This file is indexed.

/usr/include/dune/istl/paamg/kamg.hh is in libdune-istl-dev 2.4.1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
// -*- tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 2 -*-
// vi: set et ts=4 sw=2 sts=2:
#ifndef DUNE_AMG_KAMG_HH
#define DUNE_AMG_KAMG_HH

#include <dune/istl/preconditioners.hh>
#include "amg.hh"

namespace Dune
{
  namespace Amg
  {

    /**
     * @addtogroup ISTL_PAAMG
     * @{
     */
    /** @file
     * @author Markus Blatt
     * @brief Provides an algebraic multigrid using a Krylov cycle.
     *
     */

    /**
     * @brief Two grid operator for AMG with Krylov cycle.
     * @tparam AMG The type of the underlying agglomeration AMG.
     */
    template<class AMG>
    class KAmgTwoGrid
      : public Preconditioner<typename AMG::Domain,typename AMG::Range>
    {
      /** @brief The type of the domain. */
      typedef typename AMG::Domain Domain;
      /** @brief the type of the range. */
      typedef typename AMG::Range Range;
    public:

      enum {
        /** @brief The solver category. */
        category = AMG::category
      };

      /**
       * @brief Constructor.
       * @param amg The underlying amg. It is used as the storage for the hierarchic
       * data structures.
       * @param coarseSolver The solver used for the coarse grid correction.
       */

      KAmgTwoGrid(AMG& amg, std::shared_ptr<InverseOperator<Domain,Range> > coarseSolver)
        : amg_(amg), coarseSolver_(coarseSolver)
      {}

      /**  \copydoc Preconditioner::pre(X&,Y&) */
      void pre(typename AMG::Domain& x, typename AMG::Range& b)
      {
        DUNE_UNUSED_PARAMETER(x); DUNE_UNUSED_PARAMETER(b);
      }

      /**  \copydoc Preconditioner::post(X&) */
      void post(typename AMG::Domain& x)
      {
        DUNE_UNUSED_PARAMETER(x);
      }

      /** \copydoc Preconditioner::apply(X&,const Y&) */
      void apply(typename AMG::Domain& v, const typename AMG::Range& d)
      {
        // Copy data
        *levelContext_->update=0;
        *levelContext_->rhs = d;
        *levelContext_->lhs = v;

        presmooth(*levelContext_, amg_.preSteps_);
        bool processFineLevel =
          amg_.moveToCoarseLevel(*levelContext_);

        if(processFineLevel) {
          typename AMG::Range b=*levelContext_->rhs;
          typename AMG::Domain x=*levelContext_->update;
          InverseOperatorResult res;
          coarseSolver_->apply(x, b, res);
          *levelContext_->update=x;
        }

        amg_.moveToFineLevel(*levelContext_, processFineLevel);

        postsmooth(*levelContext_, amg_.postSteps_);
        v=*levelContext_->update;
      }

      /**
       * @brief Get a pointer to the coarse grid solver.
       * @return The coarse grid solver.
       */
      InverseOperator<Domain,Range>* coarseSolver()
      {
        return coarseSolver_;
      }

      /**
       * @brief Set the level context pointer.
       * @param p The pointer to set it to.
       */
      void setLevelContext(std::shared_ptr<typename AMG::LevelContext> p)
      {
        levelContext_=p;
      }

      /** @brief Destructor. */
      ~KAmgTwoGrid()
      {}

    private:
      /** @brief Underlying AMG used as storage and engine. */
      AMG& amg_;
      /** @brief The coarse grid solver.*/
      std::shared_ptr<InverseOperator<Domain,Range> > coarseSolver_;
      /** @brief A shared pointer to the level context of AMG. */
      std::shared_ptr<typename AMG::LevelContext> levelContext_;
    };



    /**
     * @brief an algebraic multigrid method using a Krylov-cycle.
     *
     * The implementation is based on the paper
     * [[Notay and Vassilevski, 2007]](http://onlinelibrary.wiley.com/doi/10.1002/nla.542/abstract)
     *
     * @tparam M The type of the linear operator.
     * @tparam X The type of the range and domain.
     * @tparam PI The parallel information object. Use SequentialInformation (default)
     * for a sequential AMG, OwnerOverlapCopyCommunication for the parallel case.
     * @tparam K The type of the Krylov method to use for the cycle.
     * @tparam A The type of the allocator to use.
     */
    template<class M, class X, class S, class PI=SequentialInformation,
        class K=GeneralizedPCGSolver<X>, class A=std::allocator<X> >
    class KAMG : public Preconditioner<X,X>
    {
    public:
      /** @brief The type of the underlying AMG. */
      typedef AMG<M,X,S,PI,A> Amg;
      /** @brief The type of the Krylov solver for the cycle. */
      typedef K KrylovSolver;
      /** @brief The type of the hierarchy of operators. */
      typedef typename Amg::OperatorHierarchy OperatorHierarchy;
      /** @brief The type of the coarse solver. */
      typedef typename Amg::CoarseSolver CoarseSolver;
      /** @brief the type of the parallelinformation to use.*/
      typedef typename Amg::ParallelInformation ParallelInformation;
      /** @brief The type of the arguments for construction of the smoothers. */
      typedef typename Amg::SmootherArgs SmootherArgs;
      /** @brief the type of the lineatr operator. */
      typedef typename Amg::Operator Operator;
      /** @brief the type of the domain. */
      typedef typename Amg::Domain Domain;
      /** @brief The type of the range. */
      typedef typename Amg::Range Range;
      /** @brief The type of the hierarchy of parallel information. */
      typedef typename Amg::ParallelInformationHierarchy ParallelInformationHierarchy;
      /** @brief The type of the scalar product. */
      typedef typename Amg::ScalarProduct ScalarProduct;

      enum {
        /** @brief The solver category. */
        category = Amg::category
      };
      /**
       * @brief Construct a new amg with a specific coarse solver.
       * @param matrices The already set up matix hierarchy.
       * @param coarseSolver The set up solver to use on the coarse
       * grid, must match the sparse matrix in the matrix hierachy.
       * @param smootherArgs The  arguments needed for thesmoother to use
       * for pre and post smoothing
       * @param gamma The number of subcycles. 1 for V-cycle, 2 for W-cycle.
       * @param preSmoothingSteps The number of smoothing steps for premoothing.
       * @param postSmoothingSteps The number of smoothing steps for postmoothing.
       * @param maxLevelKrylovSteps The maximum number of Krylov steps allowed at each level.
       * @param minDefectReduction The minimal defect reduction to achieve on each Krylov level.
       */
      KAMG(const OperatorHierarchy& matrices, CoarseSolver& coarseSolver,
           const SmootherArgs& smootherArgs, std::size_t gamma,
           std::size_t preSmoothingSteps =1, std::size_t postSmoothingSteps = 1,
           std::size_t maxLevelKrylovSteps = 3 , double minDefectReduction =1e-1);

      /**
       * @brief Construct an AMG with an inexact coarse solver based on the smoother.
       *
       * As coarse solver a preconditioned CG method with the smoother as preconditioner
       * will be used. The matrix hierarchy is built automatically.
       * @param fineOperator The operator on the fine level.
       * @param criterion The criterion describing the coarsening strategy. E. g. SymmetricCriterion
       * or UnsymmetricCriterion.
       * @param smootherArgs The arguments for constructing the smoothers.
       * @param gamma 1 for V-cycle, 2 for W-cycle
       * @param preSmoothingSteps The number of smoothing steps for premoothing.
       * @param postSmoothingSteps The number of smoothing steps for postmoothing.
       * @param maxLevelKrylovSteps The maximum number of Krylov steps allowed at each level.
       * @param minDefectReduction The defect reduction to achieve on each krylov level.
       * @param pinfo The information about the parallel distribution of the data.
       */
      template<class C>
      KAMG(const Operator& fineOperator, const C& criterion,
           const SmootherArgs& smootherArgs, std::size_t gamma=1,
           std::size_t preSmoothingSteps=1, std::size_t postSmoothingSteps=1,
           std::size_t maxLevelKrylovSteps=3, double minDefectReduction=1e-1,
           const ParallelInformation& pinfo=ParallelInformation());

      /**  \copydoc Preconditioner::pre(X&,Y&) */
      void pre(Domain& x, Range& b);
      /**  \copydoc Preconditioner::post(X&) */
      void post(Domain& x);
      /**  \copydoc Preconditioner::apply(X&,const Y&) */
      void apply(Domain& v, const Range& d);

      std::size_t maxlevels();

    private:
      /** @brief The underlying amg. */
      Amg amg;

      /** \brief The maximum number of Krylov steps allowed at each level. */
      std::size_t maxLevelKrylovSteps;

      /** \brief The defect reduction to achieve on each krylov level. */
      double levelDefectReduction;

      /** @brief pointers to the allocated scalar products. */
      std::vector<std::shared_ptr<typename Amg::ScalarProduct> > scalarproducts;

      /** @brief pointers to the allocated krylov solvers. */
      std::vector<std::shared_ptr<KAmgTwoGrid<Amg> > > ksolvers;
    };

    template<class M, class X, class S, class P, class K, class A>
    KAMG<M,X,S,P,K,A>::KAMG(const OperatorHierarchy& matrices, CoarseSolver& coarseSolver,
                            const SmootherArgs& smootherArgs,
                            std::size_t gamma, std::size_t preSmoothingSteps,
                            std::size_t postSmoothingSteps,
                            std::size_t ksteps, double reduction)
      : amg(matrices, coarseSolver, smootherArgs, gamma, preSmoothingSteps,
            postSmoothingSteps), maxLevelKrylovSteps(ksteps), levelDefectReduction(reduction)
    {}

    template<class M, class X, class S, class P, class K, class A>
    template<class C>
    KAMG<M,X,S,P,K,A>::KAMG(const Operator& fineOperator, const C& criterion,
                            const SmootherArgs& smootherArgs, std::size_t gamma,
                            std::size_t preSmoothingSteps, std::size_t postSmoothingSteps,
                            std::size_t ksteps, double reduction,
                            const ParallelInformation& pinfo)
      : amg(fineOperator, criterion, smootherArgs, gamma, preSmoothingSteps,
            postSmoothingSteps, false, pinfo), maxLevelKrylovSteps(ksteps), levelDefectReduction(reduction)
    {}


    template<class M, class X, class S, class P, class K, class A>
    void KAMG<M,X,S,P,K,A>::pre(Domain& x, Range& b)
    {
      amg.pre(x,b);
      scalarproducts.reserve(amg.levels());
      ksolvers.reserve(amg.levels());

      typename OperatorHierarchy::ParallelMatrixHierarchy::Iterator
      matrix = amg.matrices_->matrices().coarsest();
      typename ParallelInformationHierarchy::Iterator
      pinfo = amg.matrices_->parallelInformation().coarsest();
      bool hasCoarsest=(amg.levels()==amg.maxlevels());

      if(hasCoarsest) {
        if(matrix==amg.matrices_->matrices().finest())
          return;
        --matrix;
        --pinfo;
        ksolvers.push_back(std::shared_ptr<KAmgTwoGrid<Amg> >(new KAmgTwoGrid<Amg>(amg, amg.solver_)));
      }else
        ksolvers.push_back(std::shared_ptr<KAmgTwoGrid<Amg> >(new KAmgTwoGrid<Amg>(amg, std::shared_ptr<InverseOperator<Domain,Range> >())));

      std::ostringstream s;

      if(matrix!=amg.matrices_->matrices().finest())
        while(true) {
          scalarproducts.push_back(std::shared_ptr<typename Amg::ScalarProduct>(Amg::ScalarProductChooser::construct(*pinfo)));
          std::shared_ptr<InverseOperator<Domain,Range> > ks =
            std::shared_ptr<InverseOperator<Domain,Range> >(new KrylovSolver(*matrix, *(scalarproducts.back()),
                                                                        *(ksolvers.back()), levelDefectReduction,
                                                                        maxLevelKrylovSteps, 0));
          ksolvers.push_back(std::shared_ptr<KAmgTwoGrid<Amg> >(new KAmgTwoGrid<Amg>(amg, ks)));
          --matrix;
          --pinfo;
          if(matrix==amg.matrices_->matrices().finest())
            break;
        }
    }


    template<class M, class X, class S, class P, class K, class A>
    void KAMG<M,X,S,P,K,A>::post(Domain& x)
    {
      amg.post(x);

    }

    template<class M, class X, class S, class P, class K, class A>
    void KAMG<M,X,S,P,K,A>::apply(Domain& v, const Range& d)
    {
      if(ksolvers.size()==0)
      {
        Range td=d;
        InverseOperatorResult res;
        amg.solver_->apply(v,td,res);
      }else
      {
        typedef typename Amg::LevelContext LevelContext;
        std::shared_ptr<LevelContext> levelContext(new LevelContext);
        amg.initIteratorsWithFineLevel(*levelContext);
        typedef typename std::vector<std::shared_ptr<KAmgTwoGrid<Amg> > >::iterator Iter;
        for(Iter solver=ksolvers.begin(); solver!=ksolvers.end(); ++solver)
          (*solver)->setLevelContext(levelContext);
        ksolvers.back()->apply(v,d);
      }
    }

    template<class M, class X, class S, class P, class K, class A>
    std::size_t KAMG<M,X,S,P,K,A>::maxlevels()
    {
      return amg.maxlevels();
    }

    /** @}*/
  } // Amg
} // Dune

#endif