/usr/share/doc/libghc-reducers-doc/html/reducers.txt is in libghc-reducers-doc 3.12.1-1build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 | -- Hoogle documentation, generated by Haddock
-- See Hoogle, http://www.haskell.org/hoogle/
-- | Semigroups, specialized containers and a general map/reduce framework
--
-- Semigroups, specialized containers and a general map/reduce framework
@package reducers
@version 3.12.1
module Data.Semigroup.Instances
instance Data.FingerTree.Measured v a => Data.Semigroup.Semigroup (Data.FingerTree.FingerTree v a)
-- | A <tt>c</tt>-<a>Reducer</a> is a <a>Semigroup</a> with a canonical
-- mapping from <tt>c</tt> to the Semigroup.
module Data.Semigroup.Reducer
-- | This type may be best read infix. A <tt>c <a>Reducer</a> m</tt> is a
-- <a>Semigroup</a> <tt>m</tt> that maps values of type <tt>c</tt>
-- through <tt>unit</tt> to values of type <tt>m</tt>. A
-- <tt>c</tt>-<a>Reducer</a> may also supply operations which tack-on
-- another <tt>c</tt> to an existing <a>Monoid</a> <tt>m</tt> on the left
-- or right. These specialized reductions may be more efficient in some
-- scenarios and are used when appropriate by a <tt>Generator</tt>. The
-- names <a>cons</a> and <a>snoc</a> work by analogy to the synonymous
-- operations in the list monoid.
--
-- This class deliberately avoids functional-dependencies, so that () can
-- be a <tt>c</tt>-Reducer for all <tt>c</tt>, and so many common
-- reducers can work over multiple types, for instance, First and Last
-- may reduce both <tt>a</tt> and <a>Maybe</a> <tt>a</tt>. Since a
-- <tt>Generator</tt> has a fixed element type, the input to the reducer
-- is generally known and extracting from the monoid usually is
-- sufficient to fix the result type. Combinators are available for most
-- scenarios where this is not the case, and the few remaining cases can
-- be handled by using an explicit type annotation.
--
-- Minimal definition: <a>unit</a>
class Semigroup m => Reducer c m where snoc m = (<>) m . unit cons = (<>) . unit
-- | Convert a value into a <a>Semigroup</a>
unit :: Reducer c m => c -> m
-- | Append a value to a <a>Semigroup</a> for use in left-to-right
-- reduction
snoc :: Reducer c m => m -> c -> m
-- | Prepend a value onto a <a>Semigroup</a> for use during right-to-left
-- reduction
cons :: Reducer c m => c -> m -> m
-- | Apply a <a>Reducer</a> to a <a>Foldable</a> container, after mapping
-- the contents into a suitable form for reduction.
foldMapReduce :: (Foldable f, Monoid m, Reducer e m) => (a -> e) -> f a -> m
foldMapReduce1 :: (Foldable1 f, Reducer e m) => (a -> e) -> f a -> m
-- | Apply a <a>Reducer</a> to a <a>Foldable</a> mapping each element
-- through <a>unit</a>
foldReduce :: (Foldable f, Monoid m, Reducer e m) => f e -> m
-- | Apply a <a>Reducer</a> to a <a>Foldable1</a> mapping each element
-- through <a>unit</a>
foldReduce1 :: (Foldable1 f, Reducer e m) => f e -> m
pureUnit :: (Applicative f, Reducer c n) => c -> f n
returnUnit :: (Monad m, Reducer c n) => c -> m n
newtype Count
Count :: Int -> Count
[getCount] :: Count -> Int
instance Data.Data.Data Data.Semigroup.Reducer.Count
instance GHC.Read.Read Data.Semigroup.Reducer.Count
instance GHC.Show.Show Data.Semigroup.Reducer.Count
instance GHC.Classes.Ord Data.Semigroup.Reducer.Count
instance GHC.Classes.Eq Data.Semigroup.Reducer.Count
instance Data.Hashable.Class.Hashable Data.Semigroup.Reducer.Count
instance Data.Semigroup.Semigroup Data.Semigroup.Reducer.Count
instance GHC.Base.Monoid Data.Semigroup.Reducer.Count
instance Data.Semigroup.Reducer.Reducer a Data.Semigroup.Reducer.Count
instance (Data.Semigroup.Reducer.Reducer c m, Data.Semigroup.Reducer.Reducer c n) => Data.Semigroup.Reducer.Reducer c (m, n)
instance (Data.Semigroup.Reducer.Reducer c m, Data.Semigroup.Reducer.Reducer c n, Data.Semigroup.Reducer.Reducer c o) => Data.Semigroup.Reducer.Reducer c (m, n, o)
instance (Data.Semigroup.Reducer.Reducer c m, Data.Semigroup.Reducer.Reducer c n, Data.Semigroup.Reducer.Reducer c o, Data.Semigroup.Reducer.Reducer c p) => Data.Semigroup.Reducer.Reducer c (m, n, o, p)
instance Data.Semigroup.Reducer.Reducer c [c]
instance Data.Semigroup.Reducer.Reducer c ()
instance Data.Semigroup.Reducer.Reducer GHC.Types.Bool Data.Monoid.Any
instance Data.Semigroup.Reducer.Reducer GHC.Types.Bool Data.Monoid.All
instance Data.Semigroup.Reducer.Reducer (a -> a) (Data.Monoid.Endo a)
instance Data.Semigroup.Semigroup a => Data.Semigroup.Reducer.Reducer a (Data.Monoid.Dual a)
instance GHC.Num.Num a => Data.Semigroup.Reducer.Reducer a (Data.Monoid.Sum a)
instance GHC.Num.Num a => Data.Semigroup.Reducer.Reducer a (Data.Monoid.Product a)
instance GHC.Classes.Ord a => Data.Semigroup.Reducer.Reducer a (Data.Semigroup.Min a)
instance GHC.Classes.Ord a => Data.Semigroup.Reducer.Reducer a (Data.Semigroup.Max a)
instance Data.Semigroup.Reducer.Reducer (GHC.Base.Maybe a) (Data.Monoid.First a)
instance Data.Semigroup.Reducer.Reducer a (Data.Semigroup.First a)
instance Data.Semigroup.Reducer.Reducer (GHC.Base.Maybe a) (Data.Monoid.Last a)
instance Data.Semigroup.Reducer.Reducer a (Data.Semigroup.Last a)
instance Data.FingerTree.Measured v a => Data.Semigroup.Reducer.Reducer a (Data.FingerTree.FingerTree v a)
instance Data.Semigroup.Reducer.Reducer a (Data.Sequence.Seq a)
instance Data.Semigroup.Reducer.Reducer GHC.Types.Int Data.IntSet.Base.IntSet
instance GHC.Classes.Ord a => Data.Semigroup.Reducer.Reducer a (Data.Set.Base.Set a)
instance Data.Semigroup.Reducer.Reducer (GHC.Types.Int, v) (Data.IntMap.Base.IntMap v)
instance GHC.Classes.Ord k => Data.Semigroup.Reducer.Reducer (k, v) (Data.Map.Base.Map k v)
instance GHC.Base.Monoid m => Data.Semigroup.Reducer.Reducer m (Data.Semigroup.WrappedMonoid m)
-- | Semigroups for working with <a>Applicative</a> <a>Functor</a>s.
module Data.Semigroup.Applicative
-- | A <a>Traversal</a> uses an glues together <a>Applicative</a> actions
-- with (*>) in the manner of <tt>traverse_</tt> from
-- <a>Data.Foldable</a>. Any values returned by reduced actions are
-- discarded.
newtype Traversal f
Traversal :: f () -> Traversal f
[getTraversal] :: Traversal f -> f ()
newtype Ap f m
Ap :: f m -> Ap f m
[getAp] :: Ap f m -> f m
instance GHC.Base.Applicative f => GHC.Base.Applicative (Data.Semigroup.Applicative.Ap f)
instance GHC.Base.Functor f => GHC.Base.Functor (Data.Semigroup.Applicative.Ap f)
instance GHC.Base.Applicative f => Data.Semigroup.Semigroup (Data.Semigroup.Applicative.Traversal f)
instance GHC.Base.Applicative f => GHC.Base.Monoid (Data.Semigroup.Applicative.Traversal f)
instance GHC.Base.Applicative f => Data.Semigroup.Reducer.Reducer (f a) (Data.Semigroup.Applicative.Traversal f)
instance (GHC.Base.Applicative f, Data.Semigroup.Semigroup m) => Data.Semigroup.Semigroup (Data.Semigroup.Applicative.Ap f m)
instance (GHC.Base.Applicative f, GHC.Base.Monoid m) => GHC.Base.Monoid (Data.Semigroup.Applicative.Ap f m)
instance (GHC.Base.Applicative f, Data.Semigroup.Reducer.Reducer c m) => Data.Semigroup.Reducer.Reducer (f c) (Data.Semigroup.Applicative.Ap f m)
-- | A semigroup for working with <a>Alternative</a> <a>Functor</a>s.
module Data.Semigroup.Alternative
-- | A <a>Alternate</a> turns any <a>Alternative</a> instance into a
-- <a>Monoid</a>.
newtype Alternate f a
Alternate :: f a -> Alternate f a
[getAlternate] :: Alternate f a -> f a
instance GHC.Base.Alternative f => GHC.Base.Alternative (Data.Semigroup.Alternative.Alternate f)
instance GHC.Base.Applicative f => GHC.Base.Applicative (Data.Semigroup.Alternative.Alternate f)
instance GHC.Base.Functor f => GHC.Base.Functor (Data.Semigroup.Alternative.Alternate f)
instance GHC.Base.Alternative f => Data.Semigroup.Semigroup (Data.Semigroup.Alternative.Alternate f a)
instance GHC.Base.Alternative f => GHC.Base.Monoid (Data.Semigroup.Alternative.Alternate f a)
instance GHC.Base.Alternative f => Data.Semigroup.Reducer.Reducer (f a) (Data.Semigroup.Alternative.Alternate f a)
-- | Semigroups for working with <a>Monad</a>s.
module Data.Semigroup.Monad
-- | A <a>Action</a> uses an glues together monadic actions with (>>)
-- in the manner of <a>mapM_</a> from <a>Data.Foldable</a>. Any values
-- returned by reduced actions are discarded.
newtype Action f
Action :: f () -> Action f
[getAction] :: Action f -> f ()
newtype Mon f m
Mon :: f m -> Mon f m
[getMon] :: Mon f m -> f m
instance GHC.Base.Monad f => GHC.Base.Monad (Data.Semigroup.Monad.Mon f)
instance GHC.Base.Applicative f => GHC.Base.Applicative (Data.Semigroup.Monad.Mon f)
instance GHC.Base.Functor f => GHC.Base.Functor (Data.Semigroup.Monad.Mon f)
instance GHC.Base.Monad f => Data.Semigroup.Semigroup (Data.Semigroup.Monad.Action f)
instance GHC.Base.Monad f => GHC.Base.Monoid (Data.Semigroup.Monad.Action f)
instance GHC.Base.Monad f => Data.Semigroup.Reducer.Reducer (f a) (Data.Semigroup.Monad.Action f)
instance (GHC.Base.Monad f, Data.Semigroup.Semigroup m) => Data.Semigroup.Semigroup (Data.Semigroup.Monad.Mon f m)
instance (GHC.Base.Monad f, GHC.Base.Monoid m) => GHC.Base.Monoid (Data.Semigroup.Monad.Mon f m)
instance (GHC.Base.Monad f, Data.Semigroup.Reducer.Reducer c m) => Data.Semigroup.Reducer.Reducer (f c) (Data.Semigroup.Monad.Mon f m)
-- | A semigroup for working with instances of <a>MonadPlus</a>
module Data.Semigroup.MonadPlus
-- | A <a>MonadSum</a> turns any <a>MonadPlus</a> instance into a
-- <a>Monoid</a>.
newtype MonadSum f a
MonadSum :: f a -> MonadSum f a
[getMonadSum] :: MonadSum f a -> f a
instance GHC.Base.MonadPlus f => GHC.Base.MonadPlus (Data.Semigroup.MonadPlus.MonadSum f)
instance GHC.Base.Monad f => GHC.Base.Monad (Data.Semigroup.MonadPlus.MonadSum f)
instance GHC.Base.Alternative f => GHC.Base.Alternative (Data.Semigroup.MonadPlus.MonadSum f)
instance GHC.Base.Applicative f => GHC.Base.Applicative (Data.Semigroup.MonadPlus.MonadSum f)
instance GHC.Base.Functor f => GHC.Base.Functor (Data.Semigroup.MonadPlus.MonadSum f)
instance GHC.Base.MonadPlus f => Data.Semigroup.Semigroup (Data.Semigroup.MonadPlus.MonadSum f a)
instance GHC.Base.MonadPlus f => GHC.Base.Monoid (Data.Semigroup.MonadPlus.MonadSum f a)
instance GHC.Base.MonadPlus f => Data.Semigroup.Reducer.Reducer (f a) (Data.Semigroup.MonadPlus.MonadSum f a)
module Data.Semigroup.Reducer.With
-- | If <tt>m</tt> is a <tt>c</tt>-<a>Reducer</a>, then m is <tt>(c
-- <a>WithReducer</a> m)</tt>-<a>Reducer</a> This can be used to quickly
-- select a <a>Reducer</a> for use as a <a>FingerTree</a> <a>measure</a>.
newtype WithReducer m c
WithReducer :: c -> WithReducer m c
[withoutReducer] :: WithReducer m c -> c
instance GHC.Read.Read c => GHC.Read.Read (Data.Semigroup.Reducer.With.WithReducer m c)
instance GHC.Show.Show c => GHC.Show.Show (Data.Semigroup.Reducer.With.WithReducer m c)
instance GHC.Classes.Ord c => GHC.Classes.Ord (Data.Semigroup.Reducer.With.WithReducer m c)
instance GHC.Classes.Eq c => GHC.Classes.Eq (Data.Semigroup.Reducer.With.WithReducer m c)
instance Data.Hashable.Class.Hashable c => Data.Hashable.Class.Hashable (Data.Semigroup.Reducer.With.WithReducer m c)
instance GHC.Base.Functor (Data.Semigroup.Reducer.With.WithReducer m)
instance Data.Foldable.Foldable (Data.Semigroup.Reducer.With.WithReducer m)
instance Data.Traversable.Traversable (Data.Semigroup.Reducer.With.WithReducer m)
instance Data.Semigroup.Foldable.Class.Foldable1 (Data.Semigroup.Reducer.With.WithReducer m)
instance Data.Semigroup.Traversable.Class.Traversable1 (Data.Semigroup.Reducer.With.WithReducer m)
instance Data.Semigroup.Reducer.Reducer c m => Data.Semigroup.Reducer.Reducer (Data.Semigroup.Reducer.With.WithReducer m c) m
instance (GHC.Base.Monoid m, Data.Semigroup.Reducer.Reducer c m) => Data.FingerTree.Measured m (Data.Semigroup.Reducer.With.WithReducer m c)
module Data.Semigroup.Union
-- | A Container suitable for the <a>Union</a> <a>Monoid</a>
class HasUnion f
union :: HasUnion f => f -> f -> f
class HasUnion f => HasUnion0 f
empty :: HasUnion0 f => f
-- | The <a>Monoid</a> <tt>(<a>union</a>,<a>empty</a>)</tt>
newtype Union f
Union :: f -> Union f
[getUnion] :: Union f -> f
-- | Polymorphic containers that we can supply an operation to handle
-- unions with
class Functor f => HasUnionWith f
unionWith :: HasUnionWith f => (a -> a -> a) -> f a -> f a -> f a
class HasUnionWith f => HasUnionWith0 f
emptyWith :: HasUnionWith0 f => f a
-- | The <a>Monoid</a> <tt>('unionWith mappend',<a>empty</a>)</tt> for
-- containers full of monoids.
newtype UnionWith f m
UnionWith :: f m -> UnionWith f m
[getUnionWith] :: UnionWith f m -> f m
instance GHC.Read.Read f => GHC.Read.Read (Data.Semigroup.Union.Union f)
instance GHC.Show.Show f => GHC.Show.Show (Data.Semigroup.Union.Union f)
instance GHC.Classes.Ord f => GHC.Classes.Ord (Data.Semigroup.Union.Union f)
instance GHC.Classes.Eq f => GHC.Classes.Eq (Data.Semigroup.Union.Union f)
instance Data.Semigroup.Union.HasUnion (Data.IntMap.Base.IntMap a)
instance Data.Semigroup.Union.HasUnion0 (Data.IntMap.Base.IntMap a)
instance (GHC.Classes.Eq k, Data.Hashable.Class.Hashable k) => Data.Semigroup.Union.HasUnion (Data.HashMap.Base.HashMap k a)
instance (GHC.Classes.Eq k, Data.Hashable.Class.Hashable k) => Data.Semigroup.Union.HasUnion0 (Data.HashMap.Base.HashMap k a)
instance GHC.Classes.Ord k => Data.Semigroup.Union.HasUnion (Data.Map.Base.Map k a)
instance GHC.Classes.Ord k => Data.Semigroup.Union.HasUnion0 (Data.Map.Base.Map k a)
instance GHC.Classes.Eq a => Data.Semigroup.Union.HasUnion [a]
instance GHC.Classes.Eq a => Data.Semigroup.Union.HasUnion0 [a]
instance GHC.Classes.Ord a => Data.Semigroup.Union.HasUnion (Data.Set.Base.Set a)
instance GHC.Classes.Ord a => Data.Semigroup.Union.HasUnion0 (Data.Set.Base.Set a)
instance Data.Semigroup.Union.HasUnion Data.IntSet.Base.IntSet
instance Data.Semigroup.Union.HasUnion0 Data.IntSet.Base.IntSet
instance (GHC.Classes.Eq a, Data.Hashable.Class.Hashable a) => Data.Semigroup.Union.HasUnion (Data.HashSet.HashSet a)
instance (GHC.Classes.Eq a, Data.Hashable.Class.Hashable a) => Data.Semigroup.Union.HasUnion0 (Data.HashSet.HashSet a)
instance Data.Semigroup.Union.HasUnion f => Data.Semigroup.Semigroup (Data.Semigroup.Union.Union f)
instance Data.Semigroup.Union.HasUnion0 f => GHC.Base.Monoid (Data.Semigroup.Union.Union f)
instance Data.Semigroup.Union.HasUnion f => Data.Semigroup.Reducer.Reducer f (Data.Semigroup.Union.Union f)
instance GHC.Base.Functor Data.Semigroup.Union.Union
instance Data.Foldable.Foldable Data.Semigroup.Union.Union
instance Data.Traversable.Traversable Data.Semigroup.Union.Union
instance Data.Semigroup.Foldable.Class.Foldable1 Data.Semigroup.Union.Union
instance Data.Semigroup.Traversable.Class.Traversable1 Data.Semigroup.Union.Union
instance Data.Semigroup.Union.HasUnionWith Data.IntMap.Base.IntMap
instance Data.Semigroup.Union.HasUnionWith0 Data.IntMap.Base.IntMap
instance GHC.Classes.Ord k => Data.Semigroup.Union.HasUnionWith (Data.Map.Base.Map k)
instance GHC.Classes.Ord k => Data.Semigroup.Union.HasUnionWith0 (Data.Map.Base.Map k)
instance (Data.Semigroup.Union.HasUnionWith f, Data.Semigroup.Semigroup m) => Data.Semigroup.Semigroup (Data.Semigroup.Union.UnionWith f m)
instance (Data.Semigroup.Union.HasUnionWith0 f, GHC.Base.Monoid m) => GHC.Base.Monoid (Data.Semigroup.Union.UnionWith f m)
instance (Data.Semigroup.Union.HasUnionWith f, Data.Semigroup.Semigroup m, GHC.Base.Monoid m) => Data.Semigroup.Reducer.Reducer (f m) (Data.Semigroup.Union.UnionWith f m)
-- | Semigroups for working with <a>Apply</a>
module Data.Semigroup.Apply
-- | A <a>Trav</a> uses an glues together <a>Applicative</a> actions with
-- (*>) in the manner of <tt>traverse_</tt> from <a>Data.Foldable</a>.
-- Any values returned by reduced actions are discarded.
newtype Trav f
Trav :: f () -> Trav f
[getTrav] :: Trav f -> f ()
-- | A <a>App</a> turns any <a>Apply</a> wrapped around a <a>Semigroup</a>
-- into a <a>Semigroup</a>
newtype App f m
App :: f m -> App f m
[getApp] :: App f m -> f m
instance Data.Functor.Bind.Class.Apply f => Data.Functor.Bind.Class.Apply (Data.Semigroup.Apply.App f)
instance GHC.Base.Functor f => GHC.Base.Functor (Data.Semigroup.Apply.App f)
instance Data.Functor.Bind.Class.Apply f => Data.Semigroup.Semigroup (Data.Semigroup.Apply.Trav f)
instance Data.Functor.Bind.Class.Apply f => Data.Semigroup.Reducer.Reducer (f a) (Data.Semigroup.Apply.Trav f)
instance (Data.Functor.Bind.Class.Apply f, Data.Semigroup.Semigroup m) => Data.Semigroup.Semigroup (Data.Semigroup.Apply.App f m)
instance (Data.Functor.Bind.Class.Apply f, Data.Semigroup.Reducer.Reducer c m) => Data.Semigroup.Reducer.Reducer (f c) (Data.Semigroup.Apply.App f m)
-- | A semigroup for working <a>Alt</a> or <a>Plus</a>
module Data.Semigroup.Alt
-- | A <a>Alter</a> turns any <a>Alt</a> instance into a <a>Semigroup</a>.
newtype Alter f a
Alter :: f a -> Alter f a
[getAlter] :: Alter f a -> f a
instance Data.Functor.Plus.Plus f => Data.Functor.Plus.Plus (Data.Semigroup.Alt.Alter f)
instance GHC.Base.Functor f => GHC.Base.Functor (Data.Semigroup.Alt.Alter f)
instance Data.Functor.Alt.Alt f => Data.Functor.Alt.Alt (Data.Semigroup.Alt.Alter f)
instance Data.Functor.Alt.Alt f => Data.Semigroup.Semigroup (Data.Semigroup.Alt.Alter f a)
instance Data.Functor.Plus.Plus f => GHC.Base.Monoid (Data.Semigroup.Alt.Alter f a)
instance Data.Functor.Alt.Alt f => Data.Semigroup.Reducer.Reducer (f a) (Data.Semigroup.Alt.Alter f a)
-- | A simple <a>Monoid</a> transformer that takes a <a>Monoid</a> m and
-- produces a new <tt>m</tt>-Reducer named <a>Self</a> <tt>m</tt>
--
-- This is useful when you have a generator that already contains
-- monoidal values or someone supplies the map to the monoid in the form
-- of a function rather than as a <a>Reducer</a> instance. You can just
-- <tt><a>getSelf</a> . <tt>reduce</tt></tt> or <tt><a>getSelf</a> .
-- <tt>mapReduce</tt> f</tt> in those scenarios. These behaviors are
-- encapsulated into the <tt>fold</tt> and <a>foldMap</a> combinators in
-- <a>Data.Monoid.Combinators</a> respectively.
module Data.Semigroup.Self
newtype Self m
Self :: m -> Self m
[getSelf] :: Self m -> m
instance GHC.Base.Monoid m => GHC.Base.Monoid (Data.Semigroup.Self.Self m)
instance Data.Semigroup.Semigroup m => Data.Semigroup.Semigroup (Data.Semigroup.Self.Self m)
instance Data.Semigroup.Semigroup m => Data.Semigroup.Reducer.Reducer m (Data.Semigroup.Self.Self m)
instance GHC.Base.Functor Data.Semigroup.Self.Self
instance Data.Foldable.Foldable Data.Semigroup.Self.Self
instance Data.Traversable.Traversable Data.Semigroup.Self.Self
instance Data.Semigroup.Foldable.Class.Foldable1 Data.Semigroup.Self.Self
instance Data.Semigroup.Traversable.Class.Traversable1 Data.Semigroup.Self.Self
-- | A <a>Generator</a> <tt>c</tt> is a possibly-specialized container,
-- which contains values of type <a>Elem</a> <tt>c</tt>, and which knows
-- how to efficiently apply a <a>Reducer</a> to extract an answer.
--
-- Since a <a>Generator</a> is not polymorphic in its contents, it is
-- more specialized than <a>Data.Foldable.Foldable</a>, and a
-- <a>Reducer</a> may supply efficient left-to-right and right-to-left
-- reduction strategies that a <a>Generator</a> may avail itself of.
module Data.Generator
-- | minimal definition <a>mapReduce</a> or <a>mapTo</a>
class Generator c where type family Elem c mapReduce f = mapTo f mempty mapTo f m = mappend m . mapReduce f mapFrom f = mappend . mapReduce f
mapReduce :: (Generator c, Reducer e m, Monoid m) => (Elem c -> e) -> c -> m
mapTo :: (Generator c, Reducer e m, Monoid m) => (Elem c -> e) -> m -> c -> m
mapFrom :: (Generator c, Reducer e m, Monoid m) => (Elem c -> e) -> c -> m -> m
-- | a <a>Generator</a> transformer that asks only for the keys of an
-- indexed container
newtype Keys c
Keys :: c -> Keys c
[getKeys] :: Keys c -> c
-- | a <a>Generator</a> transformer that asks only for the values contained
-- in an indexed container
newtype Values c
Values :: c -> Values c
[getValues] :: Values c -> c
-- | a <a>Generator</a> transformer that treats <a>Word8</a> as <a>Char</a>
-- This lets you use a <tt>ByteString</tt> as a <a>Char</a> source
-- without going through a <a>Monoid</a> transformer like <tt>UTF8</tt>
newtype Char8 c
Char8 :: c -> Char8 c
[getChar8] :: Char8 c -> c
-- | Apply a <a>Reducer</a> directly to the elements of a <a>Generator</a>
reduce :: (Generator c, Reducer (Elem c) m, Monoid m) => c -> m
mapReduceWith :: (Generator c, Reducer e m, Monoid m) => (m -> n) -> (Elem c -> e) -> c -> n
reduceWith :: (Generator c, Reducer (Elem c) m, Monoid m) => (m -> n) -> c -> n
instance Data.Generator.Generator Data.ByteString.Internal.ByteString
instance Data.Generator.Generator Data.ByteString.Lazy.Internal.ByteString
instance Data.Generator.Generator Data.Text.Internal.Text
instance Data.Generator.Generator [c]
instance Data.Generator.Generator (Data.List.NonEmpty.NonEmpty c)
instance Data.FingerTree.Measured v e => Data.Generator.Generator (Data.FingerTree.FingerTree v e)
instance Data.Generator.Generator (Data.Sequence.Seq c)
instance Data.Generator.Generator Data.IntSet.Base.IntSet
instance Data.Generator.Generator (Data.HashSet.HashSet a)
instance Data.Generator.Generator (Data.Set.Base.Set a)
instance Data.Generator.Generator (Data.IntMap.Base.IntMap v)
instance Data.Generator.Generator (Data.Map.Base.Map k v)
instance Data.Generator.Generator (Data.HashMap.Base.HashMap k v)
instance GHC.Arr.Ix i => Data.Generator.Generator (GHC.Arr.Array i e)
instance Data.Generator.Generator (Data.Generator.Keys (Data.IntMap.Base.IntMap v))
instance Data.Generator.Generator (Data.Generator.Keys (Data.Map.Base.Map k v))
instance GHC.Arr.Ix i => Data.Generator.Generator (Data.Generator.Keys (GHC.Arr.Array i e))
instance Data.Generator.Generator (Data.Generator.Values (Data.IntMap.Base.IntMap v))
instance Data.Generator.Generator (Data.Generator.Values (Data.Map.Base.Map k v))
instance GHC.Arr.Ix i => Data.Generator.Generator (Data.Generator.Values (GHC.Arr.Array i e))
instance Data.Generator.Generator (Data.Generator.Char8 Data.ByteString.Internal.ByteString)
instance Data.Generator.Generator (Data.Generator.Char8 Data.ByteString.Lazy.Internal.ByteString)
-- | Utilities for working with Monoids that conflict with names from the
-- <a>Prelude</a>, <a>Data.Foldable</a>, <a>Control.Monad</a> or
-- elsewhere. Intended to be imported qualified.
--
-- <pre>
-- import Data.Generator.Combinators as Generator
-- </pre>
module Data.Generator.Combinators
-- | Efficiently <a>mapReduce</a> a <a>Generator</a> using the
-- <a>Action</a> monoid. A specialized version of its namesake from
-- <a>Data.Foldable</a> and <a>Control.Monad</a>
--
-- <pre>
-- <a>mapReduceWith</a> <a>getAction</a>
-- </pre>
mapM_ :: (Generator c, Monad m) => (Elem c -> m b) -> c -> m ()
-- | Convenience function as found in <a>Data.Foldable</a> and
-- <a>Control.Monad</a>
--
-- <pre>
-- <a>flip</a> <a>mapM_</a>
-- </pre>
forM_ :: (Generator c, Monad m) => c -> (Elem c -> m b) -> m ()
-- | The sum of a collection of actions, generalizing <a>concat</a>
--
-- <pre>
-- <a>reduceWith</a> <a>getMonadSum</a>
-- </pre>
msum :: (Generator c, MonadPlus m, m a ~ Elem c) => c -> m a
-- | Efficiently <a>mapReduce</a> a <a>Generator</a> using the
-- <a>Traversal</a> monoid. A specialized version of its namesake from
-- <a>Data.Foldable</a>
--
-- <pre>
-- <a>mapReduce</a> <a>getTraversal</a>
-- </pre>
traverse_ :: (Generator c, Applicative f) => (Elem c -> f b) -> c -> f ()
-- | Convenience function as found in <a>Data.Foldable</a>
--
-- <pre>
-- <a>flip</a> <a>traverse_</a>
-- </pre>
for_ :: (Generator c, Applicative f) => c -> (Elem c -> f b) -> f ()
-- | The sum of a collection of actions, generalizing <a>concat</a>
--
-- <pre>
-- <a>reduceWith</a> <tt>getAlt</tt>
-- </pre>
asum :: (Generator c, Alternative f, f a ~ Elem c) => c -> f a
-- | Efficiently <a>reduce</a> a <a>Generator</a> that contains values of
-- type <a>Bool</a>
--
-- <pre>
-- <a>reduceWith</a> <a>getAll</a>
-- </pre>
and :: (Generator c, Elem c ~ Bool) => c -> Bool
-- | Efficiently <a>reduce</a> a <a>Generator</a> that contains values of
-- type <a>Bool</a>
--
-- <pre>
-- <a>reduceWith</a> <a>getAny</a>
-- </pre>
or :: (Generator c, Elem c ~ Bool) => c -> Bool
-- | Efficiently <a>mapReduce</a> any <a>Generator</a> checking to see if
-- any of its values match the supplied predicate
--
-- <pre>
-- <a>mapReduceWith</a> <a>getAny</a>
-- </pre>
any :: Generator c => (Elem c -> Bool) -> c -> Bool
-- | Efficiently <a>mapReduce</a> any <a>Generator</a> checking to see if
-- all of its values match the supplied predicate
--
-- <pre>
-- <a>mapReduceWith</a> <a>getAll</a>
-- </pre>
all :: Generator c => (Elem c -> Bool) -> c -> Bool
-- | Efficiently <a>mapReduce</a> a <a>Generator</a> using the
-- <a>WrappedMonoid</a> monoid. A specialized version of its namesake
-- from <a>Data.Foldable</a>
--
-- <pre>
-- <a>mapReduceWith</a> <a>unwrapMonoid</a>
-- </pre>
foldMap :: (Monoid m, Generator c) => (Elem c -> m) -> c -> m
-- | Efficiently <a>reduce</a> a <a>Generator</a> using the
-- <a>WrappedMonoid</a> monoid. A specialized version of its namesake
-- from <a>Data.Foldable</a>
--
-- <pre>
-- <a>reduceWith</a> <a>unwrapMonoid</a>
-- </pre>
fold :: (Monoid m, Generator c, Elem c ~ m) => c -> m
-- | Convert any <a>Generator</a> to a list of its contents. Specialization
-- of <a>reduce</a>
toList :: Generator c => c -> [Elem c]
-- | Type specialization of "foldMap" above
concatMap :: Generator c => (Elem c -> [b]) -> c -> [b]
-- | Check to see if <a>any</a> member of the <a>Generator</a> matches the
-- supplied value
elem :: (Generator c, Eq (Elem c)) => Elem c -> c -> Bool
-- | Efficiently <a>mapReduce</a> a subset of the elements in a
-- <a>Generator</a>
filter :: (Generator c, Reducer (Elem c) m, Monoid m) => (Elem c -> Bool) -> c -> m
-- | Allows idiomatic specialization of filter by proving a function that
-- will be used to transform the output
filterWith :: (Generator c, Reducer (Elem c) m, Monoid m) => (m -> n) -> (Elem c -> Bool) -> c -> n
-- | Efficiently sum over the members of any <a>Generator</a>
--
-- <pre>
-- <a>reduceWith</a> <a>getSum</a>
-- </pre>
sum :: (Generator c, Num (Elem c)) => c -> Elem c
-- | Efficiently take the product of every member of a <a>Generator</a>
--
-- <pre>
-- <a>reduceWith</a> <a>getProduct</a>
-- </pre>
product :: (Generator c, Num (Elem c)) => c -> Elem c
-- | Check to make sure that the supplied value is not a member of the
-- <a>Generator</a>
notElem :: (Generator c, Eq (Elem c)) => Elem c -> c -> Bool
-- | A <a>Generator1</a> <tt>c</tt> is a possibly-specialized container,
-- which contains values of type <a>Elem</a> <tt>c</tt>, and which knows
-- how to efficiently apply a <a>Reducer</a> to extract an answer.
--
-- <a>Generator1</a> is to <a>Generator</a> as <a>Foldable1</a> is to
-- <a>Foldable</a>.
module Data.Semigroup.Generator
-- | minimal definition <a>mapReduce1</a> or <a>mapTo1</a>
class Generator c => Generator1 c where mapTo1 f m = (<>) m . mapReduce1 f mapFrom1 f = (<>) . mapReduce1 f
mapReduce1 :: (Generator1 c, Reducer e m) => (Elem c -> e) -> c -> m
mapTo1 :: (Generator1 c, Reducer e m) => (Elem c -> e) -> m -> c -> m
mapFrom1 :: (Generator1 c, Reducer e m) => (Elem c -> e) -> c -> m -> m
-- | Apply a <a>Reducer</a> directly to the elements of a <a>Generator</a>
reduce1 :: (Generator1 c, Reducer (Elem c) m) => c -> m
mapReduceWith1 :: (Generator1 c, Reducer e m) => (m -> n) -> (Elem c -> e) -> c -> n
reduceWith1 :: (Generator1 c, Reducer (Elem c) m) => (m -> n) -> c -> n
instance Data.Semigroup.Generator.Generator1 (Data.List.NonEmpty.NonEmpty e)
|