This file is indexed.

/usr/share/doc/libghc-foldl-doc/html/foldl.txt is in libghc-foldl-doc 1.1.2-1build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
-- Hoogle documentation, generated by Haddock
-- See Hoogle, http://www.haskell.org/hoogle/


-- | Composable, streaming, and efficient left folds
--   
--   This library provides strict left folds that stream in constant
--   memory, and you can combine folds using <tt>Applicative</tt> style to
--   derive new folds. Derived folds still traverse the container just once
--   and are often as efficient as hand-written folds.
@package foldl
@version 1.1.2


-- | This module provides efficient and streaming left folds that you can
--   combine using <a>Applicative</a> style.
--   
--   Import this module qualified to avoid clashing with the Prelude:
--   
--   <pre>
--   &gt;&gt;&gt; import qualified Control.Foldl as L
--   </pre>
--   
--   Use <a>fold</a> to apply a <a>Fold</a> to a list:
--   
--   <pre>
--   &gt;&gt;&gt; L.fold L.sum [1..100]
--   5050
--   </pre>
--   
--   <a>Fold</a>s are <a>Applicative</a>s, so you can combine them using
--   <a>Applicative</a> combinators:
--   
--   <pre>
--   &gt;&gt;&gt; import Control.Applicative
--   
--   &gt;&gt;&gt; let average = (/) &lt;$&gt; L.sum &lt;*&gt; L.genericLength
--   </pre>
--   
--   Taking the sum, the sum of squares, ..., upto the sum of x^5
--   
--   <pre>
--   &gt;&gt;&gt; import Data.Traversable
--   
--   &gt;&gt;&gt; let powerSums = sequenceA [premap (^n) L.sum | n &lt;- [1..5]]
--   
--   &gt;&gt;&gt; L.fold powerSums [1..10]
--   [55,385,3025,25333,220825]
--   </pre>
--   
--   These combined folds will still traverse the list only once, streaming
--   efficiently over the list in constant space without space leaks:
--   
--   <pre>
--   &gt;&gt;&gt; L.fold average [1..10000000]
--   5000000.5
--   
--   &gt;&gt;&gt; L.fold ((,) &lt;$&gt; L.minimum &lt;*&gt; L.maximum) [1..10000000]
--   (Just 1,Just 10000000)
--   </pre>
module Control.Foldl

-- | Efficient representation of a left fold that preserves the fold's step
--   function, initial accumulator, and extraction function
--   
--   This allows the <a>Applicative</a> instance to assemble derived folds
--   that traverse the container only once
--   
--   A '<a>Fold</a> a b' processes elements of type <b>a</b> and results in
--   a value of type <b>b</b>.
data Fold a b

-- | <tt>Fold </tt> <tt> step </tt> <tt> initial </tt> <tt> extract</tt>
Fold :: (x -> a -> x) -> x -> (x -> b) -> Fold a b

-- | Like <a>Fold</a>, but monadic.
--   
--   A '<a>FoldM</a> m a b' processes elements of type <b>a</b> and results
--   in a monadic value of type <b>m b</b>.
data FoldM m a b

-- | <tt>FoldM </tt> <tt> step </tt> <tt> initial </tt> <tt> extract</tt>
FoldM :: (x -> a -> m x) -> (m x) -> (x -> m b) -> FoldM m a b

-- | Apply a strict left <a>Fold</a> to a <a>Foldable</a> container
fold :: Foldable f => Fold a b -> f a -> b

-- | Like <a>fold</a>, but monadic
foldM :: (Foldable f, Monad m) => FoldM m a b -> f a -> m b

-- | Convert a strict left <a>Fold</a> into a scan
scan :: Fold a b -> [a] -> [b]

-- | Fold all values within a container using <a>mappend</a> and
--   <a>mempty</a>
mconcat :: Monoid a => Fold a a

-- | Convert a "<tt>foldMap</tt>" to a <a>Fold</a>
foldMap :: Monoid w => (a -> w) -> (w -> b) -> Fold a b

-- | Get the first element of a container or return <a>Nothing</a> if the
--   container is empty
head :: Fold a (Maybe a)

-- | Get the last element of a container or return <a>Nothing</a> if the
--   container is empty
last :: Fold a (Maybe a)

-- | Get the last element of a container or return a default value if the
--   container is empty
lastDef :: a -> Fold a a

-- | Return the last N elements
lastN :: Int -> Fold a [a]

-- | Returns <a>True</a> if the container is empty, <a>False</a> otherwise
null :: Fold a Bool

-- | Return the length of the container
length :: Fold a Int

-- | Returns <a>True</a> if all elements are <a>True</a>, <a>False</a>
--   otherwise
and :: Fold Bool Bool

-- | Returns <a>True</a> if any element is <a>True</a>, <a>False</a>
--   otherwise
or :: Fold Bool Bool

-- | <tt>(all predicate)</tt> returns <a>True</a> if all elements satisfy
--   the predicate, <a>False</a> otherwise
all :: (a -> Bool) -> Fold a Bool

-- | <tt>(any predicate)</tt> returns <a>True</a> if any element satisfies
--   the predicate, <a>False</a> otherwise
any :: (a -> Bool) -> Fold a Bool

-- | Computes the sum of all elements
sum :: Num a => Fold a a

-- | Computes the product all elements
product :: Num a => Fold a a

-- | Computes the maximum element
maximum :: Ord a => Fold a (Maybe a)

-- | Computes the minimum element
minimum :: Ord a => Fold a (Maybe a)

-- | <tt>(elem a)</tt> returns <a>True</a> if the container has an element
--   equal to <tt>a</tt>, <a>False</a> otherwise
elem :: Eq a => a -> Fold a Bool

-- | <tt>(notElem a)</tt> returns <a>False</a> if the container has an
--   element equal to <tt>a</tt>, <a>True</a> otherwise
notElem :: Eq a => a -> Fold a Bool

-- | <tt>(find predicate)</tt> returns the first element that satisfies the
--   predicate or <a>Nothing</a> if no element satisfies the predicate
find :: (a -> Bool) -> Fold a (Maybe a)

-- | <tt>(index n)</tt> returns the <tt>n</tt>th element of the container,
--   or <a>Nothing</a> if the container has an insufficient number of
--   elements
index :: Int -> Fold a (Maybe a)

-- | <tt>(elemIndex a)</tt> returns the index of the first element that
--   equals <tt>a</tt>, or <a>Nothing</a> if no element matches
elemIndex :: Eq a => a -> Fold a (Maybe Int)

-- | <tt>(findIndex predicate)</tt> returns the index of the first element
--   that satisfies the predicate, or <a>Nothing</a> if no element
--   satisfies the predicate
findIndex :: (a -> Bool) -> Fold a (Maybe Int)

-- | Pick a random element, using reservoir sampling
random :: FoldM IO a (Maybe a)

-- | Pick several random elements, using reservoir sampling
randomN :: Vector v a => Int -> FoldM IO a (Maybe (v a))

-- | Converts an effectful function to a fold
--   
--   <pre>
--   sink (f &lt;&gt; g) = sink f &lt;&gt; sink g -- if `(&lt;&gt;)` is commutative
--   sink mempty = mempty
--   </pre>
sink :: (Monoid w, Monad m) => (a -> m w) -> FoldM m a w

-- | Like <a>length</a>, except with a more general <a>Num</a> return value
genericLength :: Num b => Fold a b

-- | Like <a>index</a>, except with a more general <a>Integral</a> argument
genericIndex :: Integral i => i -> Fold a (Maybe a)

-- | Fold all values into a list
list :: Fold a [a]

-- | Fold all values into a list, in reverse order
revList :: Fold a [a]

-- | <i>O(n log n)</i>. Fold values into a list with duplicates removed,
--   while preserving their first occurrences
nub :: Ord a => Fold a [a]

-- | <i>O(n^2)</i>. Fold values into a list with duplicates removed, while
--   preserving their first occurrences
eqNub :: Eq a => Fold a [a]

-- | Fold values into a set
set :: Ord a => Fold a (Set a)

-- | Fold all values into a vector
vector :: (PrimMonad m, Vector v a) => FoldM m a (v a)

-- | Upgrade a fold to accept the <a>Fold</a> type
purely :: (forall x. (x -> a -> x) -> x -> (x -> b) -> r) -> Fold a b -> r

-- | Upgrade a monadic fold to accept the <a>FoldM</a> type
impurely :: Monad m => (forall x. (x -> a -> m x) -> m x -> (x -> m b) -> r) -> FoldM m a b -> r

-- | Generalize a <a>Fold</a> to a <a>FoldM</a>
--   
--   <pre>
--   generalize (pure r) = pure r
--   
--   generalize (f &lt;*&gt; x) = generalize f &lt;*&gt; generalize x
--   </pre>
generalize :: Monad m => Fold a b -> FoldM m a b

-- | Simplify a pure <a>FoldM</a> to a <a>Fold</a>
--   
--   <pre>
--   simplify (pure r) = pure r
--   
--   simplify (f &lt;*&gt; x) = simplify f &lt;*&gt; simplify x
--   </pre>
simplify :: FoldM Identity a b -> Fold a b

-- | Allows to continue feeding a <a>FoldM</a> even after passing it to a
--   function that closes it.
--   
--   For pure <a>Fold</a>s, this is provided by the <a>Comonad</a>
--   instance.
duplicateM :: Applicative m => FoldM m a b -> FoldM m a (FoldM m a b)

-- | <tt>_Fold1 step</tt> returns a new <a>Fold</a> using just a step
--   function that has the same type for the accumulator and the element.
--   The result type is the accumulator type wrapped in <a>Maybe</a>. The
--   initial accumulator is retrieved from the <a>Foldable</a>, the result
--   is <tt>None</tt> for empty containers.
_Fold1 :: (a -> a -> a) -> Fold a (Maybe a)

-- | <tt>(premap f folder)</tt> returns a new <a>Fold</a> where f is
--   applied at each step
--   
--   <pre>
--   fold (premap f folder) list = fold folder (map f list)
--   </pre>
--   
--   <pre>
--   &gt;&gt;&gt; fold (premap Sum mconcat) [1..10]
--   Sum {getSum = 55}
--   </pre>
--   
--   <pre>
--   &gt;&gt;&gt; fold mconcat (map Sum [1..10])
--   Sum {getSum = 55}
--   </pre>
--   
--   <pre>
--   premap id = id
--   
--   premap (f . g) = premap g . premap f
--   </pre>
--   
--   <pre>
--   premap k (pure r) = pure r
--   
--   premap k (f &lt;*&gt; x) = premap k f &lt;*&gt; premap k x
--   </pre>
premap :: (a -> b) -> Fold b r -> Fold a r

-- | <tt>(premapM f folder)</tt> returns a new <a>FoldM</a> where f is
--   applied to each input element
--   
--   <pre>
--   foldM (premapM f folder) list = foldM folder (map f list)
--   </pre>
--   
--   <pre>
--   premapM id = id
--   
--   premapM (f . g) = premap g . premap f
--   </pre>
--   
--   <pre>
--   premapM k (pure r) = pure r
--   
--   premapM k (f &lt;*&gt; x) = premapM k f &lt;*&gt; premapM k x
--   </pre>
premapM :: (a -> b) -> FoldM m b r -> FoldM m a r

-- | A handler for the upstream input of a <a>Fold</a>
--   
--   Any lens, traversal, or prism will type-check as a <a>Handler</a>
type Handler a b = forall x. (b -> Constant (Endo x) b) -> a -> Constant (Endo x) a

-- | <tt>(handles t folder)</tt> transforms the input of a <a>Fold</a>
--   using a lens, traversal, or prism:
--   
--   <pre>
--   handles _1       :: Fold a r -&gt; Fold (a, b) r
--   handles _Left    :: Fold a r -&gt; Fold (Either a b) r
--   handles traverse :: Traversable t =&gt; Fold a r -&gt; Fold (t a) r
--   </pre>
--   
--   <pre>
--   &gt;&gt;&gt; fold (handles traverse sum) [[1..5],[6..10]]
--   55
--   </pre>
--   
--   <pre>
--   &gt;&gt;&gt; fold (handles (traverse.traverse) sum) [[Nothing, Just 2, Just 7],[Just 13, Nothing, Just 20]]
--   42
--   </pre>
--   
--   <pre>
--   &gt;&gt;&gt; fold (handles (filtered even) sum) [1,3,5,7,21,21]
--   42
--   </pre>
--   
--   <pre>
--   &gt;&gt;&gt; fold (handles _2 mconcat) [(1,"Hello "),(2,"World"),(3,"!")]
--   "Hello World!"
--   </pre>
--   
--   <pre>
--   handles id = id
--   
--   handles (f . g) = handles f . handles g
--   </pre>
--   
--   <pre>
--   handles t (pure r) = pure r
--   
--   handles t (f &lt;*&gt; x) = handles t f &lt;*&gt; handles t x
--   </pre>
handles :: Handler a b -> Fold b r -> Fold a r

-- | <pre>
--   instance Monad m =&gt; Monoid (EndoM m a) where
--       mempty = EndoM return
--       mappend (EndoM f) (EndoM g) = EndoM (f &gt;=&gt; g)
--   </pre>
newtype EndoM m a
EndoM :: (a -> m a) -> EndoM m a
[appEndoM] :: EndoM m a -> a -> m a

-- | A Handler for the upstream input of <a>FoldM</a>
--   
--   Any lens, traversal, or prism will type-check as a <a>HandlerM</a>
type HandlerM m a b = forall x. (b -> Constant (EndoM m x) b) -> a -> Constant (EndoM m x) a

-- | <tt>(handlesM t folder)</tt> transforms the input of a <a>FoldM</a>
--   using a lens, traversal, or prism:
--   
--   <pre>
--   handlesM _1       :: FoldM m a r -&gt; FoldM (a, b) r
--   handlesM _Left    :: FoldM m a r -&gt; FoldM (Either a b) r
--   handlesM traverse :: Traversable t =&gt; FoldM m a r -&gt; FoldM m (t a) r
--   </pre>
--   
--   <a>handlesM</a> obeys these laws:
--   
--   <pre>
--   handlesM id = id
--   
--   handlesM (f . g) = handlesM f . handlesM g
--   </pre>
--   
--   <pre>
--   handlesM t (pure r) = pure r
--   
--   handlesM t (f &lt;*&gt; x) = handlesM t f &lt;*&gt; handlesM t x
--   </pre>
handlesM :: Monad m => HandlerM m a b -> FoldM m b r -> FoldM m a r
instance GHC.Base.Functor (Control.Foldl.Fold a)
instance Data.Profunctor.Unsafe.Profunctor Control.Foldl.Fold
instance Control.Comonad.Comonad (Control.Foldl.Fold a)
instance GHC.Base.Applicative (Control.Foldl.Fold a)
instance GHC.Base.Monoid b => GHC.Base.Monoid (Control.Foldl.Fold a b)
instance GHC.Num.Num b => GHC.Num.Num (Control.Foldl.Fold a b)
instance GHC.Real.Fractional b => GHC.Real.Fractional (Control.Foldl.Fold a b)
instance GHC.Float.Floating b => GHC.Float.Floating (Control.Foldl.Fold a b)
instance GHC.Base.Monad m => GHC.Base.Functor (Control.Foldl.FoldM m a)
instance GHC.Base.Monad m => GHC.Base.Applicative (Control.Foldl.FoldM m a)
instance GHC.Base.Monad m => Data.Profunctor.Unsafe.Profunctor (Control.Foldl.FoldM m)
instance (GHC.Base.Monoid b, GHC.Base.Monad m) => GHC.Base.Monoid (Control.Foldl.FoldM m a b)
instance (GHC.Base.Monad m, GHC.Num.Num b) => GHC.Num.Num (Control.Foldl.FoldM m a b)
instance (GHC.Base.Monad m, GHC.Real.Fractional b) => GHC.Real.Fractional (Control.Foldl.FoldM m a b)
instance (GHC.Base.Monad m, GHC.Float.Floating b) => GHC.Float.Floating (Control.Foldl.FoldM m a b)
instance GHC.Base.Monad m => GHC.Base.Monoid (Control.Foldl.EndoM m a)


-- | Folds for byte streams
module Control.Foldl.ByteString

-- | Apply a strict left <a>Fold</a> to a lazy bytestring
fold :: Fold ByteString a -> ByteString -> a

-- | Get the first byte of a byte stream or return <a>Nothing</a> if the
--   stream is empty
head :: Fold ByteString (Maybe Word8)

-- | Get the last byte of a byte stream or return <a>Nothing</a> if the
--   byte stream is empty
last :: Fold ByteString (Maybe Word8)

-- | Returns <a>True</a> if the byte stream is empty, <a>False</a>
--   otherwise
null :: Fold ByteString Bool

-- | Return the length of the byte stream in bytes
length :: Num n => Fold ByteString n

-- | <tt>(any predicate)</tt> returns <a>True</a> if any byte satisfies the
--   predicate, <a>False</a> otherwise
any :: (Word8 -> Bool) -> Fold ByteString Bool

-- | <tt>(all predicate)</tt> returns <a>True</a> if all bytes satisfy the
--   predicate, <a>False</a> otherwise
all :: (Word8 -> Bool) -> Fold ByteString Bool

-- | Computes the maximum byte
maximum :: Fold ByteString (Maybe Word8)

-- | Computes the minimum byte
minimum :: Fold ByteString (Maybe Word8)

-- | <tt>(elem w8)</tt> returns <a>True</a> if the byte stream has a byte
--   equal to <tt>w8</tt>, <a>False</a> otherwise
elem :: Word8 -> Fold ByteString Bool

-- | <tt>(notElem w8)</tt> returns <a>False</a> if the byte stream has a
--   byte equal to <tt>w8</tt>, <a>True</a> otherwise
notElem :: Word8 -> Fold ByteString Bool

-- | <tt>(find predicate)</tt> returns the first byte that satisfies the
--   predicate or <a>Nothing</a> if no byte satisfies the predicate
find :: (Word8 -> Bool) -> Fold ByteString (Maybe Word8)

-- | <tt>(index n)</tt> returns the <tt>n</tt>th byte of the byte stream,
--   or <a>Nothing</a> if the stream has an insufficient number of bytes
index :: Integral n => n -> Fold ByteString (Maybe Word8)

-- | <tt>(elemIndex w8)</tt> returns the index of the first byte that
--   equals <tt>w8</tt>, or <a>Nothing</a> if no byte matches
elemIndex :: Num n => Word8 -> Fold ByteString (Maybe n)

-- | <tt>(findIndex predicate)</tt> returns the index of the first byte
--   that satisfies the predicate, or <a>Nothing</a> if no byte satisfies
--   the predicate
findIndex :: Num n => (Word8 -> Bool) -> Fold ByteString (Maybe n)

-- | <tt>count w8</tt> returns the number of times <tt>w8</tt> appears
count :: Num n => Word8 -> Fold ByteString n


-- | Folds for text streams
module Control.Foldl.Text

-- | Apply a strict left <a>Fold</a> to lazy text
fold :: Fold Text a -> Text -> a

-- | Get the first character of a text stream or return <a>Nothing</a> if
--   the stream is empty
head :: Fold Text (Maybe Char)

-- | Get the last character of a text stream or return <a>Nothing</a> if
--   the text stream is empty
last :: Fold Text (Maybe Char)

-- | Returns <a>True</a> if the text stream is empty, <a>False</a>
--   otherwise
null :: Fold Text Bool

-- | Return the length of the text stream in characters
length :: Num n => Fold Text n

-- | <tt>(any predicate)</tt> returns <a>True</a> if any character
--   satisfies the predicate, <a>False</a> otherwise
any :: (Char -> Bool) -> Fold Text Bool

-- | <tt>(all predicate)</tt> returns <a>True</a> if all characters satisfy
--   the predicate, <a>False</a> otherwise
all :: (Char -> Bool) -> Fold Text Bool

-- | Computes the maximum character
maximum :: Fold Text (Maybe Char)

-- | Computes the minimum character
minimum :: Fold Text (Maybe Char)

-- | <tt>(elem c)</tt> returns <a>True</a> if the text stream has a
--   character equal to <tt>c</tt>, <a>False</a> otherwise
elem :: Char -> Fold Text Bool

-- | <tt>(notElem c)</tt> returns <a>False</a> if the text stream has a
--   character equal to <tt>c</tt>, <a>True</a> otherwise
notElem :: Char -> Fold Text Bool

-- | <tt>(find predicate)</tt> returns the first character that satisfies
--   the predicate or <a>Nothing</a> if no character satisfies the
--   predicate
find :: (Char -> Bool) -> Fold Text (Maybe Char)

-- | <tt>(index n)</tt> returns the <tt>n</tt>th character of the text
--   stream, or <a>Nothing</a> if the stream has an insufficient number of
--   characters
index :: Integral n => n -> Fold Text (Maybe Char)

-- | <tt>(elemIndex c)</tt> returns the index of the first character that
--   equals <tt>c</tt>, or <a>Nothing</a> if no character matches
elemIndex :: Num n => Char -> Fold Text (Maybe n)

-- | <tt>(findIndex predicate)</tt> returns the index of the first
--   character that satisfies the predicate, or <a>Nothing</a> if no
--   character satisfies the predicate
findIndex :: Num n => (Char -> Bool) -> Fold Text (Maybe n)

-- | <tt>(count c)</tt> returns the number of times <tt>c</tt> appears
count :: Num n => Char -> Fold Text n