This file is indexed.

/usr/include/dune/localfunctions/lagrange/pk2d/pk2dlocalbasis.hh is in libdune-localfunctions-dev 2.4.1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
// -*- tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 2 -*-
// vi: set et ts=4 sw=2 sts=2:
#ifndef DUNE_PK2DLOCALBASIS_HH
#define DUNE_PK2DLOCALBASIS_HH

#include <dune/common/fmatrix.hh>

#include <dune/localfunctions/common/localbasis.hh>

namespace Dune
{
  /**@ingroup LocalBasisImplementation
         \brief Lagrange shape functions of arbitrary order on the reference triangle.

         Lagrange shape functions of arbitrary order have the property that
         \f$\hat\phi^i(x_j) = \delta_{i,j}\f$ for certain points \f$x_j\f$.

         \tparam D Type to represent the field in the domain.
         \tparam R Type to represent the field in the range.
         \tparam k Polynomial order.

         \nosubgrouping
   */
  template<class D, class R, unsigned int k>
  class Pk2DLocalBasis
  {
  public:

    /** \brief Export the number of degrees of freedom */
    enum {N = (k+1)*(k+2)/2};

    /** \brief Export the element order
       OS: Surprising that we need to export this both statically and dynamically!
     */
    enum {O = k};

    typedef LocalBasisTraits<D,2,Dune::FieldVector<D,2>,R,1,Dune::FieldVector<R,1>,
        Dune::FieldMatrix<R,1,2>, 2 > Traits;

    //! \brief Standard constructor
    Pk2DLocalBasis ()
    {
      for (unsigned int i=0; i<=k; i++)
        pos[i] = (1.0*i)/std::max(k,(unsigned int)1);
    }

    //! \brief number of shape functions
    unsigned int size () const
    {
      return N;
    }

    //! \brief Evaluate all shape functions
    inline void evaluateFunction (const typename Traits::DomainType& x,
                                  std::vector<typename Traits::RangeType>& out) const
    {
      out.resize(N);
      // specialization for k==0, not clear whether that is needed
      if (k==0) {
        out[0] = 1;
        return;
      }

      int n=0;
      for (unsigned int j=0; j<=k; j++)
        for (unsigned int i=0; i<=k-j; i++)
        {
          out[n] = 1.0;
          for (unsigned int alpha=0; alpha<i; alpha++)
            out[n] *= (x[0]-pos[alpha])/(pos[i]-pos[alpha]);
          for (unsigned int beta=0; beta<j; beta++)
            out[n] *= (x[1]-pos[beta])/(pos[j]-pos[beta]);
          for (unsigned int gamma=i+j+1; gamma<=k; gamma++)
            out[n] *= (pos[gamma]-x[0]-x[1])/(pos[gamma]-pos[i]-pos[j]);
          n++;
        }
    }

    //! \brief Evaluate Jacobian of all shape functions
    inline void
    evaluateJacobian (const typename Traits::DomainType& x,       // position
                      std::vector<typename Traits::JacobianType>& out) const                        // return value
    {
      out.resize(N);

      // specialization for k==0, not clear whether that is needed
      if (k==0) {
        out[0][0][0] = 0; out[0][0][1] = 0;
        return;
      }

      int n=0;
      for (unsigned int j=0; j<=k; j++)
        for (unsigned int i=0; i<=k-j; i++)
        {
          // x_0 derivative
          out[n][0][0] = 0.0;
          R factor=1.0;
          for (unsigned int beta=0; beta<j; beta++)
            factor *= (x[1]-pos[beta])/(pos[j]-pos[beta]);
          for (unsigned int a=0; a<i; a++)
          {
            R product=factor;
            for (unsigned int alpha=0; alpha<i; alpha++)
              if (alpha==a)
                product *= D(1)/(pos[i]-pos[alpha]);
              else
                product *= (x[0]-pos[alpha])/(pos[i]-pos[alpha]);
            for (unsigned int gamma=i+j+1; gamma<=k; gamma++)
              product *= (pos[gamma]-x[0]-x[1])/(pos[gamma]-pos[i]-pos[j]);
            out[n][0][0] += product;
          }
          for (unsigned int c=i+j+1; c<=k; c++)
          {
            R product=factor;
            for (unsigned int alpha=0; alpha<i; alpha++)
              product *= (x[0]-pos[alpha])/(pos[i]-pos[alpha]);
            for (unsigned int gamma=i+j+1; gamma<=k; gamma++)
              if (gamma==c)
                product *= -D(1)/(pos[gamma]-pos[i]-pos[j]);
              else
                product *= (pos[gamma]-x[0]-x[1])/(pos[gamma]-pos[i]-pos[j]);
            out[n][0][0] += product;
          }

          // x_1 derivative
          out[n][0][1] = 0.0;
          factor = 1.0;
          for (unsigned int alpha=0; alpha<i; alpha++)
            factor *= (x[0]-pos[alpha])/(pos[i]-pos[alpha]);
          for (unsigned int b=0; b<j; b++)
          {
            R product=factor;
            for (unsigned int beta=0; beta<j; beta++)
              if (beta==b)
                product *= D(1)/(pos[j]-pos[beta]);
              else
                product *= (x[1]-pos[beta])/(pos[j]-pos[beta]);
            for (unsigned int gamma=i+j+1; gamma<=k; gamma++)
              product *= (pos[gamma]-x[0]-x[1])/(pos[gamma]-pos[i]-pos[j]);
            out[n][0][1] += product;
          }
          for (unsigned int c=i+j+1; c<=k; c++)
          {
            R product=factor;
            for (unsigned int beta=0; beta<j; beta++)
              product *= (x[1]-pos[beta])/(pos[j]-pos[beta]);
            for (unsigned int gamma=i+j+1; gamma<=k; gamma++)
              if (gamma==c)
                product *= -D(1)/(pos[gamma]-pos[i]-pos[j]);
              else
                product *= (pos[gamma]-x[0]-x[1])/(pos[gamma]-pos[i]-pos[j]);
            out[n][0][1] += product;
          }

          n++;
        }

    }

    //! \brief Evaluate higher derivatives of all shape functions
    template<unsigned int dOrder> //order of derivative
    inline void evaluate(const std::array<int,dOrder>& directions, //direction of derivative
                         const typename Traits::DomainType& in,  //position
                         std::vector<typename Traits::RangeType>& out) const //return value
    {
      out.resize(N);

      if (dOrder > Traits::diffOrder)
        DUNE_THROW(NotImplemented, "Desired derivative order is not implemented");

      if (dOrder==0)
        evaluateFunction(in, out);
      else if (dOrder==1)
      {
        int n=0;
        for (unsigned int j=0; j<=k; j++)
          for (unsigned int i=0; i<=k-j; i++, n++)
          {
            out[n] = 0.0;
            for (unsigned int no1=0; no1 < k; no1++)
            {
              R factor = lagrangianFactorDerivative(directions[0], no1, i, j, in);
              for (unsigned int no2=0; no2 < k; no2++)
                if (no1 != no2)
                  factor *= lagrangianFactor(no2, i, j, in);

              out[n] += factor;
            }
          }
      }
      else if (dOrder==2)
      {
        // specialization for k<2, not clear whether that is needed
        if (k<2) {
          std::fill(out.begin(), out.end(), 0.0);
        return;
      }

      //f = prod_{i} f_i -> dxa dxb f = sum_{i} {dxa f_i sum_{k \neq i} dxb f_k prod_{l \neq k,i} f_l
      int n=0;
      for (unsigned int j=0; j<=k; j++)
        for (unsigned int i=0; i<=k-j; i++, n++)
        {
          R res = 0.0;

          for (unsigned int no1=0; no1 < k; no1++)
          {
            R factor1 = lagrangianFactorDerivative(directions[0], no1, i, j, in);
            for (unsigned int no2=0; no2 < k; no2++)
            {
              if (no1 == no2)
                continue;
              R factor2 = factor1*lagrangianFactorDerivative(directions[1], no2, i, j, in);
              for (unsigned int no3=0; no3 < k; no3++)
              {
                if (no3 == no1 || no3 == no2)
                  continue;
                factor2 *= lagrangianFactor(no3, i, j, in);
              }
              res += factor2;
            }

          }
          out[n] = res;
        }
      }
    }

    //! \brief Polynomial order of the shape functions
    unsigned int order () const
    {
      return k;
    }

  private:
  /** \brief Returns a single Lagrangian factor of l_ij evaluated at x */
  typename Traits::RangeType lagrangianFactor(const int no, const int i, const int j, const typename Traits::DomainType& x) const
  {
    if ( no < i)
      return (x[0]-pos[no])/(pos[i]-pos[no]);
    if (no < i+j)
      return (x[1]-pos[no-i])/(pos[j]-pos[no-i]);
    return (pos[no+1]-x[0]-x[1])/(pos[no+1]-pos[i]-pos[j]);
  }

  /** \brief Returns the derivative of a single Lagrangian factor of l_ij evaluated at x
   * \param direction Derive in x-direction if this is 0, otherwise derive in y direction
   */
  typename Traits::RangeType lagrangianFactorDerivative(const int direction, const int no, const int i, const int j, const typename Traits::DomainType& x) const
  {
    if ( no < i)
      return (direction == 0) ? 1.0/(pos[i]-pos[no]) : 0;

    if (no < i+j)
      return (direction == 0) ? 0: 1.0/(pos[j]-pos[no-i]);

    return -1.0/(pos[no+1]-pos[i]-pos[j]);
  }

    D pos[k+1]; // positions on the interval
  };

}
#endif