt>a</tt>. Since a
--   <tt>Generator</tt> has a fixed element type, the input to the reducer
--   is generally known and extracting from the monoid usually is
--   sufficient to fix the result type. Combinators are available for most
--   scenarios where this is not the case, and the few remaining cases can
--   be handled by using an explicit type annotation.
--   
--   Minimal definition: <a>unit</a>
class Semigroup m => Reducer c m where snoc m = (<>) m . unit cons = (<>) . unit

-- | Convert a value into a <a>Semigroup</a>
unit :: Reducer c m => c -> m

-- | Append a value to a <a>Semigroup</a> for use in left-to-right
--   reduction
snoc :: Reducer c m => m -> c -> m

-- | Prepend a value onto a <a>Semigroup</a> for use during right-to-left
--   reduction
cons :: Reducer c m => c -> m -> m

-- | Apply a <a>Reducer</a> to a <a>Foldable</a> container, after mapping
--   the contents into a suitable form for reduction.
foldMapReduce :: (Foldable f, Monoid m, Reducer e m) => (a -> e) -> f a -> m
foldMapReduce1 :: (Foldable1 f, Reducer e m) => (a -> e) -> f a -> m

-- | Apply a <a>Reducer</a> to a <a>Foldable</a> mapping each element
--   through <a>unit</a>
foldReduce :: (Foldable f, Monoid m, Reducer e m) => f e -> m

-- | Apply a <a>Reducer</a> to a <a>Foldable1</a> mapping each element
--   through <a>unit</a>
foldReduce1 :: (Foldable1 f, Reducer e m) => f e -> m
pureUnit :: (Applicative f, Reducer c n) => c -> f n
returnUnit :: (Monad m, Reducer c n) => c -> m n
newtype Count
Count :: Int -> Count
[getCount] :: Count -> Int
instance Data.Data.Data Data.Semigroup.Reducer.Count
instance GHC.Read.Read Data.Semigroup.Reducer.Count
instance GHC.Show.Show Data.Semigroup.Reducer.Count
instance GHC.Classes.Ord Data.Semigroup.Reducer.Count
instance GHC.Classes.Eq Data.Semigroup.Reducer.Count
instance Data.Hashable.Class.Hashable Data.Semigroup.Reducer.Count
instance Data.Semigroup.Semigroup Data.Semigroup.Reducer.Count
instance GHC.Base.Monoid Data.Semigroup.Reducer.Count
instance Data.Semigroup.Reducer.Reducer a Data.Semigroup.Reducer.Count
instance (Data.Semigroup.Reducer.Reducer c m, Data.Semigroup.Reducer.Reducer c n) => Data.Semigroup.Reducer.Reducer c (m, n)
instance (Data.Semigroup.Reducer.Reducer c m, Data.Semigroup.Reducer.Reducer c n, Data.Semigroup.Reducer.Reducer c o) => Data.Semigroup.Reducer.Reducer c (m, n, o)
instance (Data.Semigroup.Reducer.Reducer c m, Data.Semigroup.Reducer.Reducer c n, Data.Semigroup.Reducer.Reducer c o, Data.Semigroup.Reducer.Reducer c p) => Data.Semigroup.Reducer.Reducer c (m, n, o, p)
instance Data.Semigroup.Reducer.Reducer c [c]
instance Data.Semigroup.Reducer.Reducer c ()
instance Data.Semigroup.Reducer.Reducer GHC.Types.Bool Data.Monoid.Any
instance Data.Semigroup.Reducer.Reducer GHC.Types.Bool Data.Monoid.All
instance Data.Semigroup.Reducer.Reducer (a -> a) (Data.Monoid.Endo a)
instance Data.Semigroup.Semigroup a => Data.Semigroup.Reducer.Reducer a (Data.Monoid.Dual a)
instance GHC.Num.Num a => Data.Semigroup.Reducer.Reducer a (Data.Monoid.Sum a)
instance GHC.Num.Num a => Data.Semigroup.Reducer.Reducer a (Data.Monoid.Product a)
instance GHC.Classes.Ord a => Data.Semigroup.Reducer.Reducer a (Data.Semigroup.Min a)
instance GHC.Classes.Ord a => Data.Semigroup.Reducer.Reducer a (Data.Semigroup.Max a)
instance Data.Semigroup.Reducer.Reducer (GHC.Base.Maybe a) (Data.Monoid.First a)
instance Data.Semigroup.Reducer.Reducer a (Data.Semigroup.First a)
instance Data.Semigroup.Reducer.Reducer (GHC.Base.Maybe a) (Data.Monoid.Last a)
instance Data.Semigroup.Reducer.Reducer a (Data.Semigroup.Last a)
instance Data.FingerTree.Measured v a => Data.Semigroup.Reducer.Reducer a (Data.FingerTree.FingerTree v a)
instance Data.Semigroup.Reducer.Reducer a (Data.Sequence.Seq a)
instance Data.Semigroup.Reducer.Reducer GHC.Types.Int Data.IntSet.Base.IntSet
instance GHC.Classes.Ord a => Data.Semigroup.Reducer.Reducer a (Data.Set.Base.Set a)
instance Data.Semigroup.Reducer.Reducer (GHC.Types.Int, v) (Data.IntMap.Base.IntMap v)
instance GHC.Classes.Ord k => Data.Semigroup.Reducer.Reducer (k, v) (Data.Map.Base.Map k v)
instance GHC.Base.Monoid m => Data.Semigroup.Reducer.Reducer m (Data.Semigroup.WrappedMonoid m)


-- | Semigroups for working with <a>Applicative</a> <a>Functor</a>s.
module Data.Semigroup.Applicative

-- | A <a>Traversal</a> uses an glues together <a>Applicative</a> actions
--   with (*&gt;) in the manner of <tt>traverse_</tt> from
--   <a>Data.Foldable</a>. Any values returned by reduced actions are
--   discarded.
newtype Traversal f
Traversal :: f () -> Traversal f
[getTraversal] :: Traversal f -> f ()
newtype Ap f m
Ap :: f m -> Ap f m
[getAp] :: Ap f m -> f m
instance GHC.Base.Applicative f => GHC.Base.Applicative (Data.Semigroup.Applicative.Ap f)
instance GHC.Base.Functor f => GHC.Base.Functor (Data.Semigroup.Applicative.Ap f)
instance GHC.Base.Applicative f => Data.Semigroup.Semigroup (Data.Semigroup.Applicative.Traversal f)
instance GHC.Base.Applicative f => GHC.Base.Monoid (Data.Semigroup.Applicative.Traversal f)
instance GHC.Base.Applicative f => Data.Semigroup.Reducer.Reducer (f a) (Data.Semigroup.Applicative.Traversal f)
instance (GHC.Base.Applicative f, Data.Semigroup.Semigroup m) => Data.Semigroup.Semigroup (Data.Semigroup.Applicative.Ap f m)
instance (GHC.Base.Applicative f, GHC.Base.Monoid m) => GHC.Base.Monoid (Data.Semigroup.Applicative.Ap f m)
instance (GHC.Base.Applicative f, Data.Semigroup.Reducer.Reducer c m) => Data.Semigroup.Reducer.Reducer (f c) (Data.Semigroup.Applicative.Ap f m)


-- | A semigroup for working with <a>Alternative</a> <a>Functor</a>s.
module Data.Semigroup.Alternative

-- | A <a>Alternate</a> turns any <a>Alternative</a> instance into a
--   <a>Monoid</a>.
newtype Alternate f a
Alternate :: f a -> Alternate f a
[getAlternate] :: Alternate f a -> f a
instance GHC.Base.Alternative f => GHC.Base.Alternative (Data.Semigroup.Alternative.Alternate f)
instance GHC.Base.Applicative f => GHC.Base.Applicative (Data.Semigroup.Alternative.Alternate f)
instance GHC.Base.Functor f => GHC.Base.Functor (Data.Semigroup.Alternative.Alternate f)
instance GHC.Base.Alternative f => Data.Semigroup.Semigroup (Data.Semigroup.Alternative.Alternate f a)
instance GHC.Base.Alternative f => GHC.Base.Monoid (Data.Semigroup.Alternative.Alternate f a)
instance GHC.Base.Alternative f => Data.Semigroup.Reducer.Reducer (f a) (Data.Semigroup.Alternative.Alternate f a)


-- | Semigroups for working with <a>Monad</a>s.
module Data.Semigroup.Monad

-- | A <a>Action</a> uses an glues together monadic actions with (&gt;&gt;)
--   in the manner of <a>mapM_</a> from <a>Data.Foldable</a>. Any values
--   returned by reduced actions are discarded.
newtype Action f
Action :: f () -> Action f
[getAction] :: Action f -> f ()
newtype Mon f m
Mon :: f m -> Mon f m
[getMon] :: Mon f m -> f m
instance GHC.Base.Monad f => GHC.Base.Monad (Data.Semigroup.Monad.Mon f)
instance GHC.Base.Applicative f => GHC.Base.Applicative (Data.Semigroup.Monad.Mon f)
instance GHC.Base.Functor f => GHC.Base.Functor (Data.Semigroup.Monad.Mon f)
instance GHC.Base.Monad f => Data.Semigroup.Semigroup (Data.Semigroup.Monad.Action f)
instance GHC.Base.Monad f => GHC.Base.Monoid (Data.Semigroup.Monad.Action f)
instance GHC.Base.Monad f => Data.Semigroup.Reducer.Reducer (f a) (Data.Semigroup.Monad.Action f)
instance (GHC.Base.Monad f, Data.Semigroup.Semigroup m) => Data.Semigroup.Semigroup (Data.Semigroup.Monad.Mon f m)
instance (GHC.Base.Monad f, GHC.Base.Monoid m) => GHC.Base.Monoid (Data.Semigroup.Monad.Mon f m)
instance (GHC.Base.Monad f, Data.Semigroup.Reducer.Reducer c m) => Data.Semigroup.Reducer.Reducer (f c) (Data.Semigroup.Monad.Mon f m)


-- | A semigroup for working with instances of <a>MonadPlus</a>
module Data.Semigroup.MonadPlus

-- | A <a>MonadSum</a> turns any <a>MonadPlus</a> instance into a
--   <a>Monoid</a>.
newtype MonadSum f a
MonadSum :: f a -> MonadSum f a
[getMonadSum] :: MonadSum f a -> f a
instance GHC.Base.MonadPlus f => GHC.Base.MonadPlus (Data.Semigroup.MonadPlus.MonadSum f)
instance GHC.Base.Monad f => GHC.Base.Monad (Data.Semigroup.MonadPlus.MonadSum f)
instance GHC.Base.Alternative f => GHC.Base.Alternative (Data.Semigroup.MonadPlus.MonadSum f)
instance GHC.Base.Applicative f => GHC.Base.Applicative (Data.Semigroup.MonadPlus.MonadSum f)
instance GHC.Base.Functor f => GHC.Base.Functor (Data.Semigroup.MonadPlus.MonadSum f)
instance GHC.Base.MonadPlus f => Data.Semigroup.Semigroup (Data.Semigroup.MonadPlus.MonadSum f a)
instance GHC.Base.MonadPlus f => GHC.Base.Monoid (Data.Semigroup.MonadPlus.MonadSum f a)
instance GHC.Base.MonadPlus f => Data.Semigroup.Reducer.Reducer (f a) (Data.Semigroup.MonadPlus.MonadSum f a)


module Data.Semigroup.Reducer.With

-- | If <tt>m</tt> is a <tt>c</tt>-<a>Reducer</a>, then m is <tt>(c
--   <a>WithReducer</a> m)</tt>-<a>Reducer</a> This can be used to quickly
--   select a <a>Reducer</a> for use as a <a>FingerTree</a> <a>measure</a>.
newtype WithReducer m c
WithReducer :: c -> WithReducer m c
[withoutReducer] :: WithReducer m c -> c
instance GHC.Read.Read c => GHC.Read.Read (Data.Semigroup.Reducer.With.WithReducer m c)
instance GHC.Show.Show c => GHC.Show.Show (Data.Semigroup.Reducer.With.WithReducer m c)
instance GHC.Classes.Ord c => GHC.Classes.Ord (Data.Semigroup.Reducer.With.WithReducer m c)
instance GHC.Classes.Eq c => GHC.Classes.Eq (Data.Semigroup.Reducer.With.WithReducer m c)
instance Data.Hashable.Class.Hashable c => Data.Hashable.Class.Hashable (Data.Semigroup.Reducer.With.WithReducer m c)
instance GHC.Base.Functor (Data.Semigroup.Reducer.With.WithReducer m)
instance Data.Foldable.Foldable (Data.Semigroup.Reducer.With.WithReducer m)
instance Data.Traversable.Traversable (Data.Semigroup.Reducer.With.WithReducer m)
instance Data.Semigroup.Foldable.Class.Foldable1 (Data.Semigroup.Reducer.With.WithReducer m)
instance Data.Semigroup.Traversable.Class.Traversable1 (Data.Semigroup.Reducer.With.WithReducer m)
instance Data.Semigroup.Reducer.Reducer c m => Data.Semigroup.Reducer.Reducer (Data.Semigroup.Reducer.With.WithReducer m c) m
instance (GHC.Base.Monoid m, Data.Semigroup.Reducer.Reducer c m) => Data.FingerTree.Measured m (Data.Semigroup.Reducer.With.WithReducer m c)

module Data.Semigroup.Union

-- | A Container suitable for the <a>Union</a> <a>Monoid</a>
class HasUnion f
union :: HasUnion f => f -> f -> f
class HasUnion f => HasUnion0 f
empty :: HasUnion0 f => f

-- | The <a>Monoid</a> <tt>(<a>union</a>,<a>empty</a>)</tt>
newtype Union f
Union :: f -> Union f
[getUnion] :: Union f -> f

-- | Polymorphic containers that we can supply an operation to handle
--   unions with
class Functor f => HasUnionWith f
unionWith :: HasUnionWith f => (a -> a -> a) -> f a -> f a -> f a
class HasUnionWith f => HasUnionWith0 f
emptyWith :: HasUnionWith0 f => f a

-- | The <a>Monoid</a> <tt>('unionWith mappend',<a>empty</a>)</tt> for
--   containers full of monoids.
newtype UnionWith f m
UnionWith :: f m -> UnionWith f m
[getUnionWith] :: UnionWith f m -> f m
instance GHC.Read.Read f => GHC.Read.Read (Data.Semigroup.Union.Union f)
instance GHC.Show.Show f => GHC.Show.Show (Data.Semigroup.Union.Union f)
instance GHC.Classes.Ord f => GHC.Classes.Ord (Data.Semigroup.Union.Union f)
instance GHC.Classes.Eq f => GHC.Classes.Eq (Data.Semigroup.Union.Union f)
instance Data.Semigroup.Union.HasUnion (Data.IntMap.Base.IntMap a)
instance Data.Semigroup.Union.HasUnion0 (Data.IntMap.Base.IntMap a)
instance (GHC.Classes.Eq k, Data.Hashable.Class.Hashable k) => Data.Semigroup.Union.HasUnion (Data.HashMap.Base.HashMap k a)
instance (GHC.Classes.Eq k, Data.Hashable.Class.Hashable k) => Data.Semigroup.Union.HasUnion0 (Data.HashMap.Base.HashMap k a)
instance GHC.Classes.Ord k => Data.Semigroup.Union.HasUnion (Data.Map.Base.Map k a)
instance GHC.Classes.Ord k => Data.Semigroup.Union.HasUnion0 (Data.Map.Base.Map k a)
instance GHC.Classes.Eq a => Data.Semigroup.Union.HasUnion [a]
instance GHC.Classes.Eq a => Data.Semigroup.Union.HasUnion0 [a]
instance GHC.Classes.Ord a => Data.Semigroup.Union.HasUnion (Data.Set.Base.Set a)
instance GHC.Classes.Ord a => Data.Semigroup.Union.HasUnion0 (Data.Set.Base.Set a)
instance Data.Semigroup.Union.HasUnion Data.IntSet.Base.IntSet
instance Data.Semigroup.Union.HasUnion0 Data.IntSet.Base.IntSet
instance (GHC.Classes.Eq a, Data.Hashable.Class.Hashable a) => Data.Semigroup.Union.HasUnion (Data.HashSet.HashSet a)
instance (GHC.Classes.Eq a, Data.Hashable.Class.Hashable a) => Data.Semigroup.Union.HasUnion0 (Data.HashSet.HashSet a)
instance Data.Semigroup.Union.HasUnion f => Data.Semigroup.Semigroup (Data.Semigroup.Union.Union f)
instance Data.Semigroup.Union.HasUnion0 f => GHC.Base.Monoid (Data.Semigroup.Union.Union f)
instance Data.Semigroup.Union.HasUnion f => Data.Semigroup.Reducer.Reducer f (Data.Semigroup.Union.Union f)
instance GHC.Base.Functor Data.Semigroup.Union.Union
instance Data.Foldable.Foldable Data.Semigroup.Union.Union
instance Data.Traversable.Traversable Data.Semigroup.Union.Union
instance Data.Semigroup.Foldable.Class.Foldable1 Data.Semigroup.Union.Union
instance Data.Semigroup.Traversable.Class.Traversable1 Data.Semigroup.Union.Union
instance Data.Semigroup.Union.HasUnionWith Data.IntMap.Base.IntMap
instance Data.Semigroup.Union.HasUnionWith0 Data.IntMap.Base.IntMap
instance GHC.Classes.Ord k => Data.Semigroup.Union.HasUnionWith (Data.Map.Base.Map k)
instance GHC.Classes.Ord k => Data.Semigroup.Union.HasUnionWith0 (Data.Map.Base.Map k)
instance (Data.Semigroup.Union.HasUnionWith f, Data.Semigroup.Semigroup m) => Data.Semigroup.Semigroup (Data.Semigroup.Union.UnionWith f m)
instance (Data.Semigroup.Union.HasUnionWith0 f, GHC.Base.Monoid m) => GHC.Base.Monoid (Data.Semigroup.Union.UnionWith f m)
instance (Data.Semigroup.Union.HasUnionWith f, Data.Semigroup.Semigroup m, GHC.Base.Monoid m) => Data.Semigroup.Reducer.Reducer (f m) (Data.Semigroup.Union.UnionWith f m)


-- | Semigroups for working with <a>Apply</a>
module Data.Semigroup.Apply

-- | A <a>Trav</a> uses an glues together <a>Applicative</a> actions with
--   (*&gt;) in the manner of <tt>traverse_</tt> from <a>Data.Foldable</a>.
--   Any values returned by reduced actions are discarded.
newtype Trav f
Trav :: f () -> Trav f
[getTrav] :: Trav f -> f ()

-- | A <a>App</a> turns any <a>Apply</a> wrapped around a <a>Semigroup</a>
--   into a <a>Semigroup</a>
newtype App f m
App :: f m -> App f m
[getApp] :: App f m -> f m
instance Data.Functor.Bind.Class.Apply f => Data.Functor.Bind.Class.Apply (Data.Semigroup.Apply.App f)
instance GHC.Base.Functor f => GHC.Base.Functor (Data.Semigroup.Apply.App f)
instance Data.Functor.Bind.Class.Apply f => Data.Semigroup.Semigroup (Data.Semigroup.Apply.Trav f)
instance Data.Functor.Bind.Class.Apply f => Data.Semigroup.Reducer.Reducer (f a) (Data.Semigroup.Apply.Trav f)
instance (Data.Functor.Bind.Class.Apply f, Data.Semigroup.Semigroup m) => Data.Semigroup.Semigroup (Data.Semigroup.Apply.App f m)
instance (Data.Functor.Bind.Class.Apply f, Data.Semigroup.Reducer.Reducer c m) => Data.Semigroup.Reducer.Reducer (f c) (Data.Semigroup.Apply.App f m)


-- | A semigroup for working <a>Alt</a> or <a>Plus</a>
module Data.Semigroup.Alt

-- | A <a>Alter</a> turns any <a>Alt</a> instance into a <a>Semigroup</a>.
newtype Alter f a
Alter :: f a -> Alter f a
[getAlter] :: Alter f a -> f a
instance Data.Functor.Plus.Plus f => Data.Functor.Plus.Plus (Data.Semigroup.Alt.Alter f)
instance GHC.Base.Functor f => GHC.Base.Functor (Data.Semigroup.Alt.Alter f)
instance Data.Functor.Alt.Alt f => Data.Functor.Alt.Alt (Data.Semigroup.Alt.Alter f)
instance Data.Functor.Alt.Alt f => Data.Semigroup.Semigroup (Data.Semigroup.Alt.Alter f a)
instance Data.Functor.Plus.Plus f => GHC.Base.Monoid (Data.Semigroup.Alt.Alter f a)
instance Data.Functor.Alt.Alt f => Data.Semigroup.Reducer.Reducer (f a) (Data.Semigroup.Alt.Alter f a)


-- | A simple <a>Monoid</a> transformer that takes a <a>Monoid</a> m and
--   produces a new <tt>m</tt>-Reducer named <a>Self</a> <tt>m</tt>
--   
--   This is useful when you have a generator that already contains
--   monoidal values or someone supplies the map to the monoid in the form
--   of a function rather than as a <a>Reducer</a> instance. You can just
--   <tt><a>getSelf</a> . <tt>reduce</tt></tt> or <tt><a>getSelf</a> .
--   <tt>mapReduce</tt> f</tt> in those scenarios. These behaviors are
--   encapsulated into the <tt>fold</tt> and <a>foldMap</a> combinators in
--   <a>Data.Monoid.Combinators</a> respectively.
module Data.Semigroup.Self
newtype Self m
Self :: m -> Self m
[getSelf] :: Self m -> m
instance GHC.Base.Monoid m => GHC.Base.Monoid (Data.Semigroup.Self.Self m)
instance Data.Semigroup.Semigroup m => Data.Semigroup.Semigroup (Data.Semigroup.Self.Self m)
instance Data.Semigroup.Semigroup m => Data.Semigroup.Reducer.Reducer m (Data.Semigroup.Self.Self m)
instance GHC.Base.Functor Data.Semigroup.Self.Self
instance Data.Foldable.Foldable Data.Semigroup.Self.Self
instance Data.Traversable.Traversable Data.Semigroup.Self.Self
instance Data.Semigroup.Foldable.Class.Foldable1 Data.Semigroup.Self.Self
instance Data.Semigroup.Traversable.Class.Traversable1 Data.Semigroup.Self.Self


-- | A <a>Generator</a> <tt>c</tt> is a possibly-specialized container,
--   which contains values of type <a>Elem</a> <tt>c</tt>, and which knows
--   how to efficiently apply a <a>Reducer</a> to extract an answer.
--   
--   Since a <a>Generator</a> is not polymorphic in its contents, it is
--   more specialized than <a>Data.Foldable.Foldable</a>, and a
--   <a>Reducer</a> may supply efficient left-to-right and right-to-left
--   reduction strategies that a <a>Generator</a> may avail itself of.
module Data.Generator

-- | minimal definition <a>mapReduce</a> or <a>mapTo</a>
class Generator c where type family Elem c mapReduce f = mapTo f mempty mapTo f m = mappend m . mapReduce f mapFrom f = mappend . mapReduce f
mapReduce :: (Generator c, Reducer e m, Monoid m) => (Elem c -> e) -> c -> m
mapTo :: (Generator c, Reducer e m, Monoid m) => (Elem c -> e) -> m -> c -> m
mapFrom :: (Generator c, Reducer e m, Monoid m) => (Elem c -> e) -> c -> m -> m

-- | a <a>Generator</a> transformer that asks only for the keys of an
--   indexed container
newtype Keys c
Keys :: c -> Keys c
[getKeys] :: Keys c -> c

-- | a <a>Generator</a> transformer that asks only for the values contained
--   in an indexed container
newtype Values c
Values :: c -> Values c
[getValues] :: Values c -> c

-- | a <a>Generator</a> transformer that treats <a>Word8</a> as <a>Char</a>
--   This lets you use a <tt>ByteString</tt> as a <a>Char</a> source
--   without going through a <a>Monoid</a> transformer like <tt>UTF8</tt>
newtype Char8 c
Char8 :: c -> Char8 c
[getChar8] :: Char8 c -> c

-- | Apply a <a>Reducer</a> directly to the elements of a <a>Generator</a>
reduce :: (Generator c, Reducer (Elem c) m, Monoid m) => c -> m
mapReduceWith :: (Generator c, Reducer e m, Monoid m) => (m -> n) -> (Elem c -> e) -> c -> n
reduceWith :: (Generator c, Reducer (Elem c) m, Monoid m) => (m -> n) -> c -> n
instance Data.Generator.Generator Data.ByteString.Internal.ByteString
instance Data.Generator.Generator Data.ByteString.Lazy.Internal.ByteString
instance Data.Generator.Generator Data.Text.Internal.Text
instance Data.Generator.Generator [c]
instance Data.Generator.Generator (Data.List.NonEmpty.NonEmpty c)
instance Data.FingerTree.Measured v e => Data.Generator.Generator (Data.FingerTree.FingerTree v e)
instance Data.Generator.Generator (Data.Sequence.Seq c)
instance Data.Generator.Generator Data.IntSet.Base.IntSet
instance Data.Generator.Generator (Data.HashSet.HashSet a)
instance Data.Generator.Generator (Data.Set.Base.Set a)
instance Data.Generator.Generator (Data.IntMap.Base.IntMap v)
instance Data.Generator.Generator (Data.Map.Base.Map k v)
instance Data.Generator.Generator (Data.HashMap.Base.HashMap k v)
instance GHC.Arr.Ix i => Data.Generator.Generator (GHC.Arr.Array i e)
instance Data.Generator.Generator (Data.Generator.Keys (Data.IntMap.Base.IntMap v))
instance Data.Generator.Generator (Data.Generator.Keys (Data.Map.Base.Map k v))
instance GHC.Arr.Ix i => Data.Generator.Generator (Data.Generator.Keys (GHC.Arr.Array i e))
instance Data.Generator.Generator (Data.Generator.Values (Data.IntMap.Base.IntMap v))
instance Data.Generator.Generator (Data.Generator.Values (Data.Map.Base.Map k v))
instance GHC.Arr.Ix i => Data.Generator.Generator (Data.Generator.Values (GHC.Arr.Array i e))
instance Data.Generator.Generator (Data.Generator.Char8 Data.ByteString.Internal.ByteString)
instance Data.Generator.Generator (Data.Generator.Char8 Data.ByteString.Lazy.Internal.ByteString)


-- | Utilities for working with Monoids that conflict with names from the
--   <a>Prelude</a>, <a>Data.Foldable</a>, <a>Control.Monad</a> or
--   elsewhere. Intended to be imported qualified.
--   
--   <pre>
--   import Data.Generator.Combinators as Generator
--   </pre>
module Data.Generator.Combinators

-- | Efficiently <a>mapReduce</a> a <a>Generator</a> using the
--   <a>Action</a> monoid. A specialized version of its namesake from
--   <a>Data.Foldable</a> and <a>Control.Monad</a>
--   
--   <pre>
--   <a>mapReduceWith</a> <a>getAction</a>
--   </pre>
mapM_ :: (Generator c, Monad m) => (Elem c -> m b) -> c -> m ()

-- | Convenience function as found in <a>Data.Foldable</a> and
--   <a>Control.Monad</a>
--   
--   <pre>
--   <a>flip</a> <a>mapM_</a>
--   </pre>
forM_ :: (Generator c, Monad m) => c -> (Elem c -> m b) -> m ()

-- | The sum of a collection of actions, generalizing <a>concat</a>
--   
--   <pre>
--   <a>reduceWith</a> <a>getMonadSum</a>
--   </pre>
msum :: (Generator c, MonadPlus m, m a ~ Elem c) => c -> m a

-- | Efficiently <a>mapReduce</a> a <a>Generator</a> using the
--   <a>Traversal</a> monoid. A specialized version of its namesake from
--   <a>Data.Foldable</a>
--   
--   <pre>
--   <a>mapReduce</a> <a>getTraversal</a>
--   </pre>
traverse_ :: (Generator c, Applicative f) => (Elem c -> f b) -> c -> f ()

-- | Convenience function as found in <a>Data.Foldable</a>
--   
--   <pre>
--   <a>flip</a> <a>traverse_</a>
--   </pre>
for_ :: (Generator c, Applicative f) => c -> (Elem c -> f b) -> f ()

-- | The sum of a collection of actions, generalizing <a>concat</a>
--   
--   <pre>
--   <a>reduceWith</a> <tt>getAlt</tt>
--   </pre>
asum :: (Generator c, Alternative f, f a ~ Elem c) => c -> f a

-- | Efficiently <a>reduce</a> a <a>Generator</a> that contains values of
--   type <a>Bool</a>
--   
--   <pre>
--   <a>reduceWith</a> <a>getAll</a>
--   </pre>
and :: (Generator c, Elem c ~ Bool) => c -> Bool

-- | Efficiently <a>reduce</a> a <a>Generator</a> that contains values of
--   type <a>Bool</a>
--   
--   <pre>
--   <a>reduceWith</a> <a>getAny</a>
--   </pre>
or :: (Generator c, Elem c ~ Bool) => c -> Bool

-- | Efficiently <a>mapReduce</a> any <a>Generator</a> checking to see if
--   any of its values match the supplied predicate
--   
--   <pre>
--   <a>mapReduceWith</a> <a>getAny</a>
--   </pre>
any :: Generator c => (Elem c -> Bool) -> c -> Bool

-- | Efficiently <a>mapReduce</a> any <a>Generator</a> checking to see if
--   all of its values match the supplied predicate
--   
--   <pre>
--   <a>mapReduceWith</a> <a>getAll</a>
--   </pre>
all :: Generator c => (Elem c -> Bool) -> c -> Bool

-- | Efficiently <a>mapReduce</a> a <a>Generator</a> using the
--   <a>WrappedMonoid</a> monoid. A specialized version of its namesake
--   from <a>Data.Foldable</a>
--   
--   <pre>
--   <a>mapReduceWith</a> <a>unwrapMonoid</a>
--   </pre>
foldMap :: (Monoid m, Generator c) => (Elem c -> m) -> c -> m

-- | Efficiently <a>reduce</a> a <a>Generator</a> using the
--   <a>WrappedMonoid</a> monoid. A specialized version of its namesake
--   from <a>Data.Foldable</a>
--   
--   <pre>
--   <a>reduceWith</a> <a>unwrapMonoid</a>
--   </pre>
fold :: (Monoid m, Generator c, Elem c ~ m) => c -> m

-- | Convert any <a>Generator</a> to a list of its contents. Specialization
--   of <a>reduce</a>
toList :: Generator c => c -> [Elem c]

-- | Type specialization of "foldMap" above
concatMap :: Generator c => (Elem c -> [b]) -> c -> [b]

-- | Check to see if <a>any</a> member of the <a>Generator</a> matches the
--   supplied value
elem :: (Generator c, Eq (Elem c)) => Elem c -> c -> Bool

-- | Efficiently <a>mapReduce</a> a subset of the elements in a
--   <a>Generator</a>
filter :: (Generator c, Reducer (Elem c) m, Monoid m) => (Elem c -> Bool) -> c -> m

-- | Allows idiomatic specialization of filter by proving a function that
--   will be used to transform the output
filterWith :: (Generator c, Reducer (Elem c) m, Monoid m) => (m -> n) -> (Elem c -> Bool) -> c -> n

-- | Efficiently sum over the members of any <a>Generator</a>
--   
--   <pre>
--   <a>reduceWith</a> <a>getSum</a>
--   </pre>
sum :: (Generator c, Num (Elem c)) => c -> Elem c

-- | Efficiently take the product of every member of a <a>Generator</a>
--   
--   <pre>
--   <a>reduceWith</a> <a>getProduct</a>
--   </pre>
product :: (Generator c, Num (Elem c)) => c -> Elem c

-- | Check to make sure that the supplied value is not a member of the
--   <a>Generator</a>
notElem :: (Generator c, Eq (Elem c)) => Elem c -> c -> Bool


-- | A <a>Generator1</a> <tt>c</tt> is a possibly-specialized container,
--   which contains values of type <a>Elem</a> <tt>c</tt>, and which knows
--   how to efficiently apply a <a>Reducer</a> to extract an answer.
--   
--   <a>Generator1</a> is to <a>Generator</a> as <a>Foldable1</a> is to
--   <a>Foldable</a>.
module Data.Semigroup.Generator

-- | minimal definition <a>mapReduce1</a> or <a>mapTo1</a>
class Generator c => Generator1 c where mapTo1 f m = (<>) m . mapReduce1 f mapFrom1 f = (<>) . mapReduce1 f
mapReduce1 :: (Generator1 c, Reducer e m) => (Elem c -> e) -> c -> m
mapTo1 :: (Generator1 c, Reducer e m) => (Elem c -> e) -> m -> c -> m
mapFrom1 :: (Generator1 c, Reducer e m) => (Elem c -> e) -> c -> m -> m

-- | Apply a <a>Reducer</a> directly to the elements of a <a>Generator</a>
reduce1 :: (Generator1 c, Reducer (Elem c) m) => c -> m
mapReduceWith1 :: (Generator1 c, Reducer e m) => (m -> n) -> (Elem c -> e) -> c -> n
reduceWith1 :: (Generator1 c, Reducer (Elem c) m) => (m -> n) -> c -> n
instance Data.Semigroup.Generator.Generator1 (Data.List.NonEmpty.NonEmpty e)