This file is indexed.

/usr/include/dune/localfunctions/lagrange/pk3d/pk3dlocalbasis.hh is in libdune-localfunctions-dev 2.4.1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
// -*- tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 2 -*-
// vi: set et ts=4 sw=2 sts=2:
#ifndef DUNE_PK3DLOCALBASIS_HH
#define DUNE_PK3DLOCALBASIS_HH

#include <dune/common/fmatrix.hh>

#include <dune/localfunctions/common/localbasis.hh>

namespace Dune
{
  /**@ingroup LocalBasisImplementation
     \brief Lagrange shape functions of arbitrary order on the reference tetrahedron.

     Lagrange shape functions of arbitrary order have the property that
     \f$\hat\phi^i(x_j) = \delta_{i,j}\f$ for certain points \f$x_j\f$.

     \tparam D Type to represent the field in the domain.
     \tparam R Type to represent the field in the range.
     \tparam k Polynomial order.

     \nosubgrouping
   */
  template<class D, class R, unsigned int k>
  class Pk3DLocalBasis
  {
  public:
    enum {N = (k+1)*(k+2)*(k+3)/6};
    enum {O = k};

    typedef LocalBasisTraits<D,3,Dune::FieldVector<D,3>,R,1,Dune::FieldVector<R,1>,
        Dune::FieldMatrix<R,1,3> > Traits;

    //! \brief Standard constructor
    Pk3DLocalBasis () {}

    //! \brief number of shape functions
    unsigned int size () const
    {
      return N;
    }

    //! \brief Evaluate all shape functions
    inline void evaluateFunction (const typename Traits::DomainType& x,
                                  std::vector<typename Traits::RangeType>& out) const
    {
      out.resize(N);
      typename Traits::DomainType kx = x;
      kx *= k;
      unsigned int n = 0;
      unsigned int i[4];
      R factor[4];
      for (i[2] = 0; i[2] <= k; ++i[2])
      {
        factor[2] = 1.0;
        for (unsigned int j = 0; j < i[2]; ++j)
          factor[2] *= (kx[2]-j) / (i[2]-j);
        for (i[1] = 0; i[1] <= k - i[2]; ++i[1])
        {
          factor[1] = 1.0;
          for (unsigned int j = 0; j < i[1]; ++j)
            factor[1] *= (kx[1]-j) / (i[1]-j);
          for (i[0] = 0; i[0] <= k - i[1] - i[2]; ++i[0])
          {
            factor[0] = 1.0;
            for (unsigned int j = 0; j < i[0]; ++j)
              factor[0] *= (kx[0]-j) / (i[0]-j);
            i[3] = k - i[0] - i[1] - i[2];
            D kx3 = k - kx[0] - kx[1] - kx[2];
            factor[3] = 1.0;
            for (unsigned int j = 0; j < i[3]; ++j)
              factor[3] *= (kx3-j) / (i[3]-j);
            out[n++] = factor[0] * factor[1] * factor[2] * factor[3];
          }
        }
      }
    }

    //! \brief Evaluate Jacobian of all shape functions
    inline void
    evaluateJacobian (const typename Traits::DomainType& x,         // position
                      std::vector<typename Traits::JacobianType>& out) const      // return value
    {
      out.resize(N);
      typename Traits::DomainType kx = x;
      kx *= k;
      unsigned int n = 0;
      unsigned int i[4];
      R factor[4];
      for (i[2] = 0; i[2] <= k; ++i[2])
      {
        factor[2] = 1.0;
        for (unsigned int j = 0; j < i[2]; ++j)
          factor[2] *= (kx[2]-j) / (i[2]-j);
        for (i[1] = 0; i[1] <= k - i[2]; ++i[1])
        {
          factor[1] = 1.0;
          for (unsigned int j = 0; j < i[1]; ++j)
            factor[1] *= (kx[1]-j) / (i[1]-j);
          for (i[0] = 0; i[0] <= k - i[1] - i[2]; ++i[0])
          {
            factor[0] = 1.0;
            for (unsigned int j = 0; j < i[0]; ++j)
              factor[0] *= (kx[0]-j) / (i[0]-j);
            i[3] = k - i[0] - i[1] - i[2];
            D kx3 = k - kx[0] - kx[1] - kx[2];
            R sum3 = 0.0;
            factor[3] = 1.0;
            for (unsigned int j = 0; j < i[3]; ++j)
              factor[3] /= i[3] - j;
            R prod_all = factor[0] * factor[1] * factor[2] * factor[3];
            for (unsigned int j = 0; j < i[3]; ++j)
            {
              R prod = prod_all;
              for (unsigned int l = 0; l < i[3]; ++l)
                if (j == l)
                  prod *= -R(k);
                else
                  prod *= kx3 - l;
              sum3 += prod;
            }
            for (unsigned int j = 0; j < i[3]; ++j)
              factor[3] *= kx3 - j;
            for (unsigned int m = 0; m < 3; ++m)
            {
              out[n][0][m] = sum3;
              for (unsigned int j = 0; j < i[m]; ++j)
              {
                R prod = factor[3];
                for (unsigned int p = 0; p < 3; ++p)
                {
                  if (m == p)
                    for (unsigned int l = 0; l < i[p]; ++l)
                      if (j == l)
                        prod *= R(k) / (i[p]-l);
                      else
                        prod *= (kx[p]-l) / (i[p]-l);
                  else
                    prod *= factor[p];
                }
                out[n][0][m] += prod;
              }
            }
            n++;
          }
        }
      }
    }

    //! \brief Polynomial order of the shape functions
    unsigned int order () const
    {
      return k;
    }
  };


  //Specialization for k=0
  template<class D, class R>
  class Pk3DLocalBasis<D,R,0>
  {
  public:
    typedef LocalBasisTraits<D,3,Dune::FieldVector<D,3>,R,1,Dune::FieldVector<R,1>,
        Dune::FieldMatrix<R,1,3> > Traits;

    /** \brief Export the number of degrees of freedom */
    enum {N = 1};

    /** \brief Export the element order */
    enum {O = 0};

    unsigned int size () const
    {
      return 1;
    }

    inline void evaluateFunction (const typename Traits::DomainType& in,
                                  std::vector<typename Traits::RangeType>& out) const
    {
      out.resize(1);
      out[0] = 1;
    }

    // evaluate derivative of a single component
    inline void
    evaluateJacobian (const typename Traits::DomainType& in,         // position
                      std::vector<typename Traits::JacobianType>& out) const      // return value
    {
      out.resize(1);
      out[0][0][0] = 0;
      out[0][0][1] = 0;
      out[0][0][2] = 0;
    }

    // local interpolation of a function
    template<typename E, typename F, typename C>
    void interpolate (const E& e, const F& f, std::vector<C>& out) const
    {
      typename Traits::DomainType x;
      typename Traits::RangeType y;
      x[0] = 1.0/4.0;
      x[1] = 1.0/4.0;
      x[2] = 1.0/4.0;
      f.eval_local(e,x,y);
      out[0] = y;
    }

    unsigned int order () const
    {
      return 0;
    }
  };
}
#endif