This file is indexed.

/usr/include/dune/localfunctions/raviartthomas/raviartthomassimplex/raviartthomassimplexinterpolation.hh is in libdune-localfunctions-dev 2.4.1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
// -*- tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 2 -*-
// vi: set et ts=4 sw=2 sts=2:
#ifndef DUNE_RAVIARTTHOMASINTERPOLATION_HH
#define DUNE_RAVIARTTHOMASINTERPOLATION_HH

#include <fstream>
#include <utility>

#include <dune/common/exceptions.hh>
#include <dune/common/forloop.hh>

#include <dune/geometry/topologyfactory.hh>
#include <dune/geometry/referenceelements.hh>
#include <dune/geometry/quadraturerules.hh>

#include <dune/localfunctions/common/localkey.hh>
#include <dune/localfunctions/utility/interpolationhelper.hh>
#include <dune/localfunctions/utility/polynomialbasis.hh>
#include <dune/localfunctions/orthonormal/orthonormalbasis.hh>

namespace Dune
{

  // LocalCoefficientsContainer
  // -------------------
  template < unsigned int dim >
  struct RaviartThomasCoefficientsFactory;
  template < unsigned int dim, class Field >
  struct RaviartThomasL2InterpolationFactory;

  class LocalCoefficientsContainer
  {
    typedef LocalCoefficientsContainer This;

  public:
    template <class Setter>
    LocalCoefficientsContainer ( const Setter &setter )
    {
      setter.setLocalKeys(localKey_);
    }

    const LocalKey &localKey ( const unsigned int i ) const
    {
      assert( i < size() );
      return localKey_[ i ];
    }

    unsigned int size () const
    {
      return localKey_.size();
    }

  private:
    std::vector< LocalKey > localKey_;
  };

  template < unsigned int dim >
  struct RaviartThomasCoefficientsFactoryTraits
  {
    static const unsigned int dimension = dim;
    typedef const LocalCoefficientsContainer Object;
    typedef unsigned int Key;
    typedef RaviartThomasCoefficientsFactory<dim> Factory;
  };
  template < unsigned int dim >
  struct RaviartThomasCoefficientsFactory :
    public TopologyFactory< RaviartThomasCoefficientsFactoryTraits<dim> >
  {
    typedef RaviartThomasCoefficientsFactoryTraits<dim> Traits;
    template <class Topology>
    static typename Traits::Object *createObject( const typename Traits::Key &key )
    {
      typedef RaviartThomasL2InterpolationFactory<dim,double> InterpolationFactory;
      if (! supports<Topology>(key) )
        return 0;
      typename InterpolationFactory::Object *interpol
        = InterpolationFactory::template create<Topology>(key);
      typename Traits::Object *localKeys = new typename Traits::Object(*interpol);
      InterpolationFactory::release(interpol);
      return localKeys;
    }
    template< class Topology >
    static bool supports ( const typename Traits::Key &key )
    {
      return GenericGeometry::IsSimplex<Topology>::value;
    }
  };

  // LocalInterpolation
  // -------------------

  // -----------------------------------------
  // RTL2InterpolationBuilder
  // -----------------------------------------
  // L2 Interpolation requires:
  // - for element
  //   - test basis
  // - for each face (dynamic)
  //   - test basis
  //   - normal
  template <unsigned int dim, class Field>
  struct RTL2InterpolationBuilder
  {
    static const unsigned int dimension = dim;
    typedef OrthonormalBasisFactory<dimension,Field> TestBasisFactory;
    typedef typename TestBasisFactory::Object TestBasis;
    typedef OrthonormalBasisFactory<dimension-1,Field> TestFaceBasisFactory;
    typedef typename TestFaceBasisFactory::Object TestFaceBasis;
    typedef FieldVector<Field,dimension> Normal;

    RTL2InterpolationBuilder()
    {}

    ~RTL2InterpolationBuilder()
    {
      TestBasisFactory::release(testBasis_);
      for (unsigned int i=0; i<faceStructure_.size(); ++i)
        TestFaceBasisFactory::release(faceStructure_[i].basis_);
    }

    unsigned int topologyId() const
    {
      return topologyId_;
    }
    unsigned int order() const
    {
      return order_;
    }
    unsigned int faceSize() const
    {
      return faceSize_;
    }
    TestBasis *testBasis() const
    {
      return testBasis_;
    }
    TestFaceBasis *testFaceBasis( unsigned int f ) const
    {
      assert( f < faceSize() );
      return faceStructure_[f].basis_;
    }
    const Normal &normal( unsigned int f ) const
    {
      return *(faceStructure_[f].normal_);
    }

    template <class Topology>
    void build(unsigned int order)
    {
      order_ = order;
      topologyId_ = Topology::id;
      if (order>0)
        testBasis_ = TestBasisFactory::template create<Topology>(order-1);
      else
        testBasis_ = 0;
      const unsigned int size = GenericGeometry::Size<Topology,1>::value;
      faceSize_ = size;
      faceStructure_.reserve( faceSize_ );
      ForLoop< Creator<Topology>::template GetCodim,0,size-1>::apply(order, faceStructure_ );
      assert( faceStructure_.size() == faceSize_ );
    }

  private:
    struct FaceStructure
    {
      FaceStructure( TestFaceBasis *tfb,
                     const Normal &n )
        : basis_(tfb), normal_(&n)
      {}
      TestFaceBasis *basis_;
      const Dune::FieldVector<Field,dimension> *normal_;
    };
    template < class Topology >
    struct Creator
    {
      template < int face >
      struct GetCodim
      {
        typedef typename GenericGeometry::SubTopology<Topology,1,face>::type FaceTopology;
        static void apply( const unsigned int order,
                           std::vector<FaceStructure> &faceStructure )
        {
          static const int dimTopo = Topology::dimension;
          faceStructure.push_back(
            FaceStructure(
              TestFaceBasisFactory::template create<FaceTopology>(order),
              ReferenceElements<Field,dimTopo>::general(GeometryType( Topology() )).integrationOuterNormal(face)
              ) );
        }
      };
    };

    std::vector<FaceStructure> faceStructure_;
    TestBasis *testBasis_;
    unsigned int topologyId_, order_, faceSize_;
  };

  // A L2 based interpolation for Raviart Thomas
  // --------------------------------------------------
  template< unsigned int dimension, class F>
  class RaviartThomasL2Interpolation
    : public InterpolationHelper<F,dimension>
  {
    typedef RaviartThomasL2Interpolation< dimension, F > This;
    typedef InterpolationHelper<F,dimension> Base;

  public:
    typedef F Field;
    typedef RTL2InterpolationBuilder<dimension,Field> Builder;
    RaviartThomasL2Interpolation( )
      : order_(0),
        size_(0)
    {}

    template< class Function, class Fy >
    void interpolate ( const Function &function, std::vector< Fy > &coefficients ) const
    {
      coefficients.resize(size());
      typename Base::template Helper<Function,std::vector<Fy>,true> func( function,coefficients );
      interpolate(func);
    }
    template< class Basis, class Matrix >
    void interpolate ( const Basis &basis, Matrix &matrix ) const
    {
      matrix.resize( size(), basis.size() );
      typename Base::template Helper<Basis,Matrix,false> func( basis,matrix );
      interpolate(func);
    }

    unsigned int order() const
    {
      return order_;
    }
    unsigned int size() const
    {
      return size_;
    }
    template <class Topology>
    void build( unsigned int order )
    {
      size_ = 0;
      order_ = order;
      builder_.template build<Topology>(order_);
      if (builder_.testBasis())
        size_ += dimension*builder_.testBasis()->size();
      for ( unsigned int f=0; f<builder_.faceSize(); ++f )
        if (builder_.testFaceBasis(f))
          size_ += builder_.testFaceBasis(f)->size();
    }

    void setLocalKeys(std::vector< LocalKey > &keys) const
    {
      keys.resize(size());
      unsigned int row = 0;
      for (unsigned int f=0; f<builder_.faceSize(); ++f)
      {
        if (builder_.faceSize())
          for (unsigned int i=0; i<builder_.testFaceBasis(f)->size(); ++i,++row)
            keys[row] = LocalKey(f,1,i);
      }
      if (builder_.testBasis())
        for (unsigned int i=0; i<builder_.testBasis()->size()*dimension; ++i,++row)
          keys[row] = LocalKey(0,0,i);
      assert( row == size() );
    }

  protected:
    template< class Func, class Container, bool type >
    void interpolate ( typename Base::template Helper<Func,Container,type> &func ) const
    {
      const Dune::GeometryType geoType( builder_.topologyId(), dimension );

      std::vector< Field > testBasisVal;

      for (unsigned int i=0; i<size(); ++i)
        for (unsigned int j=0; j<func.size(); ++j)
          func.set(i,j,0);

      unsigned int row = 0;

      // boundary dofs:
      typedef Dune::QuadratureRule<Field, dimension-1> FaceQuadrature;
      typedef Dune::QuadratureRules<Field, dimension-1> FaceQuadratureRules;

      typedef Dune::ReferenceElements< Field, dimension > RefElements;
      typedef Dune::ReferenceElement< Field, dimension > RefElement;
      typedef typename RefElement::template Codim< 1 >::Geometry Geometry;

      const RefElement &refElement = RefElements::general( geoType );

      for (unsigned int f=0; f<builder_.faceSize(); ++f)
      {
        if (!builder_.testFaceBasis(f))
          continue;
        testBasisVal.resize(builder_.testFaceBasis(f)->size());

        const Geometry &geometry = refElement.template geometry< 1 >( f );
        const Dune::GeometryType subGeoType( geometry.type().id(), dimension-1 );
        const FaceQuadrature &faceQuad = FaceQuadratureRules::rule( subGeoType, 2*order_+2 );

        const unsigned int quadratureSize = faceQuad.size();
        for( unsigned int qi = 0; qi < quadratureSize; ++qi )
        {
          if (dimension>1)
            builder_.testFaceBasis(f)->template evaluate<0>(faceQuad[qi].position(),testBasisVal);
          else
            testBasisVal[0] = 1.;
          fillBnd( row, testBasisVal,
                   func.evaluate( geometry.global( faceQuad[qi].position() ) ),
                   builder_.normal(f), faceQuad[qi].weight(),
                   func);
        }

        row += builder_.testFaceBasis(f)->size();
      }
      // element dofs
      if (builder_.testBasis())
      {
        testBasisVal.resize(builder_.testBasis()->size());

        typedef Dune::QuadratureRule<Field, dimension> Quadrature;
        typedef Dune::QuadratureRules<Field, dimension> QuadratureRules;
        const Quadrature &elemQuad = QuadratureRules::rule( geoType, 2*order_+1 );

        const unsigned int quadratureSize = elemQuad.size();
        for( unsigned int qi = 0; qi < quadratureSize; ++qi )
        {
          builder_.testBasis()->template evaluate<0>(elemQuad[qi].position(),testBasisVal);
          fillInterior( row, testBasisVal,
                        func.evaluate(elemQuad[qi].position()),
                        elemQuad[qi].weight(),
                        func );
        }

        row += builder_.testBasis()->size()*dimension;
      }
      assert(row==size());
    }

  private:
    /** /brief evaluate boundary functionals **/
    template <class MVal, class RTVal,class Matrix>
    void fillBnd (unsigned int startRow,
                  const MVal &mVal,
                  const RTVal &rtVal,
                  const FieldVector<Field,dimension> &normal,
                  const Field &weight,
                  Matrix &matrix) const
    {
      const unsigned int endRow = startRow+mVal.size();
      typename RTVal::const_iterator rtiter = rtVal.begin();
      for ( unsigned int col = 0; col < rtVal.size() ; ++rtiter,++col)
      {
        Field cFactor = (*rtiter)*normal;
        typename MVal::const_iterator miter = mVal.begin();
        for (unsigned int row = startRow;
             row!=endRow; ++miter, ++row )
        {
          matrix.add(row,col, (weight*cFactor)*(*miter) );
        }
        assert( miter == mVal.end() );
      }
    }
    template <class MVal, class RTVal,class Matrix>
    void fillInterior (unsigned int startRow,
                       const MVal &mVal,
                       const RTVal &rtVal,
                       Field weight,
                       Matrix &matrix) const
    {
      const unsigned int endRow = startRow+mVal.size()*dimension;
      typename RTVal::const_iterator rtiter = rtVal.begin();
      for ( unsigned int col = 0; col < rtVal.size() ; ++rtiter,++col)
      {
        typename MVal::const_iterator miter = mVal.begin();
        for (unsigned int row = startRow;
             row!=endRow; ++miter,row+=dimension )
        {
          for (unsigned int i=0; i<dimension; ++i)
          {
            matrix.add(row+i,col, (weight*(*miter))*(*rtiter)[i] );
          }
        }
        assert( miter == mVal.end() );
      }
    }

    Builder builder_;
    unsigned int order_;
    unsigned int size_;
  };

  template < unsigned int dim, class F >
  struct RaviartThomasL2InterpolationFactoryTraits
  {
    static const unsigned int dimension = dim;
    typedef unsigned int Key;
    typedef const RaviartThomasL2Interpolation<dim,F> Object;
    typedef RaviartThomasL2InterpolationFactory<dim,F> Factory;
  };
  template < unsigned int dim, class Field >
  struct RaviartThomasL2InterpolationFactory :
    public TopologyFactory< RaviartThomasL2InterpolationFactoryTraits<dim,Field> >
  {
    typedef RaviartThomasL2InterpolationFactoryTraits<dim,Field> Traits;
    typedef RTL2InterpolationBuilder<dim,Field> Builder;
    typedef typename Traits::Object Object;
    typedef typename remove_const<Object>::type NonConstObject;
    template <class Topology>
    static typename Traits::Object *createObject( const typename Traits::Key &key )
    {
      if ( !supports<Topology>(key) )
        return 0;
      NonConstObject *interpol = new NonConstObject();
      interpol->template build<Topology>(key);
      return interpol;
    }
    template< class Topology >
    static bool supports ( const typename Traits::Key &key )
    {
      return GenericGeometry::IsSimplex<Topology>::value;
    }
  };
}
#endif // DUNE_RAVIARTTHOMASINTERPOLATION_HH