/usr/include/dune/istl/umfpack.hh is in libdune-istl-dev 2.4.1-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 | // -*- tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 2 -*-
// vi: set et ts=4 sw=2 sts=2:
#ifndef DUNE_ISTL_UMFPACK_HH
#define DUNE_ISTL_UMFPACK_HH
// some trickery to make the preprocessor define setup
// of the backported UMFPACK test work with old code
#if ENABLE_UMFPACK && not defined(ENABLE_SUITESPARSE)
#define ENABLE_SUITESPARSE ENABLE_UMFPACK
#endif
#if HAVE_UMFPACK || defined DOXYGEN
#include<complex>
#include<type_traits>
#include<umfpack.h>
#include<dune/common/exceptions.hh>
#include<dune/common/fmatrix.hh>
#include<dune/common/fvector.hh>
#include<dune/common/unused.hh>
#include<dune/istl/bcrsmatrix.hh>
#include<dune/istl/solvers.hh>
#include<dune/istl/solvertype.hh>
#include"colcompmatrix.hh"
namespace Dune {
/**
* @addtogroup ISTL
*
* @{
*/
/**
* @file
* @author Dominic Kempf
* @brief Classes for using UMFPack with ISTL matrices.
*/
// FORWARD DECLARATIONS
template<class M, class T, class TM, class TD, class TA>
class SeqOverlappingSchwarz;
template<class T, bool tag>
struct SeqOverlappingSchwarzAssemblerHelper;
/** @brief Use the %UMFPack package to directly solve linear systems -- empty default class
* @tparam Matrix the matrix type defining the system
* Details on UMFPack can be found on
* http://www.cise.ufl.edu/research/sparse/umfpack/
*/
template<class Matrix>
class UMFPack
{};
// wrapper class for C-Function Calls in the backend. Choose the right function namespace
// depending on the template parameter used.
template<typename T>
struct UMFPackMethodChooser
{};
template<>
struct UMFPackMethodChooser<double>
{
template<typename... A>
static void defaults(A... args)
{
umfpack_di_defaults(args...);
}
template<typename... A>
static void free_numeric(A... args)
{
umfpack_di_free_numeric(args...);
}
template<typename... A>
static void free_symbolic(A... args)
{
umfpack_di_free_symbolic(args...);
}
template<typename... A>
static int load_numeric(A... args)
{
return umfpack_di_load_numeric(args...);
}
template<typename... A>
static void numeric(A... args)
{
umfpack_di_numeric(args...);
}
template<typename... A>
static void report_info(A... args)
{
umfpack_di_report_info(args...);
}
template<typename... A>
static void report_status(A... args)
{
umfpack_di_report_status(args...);
}
template<typename... A>
static int save_numeric(A... args)
{
return umfpack_di_save_numeric(args...);
}
template<typename... A>
static void solve(A... args)
{
umfpack_di_solve(args...);
}
template<typename... A>
static void symbolic(A... args)
{
umfpack_di_symbolic(args...);
}
};
template<>
struct UMFPackMethodChooser<std::complex<double> >
{
template<typename... A>
static void defaults(A... args)
{
umfpack_zi_defaults(args...);
}
template<typename... A>
static void free_numeric(A... args)
{
umfpack_zi_free_numeric(args...);
}
template<typename... A>
static void free_symbolic(A... args)
{
umfpack_zi_free_symbolic(args...);
}
template<typename... A>
static int load_numeric(A... args)
{
return umfpack_zi_load_numeric(args...);
}
template<typename... A>
static void numeric(const int* cs, const int* ri, const double* val, A... args)
{
umfpack_zi_numeric(cs,ri,val,NULL,args...);
}
template<typename... A>
static void report_info(A... args)
{
umfpack_zi_report_info(args...);
}
template<typename... A>
static void report_status(A... args)
{
umfpack_zi_report_status(args...);
}
template<typename... A>
static int save_numeric(A... args)
{
return umfpack_zi_save_numeric(args...);
}
template<typename... A>
static void solve(int m, const int* cs, const int* ri, std::complex<double>* val, double* x, const double* b,A... args)
{
const double* cval = reinterpret_cast<const double*>(val);
umfpack_zi_solve(m,cs,ri,cval,NULL,x,NULL,b,NULL,args...);
}
template<typename... A>
static void symbolic(int m, int n, const int* cs, const int* ri, const double* val, A... args)
{
umfpack_zi_symbolic(m,n,cs,ri,val,NULL,args...);
}
};
/** @brief The %UMFPack direct sparse solver for matrices of type BCRSMatrix
*
* Specialization for the Dune::BCRSMatrix. %UMFPack will always go double
* precision and supports complex numbers
* too (use std::complex<double> for that).
*
* \tparam T Number type. Only double and std::complex<double> is supported
* \tparam A STL-compatible allocator type
* \tparam n Number of rows in a matrix block
* \tparam m Number of columns in a matrix block
*
* \note This will only work if dune-istl has been configured to use UMFPack
*/
template<typename T, typename A, int n, int m>
class UMFPack<BCRSMatrix<FieldMatrix<T,n,m>,A > >
: public InverseOperator<
BlockVector<FieldVector<T,m>,
typename A::template rebind<FieldVector<T,m> >::other>,
BlockVector<FieldVector<T,n>,
typename A::template rebind<FieldVector<T,n> >::other> >
{
public:
/** @brief The matrix type. */
typedef Dune::BCRSMatrix<FieldMatrix<T,n,m>,A> Matrix;
typedef Dune::BCRSMatrix<FieldMatrix<T,n,m>,A> matrix_type;
/** @brief The corresponding SuperLU Matrix type.*/
typedef Dune::ColCompMatrix<Matrix> UMFPackMatrix;
/** @brief Type of an associated initializer class. */
typedef ColCompMatrixInitializer<BCRSMatrix<FieldMatrix<T,n,m>,A> > MatrixInitializer;
/** @brief The type of the domain of the solver. */
typedef Dune::BlockVector<
FieldVector<T,m>,
typename A::template rebind<FieldVector<T,m> >::other> domain_type;
/** @brief The type of the range of the solver. */
typedef Dune::BlockVector<
FieldVector<T,n>,
typename A::template rebind<FieldVector<T,n> >::other> range_type;
/** @brief Construct a solver object from a BCRSMatrix
*
* This computes the matrix decomposition, and may take a long time
* (and use a lot of memory).
*
* @param mat_ the matrix to solve for
* @param verbose [0..2] set the verbosity level, defaults to 0
*/
UMFPack(const Matrix& matrix, int verbose=0) : matrixIsLoaded_(false)
{
//check whether T is a supported type
static_assert((std::is_same<T,double>::value) || (std::is_same<T,std::complex<double> >::value),
"Unsupported Type in UMFPack (only double and std::complex<double> supported)");
Caller::defaults(UMF_Control);
setVerbosity(verbose);
setMatrix(matrix);
}
/** @brief Constructor for compatibility with SuperLU standard constructor
*
* This computes the matrix decomposition, and may take a long time
* (and use a lot of memory).
*
* @param mat_ the matrix to solve for
* @param verbose [0..2] set the verbosity level, defaults to 0
*/
UMFPack(const Matrix& matrix, int verbose, bool) : matrixIsLoaded_(false)
{
//check whether T is a supported type
static_assert((std::is_same<T,double>::value) || (std::is_same<T,std::complex<double> >::value),
"Unsupported Type in UMFPack (only double and std::complex<double> supported)");
Caller::defaults(UMF_Control);
setVerbosity(verbose);
setMatrix(matrix);
}
/** @brief default constructor
*/
UMFPack() : matrixIsLoaded_(false), verbosity_(0)
{
//check whether T is a supported type
static_assert((std::is_same<T,double>::value) || (std::is_same<T,std::complex<double> >::value),
"Unsupported Type in UMFPack (only double and std::complex<double> supported)");
Caller::defaults(UMF_Control);
}
/** @brief Try loading a decomposition from file and do a decomposition if unsuccessful
* @param mat_ the matrix to decompose when no decoposition file found
* @param file the decomposition file
* @param verbose the verbosity level
*
* Use saveDecomposition(char* file) for manually storing a decomposition. This constructor
* will decompose mat_ and store the result to file if no file wasn't found in the first place.
* Thus, if you always use this you will only compute the decomposition once (and when you manually
* deleted the decomposition file).
*/
UMFPack(const Matrix& mat_, const char* file, int verbose=0)
{
//check whether T is a supported type
static_assert((std::is_same<T,double>::value) || (std::is_same<T,std::complex<double> >::value),
"Unsupported Type in UMFPack (only double and std::complex<double> supported)");
Caller::defaults(UMF_Control);
setVerbosity(verbose);
int errcode = Caller::load_numeric(&UMF_Numeric, const_cast<char*>(file));
if ((errcode == UMFPACK_ERROR_out_of_memory) || (errcode == UMFPACK_ERROR_file_IO))
{
matrixIsLoaded_ = false;
setMatrix(mat_);
saveDecomposition(file);
}
else
{
matrixIsLoaded_ = true;
std::cout << "UMFPack decomposition successfully loaded from " << file << std::endl;
}
}
/** @brief try loading a decomposition from file
* @param file the decomposition file
* @param verbose the verbosity level
* @throws Dune::Exception When not being able to load the file. Does not need knowledge of the
* actual matrix!
*/
UMFPack(const char* file, int verbose=0)
{
//check whether T is a supported type
static_assert((std::is_same<T,double>::value) || (std::is_same<T,std::complex<double> >::value),
"Unsupported Type in UMFPack (only double and std::complex<double> supported)");
Caller::defaults(UMF_Control);
int errcode = Caller::load_numeric(&UMF_Numeric, const_cast<char*>(file));
if (errcode == UMFPACK_ERROR_out_of_memory)
DUNE_THROW(Dune::Exception, "ran out of memory while loading UMFPack decomposition");
if (errcode == UMFPACK_ERROR_file_IO)
DUNE_THROW(Dune::Exception, "IO error while loading UMFPack decomposition");
matrixIsLoaded_ = true;
std::cout << "UMFPack decomposition successfully loaded from " << file << std::endl;
setVerbosity(verbose);
}
virtual ~UMFPack()
{
if ((umfpackMatrix_.N() + umfpackMatrix_.M() > 0) || (matrixIsLoaded_))
free();
}
/**
* \copydoc InverseOperator::apply(X&, Y&, InverseOperatorResult&)
*/
virtual void apply(domain_type& x, range_type& b, InverseOperatorResult& res)
{
if (umfpackMatrix_.N() != b.dim())
DUNE_THROW(Dune::ISTLError, "Size of right-hand-side vector b does not match the number of matrix rows!");
if (umfpackMatrix_.M() != x.dim())
DUNE_THROW(Dune::ISTLError, "Size of solution vector x does not match the number of matrix columns!");
double UMF_Apply_Info[UMFPACK_INFO];
Caller::solve(UMFPACK_A,
umfpackMatrix_.getColStart(),
umfpackMatrix_.getRowIndex(),
umfpackMatrix_.getValues(),
reinterpret_cast<double*>(&x[0]),
reinterpret_cast<double*>(&b[0]),
UMF_Numeric,
UMF_Control,
UMF_Apply_Info);
//this is a direct solver
res.iterations = 1;
res.converged = true;
res.elapsed = UMF_Apply_Info[UMFPACK_SOLVE_WALLTIME];
printOnApply(UMF_Apply_Info);
}
/**
* \copydoc InverseOperator::apply(X&,Y&,double,InverseOperatorResult&)
*/
virtual void apply (domain_type& x, range_type& b, double reduction, InverseOperatorResult& res)
{
DUNE_UNUSED_PARAMETER(reduction);
apply(x,b,res);
}
/**
* @brief additional apply method with c-arrays in analogy to superlu
* @param x solution array
* @param b rhs array
*/
void apply(T* x, T* b)
{
double UMF_Apply_Info[UMFPACK_INFO];
Caller::solve(UMFPACK_A,
umfpackMatrix_.getColStart(),
umfpackMatrix_.getRowIndex(),
umfpackMatrix_.getValues(),
x,
b,
UMF_Numeric,
UMF_Control,
UMF_Apply_Info);
printOnApply(UMF_Apply_Info);
}
/** @brief Set UMFPack-specific options
*
* This method allows to set various options that control the UMFPack solver.
* More specifically, it allows to set values in the UMF_Control array.
* Please see the UMFPack documentation for a list of possible options and values.
*
* \param option Entry in the UMF_Control array, e.g., UMFPACK_IRSTEP
* \param value Corresponding value
*
* \throws RangeError If nonexisting option was requested
*/
void setOption(unsigned int option, double value)
{
if (option >= UMFPACK_CONTROL)
DUNE_THROW(RangeError, "Requested non-existing UMFPack option");
UMF_Control[option] = value;
}
/** @brief saves a decomposition to a file
* @param file the filename to save to
*/
void saveDecomposition(const char* file)
{
int errcode = Caller::save_numeric(UMF_Numeric, const_cast<char*>(file));
if (errcode != UMFPACK_OK)
DUNE_THROW(Dune::Exception,"IO ERROR while trying to save UMFPack decomposition");
}
/** @brief Initialize data from given matrix. */
void setMatrix(const Matrix& matrix)
{
if ((umfpackMatrix_.N() + umfpackMatrix_.M() > 0) || (matrixIsLoaded_))
free();
umfpackMatrix_ = matrix;
decompose();
}
template<class S>
void setSubMatrix(const Matrix& _mat, const S& rowIndexSet)
{
if ((umfpackMatrix_.N() + umfpackMatrix_.M() > 0) || (matrixIsLoaded_))
free();
umfpackMatrix_.setMatrix(_mat,rowIndexSet);
decompose();
}
/** @brief sets the verbosity level for the UMFPack solver
* @param v verbosity level
* The following levels are implemented:
* 0 - only error messages
* 1 - a bit of statistics on decomposition and solution
* 2 - lots of statistics on decomposition and solution
*/
void setVerbosity(int v)
{
verbosity_ = v;
// set the verbosity level in UMFPack
if (verbosity_ == 0)
UMF_Control[UMFPACK_PRL] = 1;
if (verbosity_ == 1)
UMF_Control[UMFPACK_PRL] = 2;
if (verbosity_ == 2)
UMF_Control[UMFPACK_PRL] = 4;
}
/**
* @brief free allocated space.
* @warning later calling apply will result in an error.
*/
void free()
{
if (!matrixIsLoaded_)
{
Caller::free_symbolic(&UMF_Symbolic);
umfpackMatrix_.free();
}
Caller::free_numeric(&UMF_Numeric);
matrixIsLoaded_ = false;
}
const char* name() { return "UMFPACK"; }
private:
typedef typename Dune::UMFPackMethodChooser<T> Caller;
template<class M,class X, class TM, class TD, class T1>
friend class SeqOverlappingSchwarz;
friend struct SeqOverlappingSchwarzAssemblerHelper<UMFPack<Matrix>,true>;
/** @brief computes the LU Decomposition */
void decompose()
{
double UMF_Decomposition_Info[UMFPACK_INFO];
Caller::symbolic(static_cast<int>(umfpackMatrix_.N()),
static_cast<int>(umfpackMatrix_.N()),
umfpackMatrix_.getColStart(),
umfpackMatrix_.getRowIndex(),
reinterpret_cast<double*>(umfpackMatrix_.getValues()),
&UMF_Symbolic,
UMF_Control,
UMF_Decomposition_Info);
Caller::numeric(umfpackMatrix_.getColStart(),
umfpackMatrix_.getRowIndex(),
reinterpret_cast<double*>(umfpackMatrix_.getValues()),
UMF_Symbolic,
&UMF_Numeric,
UMF_Control,
UMF_Decomposition_Info);
Caller::report_status(UMF_Control,UMF_Decomposition_Info[UMFPACK_STATUS]);
if (verbosity_ == 1)
{
std::cout << "[UMFPack Decomposition]" << std::endl;
std::cout << "Wallclock Time taken: " << UMF_Decomposition_Info[UMFPACK_NUMERIC_WALLTIME] << " (CPU Time: " << UMF_Decomposition_Info[UMFPACK_NUMERIC_TIME] << ")" << std::endl;
std::cout << "Flops taken: " << UMF_Decomposition_Info[UMFPACK_FLOPS] << std::endl;
std::cout << "Peak Memory Usage: " << UMF_Decomposition_Info[UMFPACK_PEAK_MEMORY]*UMF_Decomposition_Info[UMFPACK_SIZE_OF_UNIT] << " bytes" << std::endl;
std::cout << "Condition number estimate: " << 1./UMF_Decomposition_Info[UMFPACK_RCOND] << std::endl;
std::cout << "Numbers of non-zeroes in decomposition: L: " << UMF_Decomposition_Info[UMFPACK_LNZ] << " U: " << UMF_Decomposition_Info[UMFPACK_UNZ] << std::endl;
}
if (verbosity_ == 2)
{
Caller::report_info(UMF_Control,UMF_Decomposition_Info);
}
}
void printOnApply(double* UMF_Info)
{
Caller::report_status(UMF_Control,UMF_Info[UMFPACK_STATUS]);
if (verbosity_ > 0)
{
std::cout << "[UMFPack Solve]" << std::endl;
std::cout << "Wallclock Time: " << UMF_Info[UMFPACK_SOLVE_WALLTIME] << " (CPU Time: " << UMF_Info[UMFPACK_SOLVE_TIME] << ")" << std::endl;
std::cout << "Flops Taken: " << UMF_Info[UMFPACK_SOLVE_FLOPS] << std::endl;
std::cout << "Iterative Refinement steps taken: " << UMF_Info[UMFPACK_IR_TAKEN] << std::endl;
std::cout << "Error Estimate: " << UMF_Info[UMFPACK_OMEGA1] << " resp. " << UMF_Info[UMFPACK_OMEGA2] << std::endl;
}
}
UMFPackMatrix& getInternalMatrix() { return umfpackMatrix_; }
UMFPackMatrix umfpackMatrix_;
bool matrixIsLoaded_;
int verbosity_;
void *UMF_Symbolic;
void *UMF_Numeric;
double UMF_Control[UMFPACK_CONTROL];
};
template<typename T, typename A, int n, int m>
struct IsDirectSolver<UMFPack<BCRSMatrix<FieldMatrix<T,n,m>,A> > >
{
enum { value=true};
};
template<typename T, typename A, int n, int m>
struct StoresColumnCompressed<UMFPack<BCRSMatrix<FieldMatrix<T,n,m>,A> > >
{
enum { value = true };
};
}
#endif //HAVE_UMFPACK
#endif //DUNE_ISTL_UMFPACK_HH
|