/usr/include/dune/istl/paamg/aggregates.hh is in libdune-istl-dev 2.4.1-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 | // -*- tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 2 -*-
// vi: set et ts=4 sw=2 sts=2:
#ifndef DUNE_AMG_AGGREGATES_HH
#define DUNE_AMG_AGGREGATES_HH
#include "parameters.hh"
#include "graph.hh"
#include "properties.hh"
#include "combinedfunctor.hh"
#include <dune/common/timer.hh>
#include <dune/common/tuples.hh>
#include <dune/common/stdstreams.hh>
#include <dune/common/poolallocator.hh>
#include <dune/common/sllist.hh>
#include <dune/common/unused.hh>
#include <dune/common/ftraits.hh>
#include <utility>
#include <set>
#include <algorithm>
#include <complex>
#include <limits>
#include <ostream>
namespace Dune
{
namespace Amg
{
/**
* @addtogroup ISTL_PAAMG
*
* @{
*/
/** @file
* @author Markus Blatt
* @brief Provides classes for the Coloring process of AMG
*/
/**
* @brief Base class of all aggregation criterions.
*/
template<class T>
class AggregationCriterion : public T
{
public:
/**
* @brief The policy for calculating the dependency graph.
*/
typedef T DependencyPolicy;
/**
* @brief Constructor.
*
* The paramters will be initialized with default values suitable
* for 2D isotropic problems.
*
* If that does not fit your needs either use setDefaultValuesIsotropic
* setDefaultValuesAnisotropic or setup the values by hand
*/
AggregationCriterion()
: T()
{}
AggregationCriterion(const Parameters& parms)
: T(parms)
{}
/**
* @brief Sets reasonable default values for an isotropic problem.
*
* Reasonable means that we should end up with cube aggregates of
* diameter 2.
*
* @param dim The dimension of the problem.
* @param diameter The preferred diameter for the aggregation.
*/
void setDefaultValuesIsotropic(std::size_t dim, std::size_t diameter=2)
{
this->setMaxDistance(diameter-1);
std::size_t csize=1;
for(; dim>0; dim--) {
csize*=diameter;
this->setMaxDistance(this->maxDistance()+diameter-1);
}
this->setMinAggregateSize(csize);
this->setMaxAggregateSize(static_cast<std::size_t>(csize*1.5));
}
/**
* @brief Sets reasonable default values for an aisotropic problem.
*
* Reasonable means that we should end up with cube aggregates with
* sides of diameter 2 and sides in one dimension that are longer
* (e.g. for 3D: 2x2x3).
*
* @param dim The dimension of the problem.
* @param diameter The preferred diameter for the aggregation.
*/
void setDefaultValuesAnisotropic(std::size_t dim,std::size_t diameter=2)
{
setDefaultValuesIsotropic(dim, diameter);
this->setMaxDistance(this->maxDistance()+dim-1);
}
};
template<class T>
std::ostream& operator<<(std::ostream& os, const AggregationCriterion<T>& criterion)
{
os<<"{ maxdistance="<<criterion.maxDistance()<<" minAggregateSize="
<<criterion.minAggregateSize()<< " maxAggregateSize="<<criterion.maxAggregateSize()
<<" connectivity="<<criterion.maxConnectivity()<<" debugLevel="<<criterion.debugLevel()<<"}";
return os;
}
/**
* @brief Dependency policy for symmetric matrices.
*
* We assume that not only the sparsity pattern is symmetric
* but also the entries (a_ij=aji). If that is not the case
* the resulting dependency graph might be unsymmetric.
*
* \tparam M The type of the matrix
* \tparam N The type of the metric that turns matrix blocks into
* field values
*/
template<class M, class N>
class SymmetricMatrixDependency : public Dune::Amg::Parameters
{
public:
/**
* @brief The matrix type we build the dependency of.
*/
typedef M Matrix;
/**
* @brief The norm to use for examining the matrix entries.
*/
typedef N Norm;
/**
* @brief Constant Row iterator of the matrix.
*/
typedef typename Matrix::row_type Row;
/**
* @brief Constant column iterator of the matrix.
*/
typedef typename Matrix::ConstColIterator ColIter;
void init(const Matrix* matrix);
void initRow(const Row& row, int index);
void examine(const ColIter& col);
template<class G>
void examine(G& graph, const typename G::EdgeIterator& edge, const ColIter& col);
bool isIsolated();
SymmetricMatrixDependency(const Parameters& parms)
: Parameters(parms)
{}
SymmetricMatrixDependency()
: Parameters()
{}
protected:
/** @brief The matrix we work on. */
const Matrix* matrix_;
/** @brief The current max value.*/
typedef typename Matrix::field_type field_type;
typedef typename FieldTraits<field_type>::real_type real_type;
real_type maxValue_;
/** @brief The functor for calculating the norm. */
Norm norm_;
/** @brief index of the currently evaluated row. */
int row_;
/** @brief The norm of the current diagonal. */
real_type diagonal_;
std::vector<real_type> vals_;
typename std::vector<real_type>::iterator valIter_;
};
template<class M, class N>
inline void SymmetricMatrixDependency<M,N>::init(const Matrix* matrix)
{
matrix_ = matrix;
}
template<class M, class N>
inline void SymmetricMatrixDependency<M,N>::initRow(const Row& row, int index)
{
vals_.assign(row.size(), 0.0);
assert(vals_.size()==row.size());
valIter_=vals_.begin();
maxValue_ = std::min(- std::numeric_limits<real_type>::max(), std::numeric_limits<real_type>::min());
diagonal_=norm_(row[index]);
row_ = index;
}
template<class M, class N>
inline void SymmetricMatrixDependency<M,N>::examine(const ColIter& col)
{
// skip positive offdiagonals if norm preserves sign of them.
real_type eij = norm_(*col);
if(!N::is_sign_preserving || eij<0) // || eji<0)
{
*valIter_ = eij/diagonal_*eij/norm_(matrix_->operator[](col.index())[col.index()]);
maxValue_ = std::max(maxValue_, *valIter_);
}else
*valIter_ =0;
++valIter_;
}
template<class M, class N>
template<class G>
inline void SymmetricMatrixDependency<M,N>::examine(G&, const typename G::EdgeIterator& edge, const ColIter&)
{
if(*valIter_ > alpha() * maxValue_) {
edge.properties().setDepends();
edge.properties().setInfluences();
}
++valIter_;
}
template<class M, class N>
inline bool SymmetricMatrixDependency<M,N>::isIsolated()
{
if(diagonal_==0)
DUNE_THROW(Dune::ISTLError, "No diagonal entry for row "<<row_<<".");
valIter_=vals_.begin();
return maxValue_ < beta();
}
/**
* @brief Dependency policy for symmetric matrices.
*/
template<class M, class N>
class Dependency : public Parameters
{
public:
/**
* @brief The matrix type we build the dependency of.
*/
typedef M Matrix;
/**
* @brief The norm to use for examining the matrix entries.
*/
typedef N Norm;
/**
* @brief Constant Row iterator of the matrix.
*/
typedef typename Matrix::row_type Row;
/**
* @brief Constant column iterator of the matrix.
*/
typedef typename Matrix::ConstColIterator ColIter;
void init(const Matrix* matrix);
void initRow(const Row& row, int index);
void examine(const ColIter& col);
template<class G>
void examine(G& graph, const typename G::EdgeIterator& edge, const ColIter& col);
bool isIsolated();
Dependency(const Parameters& parms)
: Parameters(parms)
{}
Dependency()
: Parameters()
{}
protected:
/** @brief The matrix we work on. */
const Matrix* matrix_;
/** @brief The current max value.*/
typedef typename Matrix::field_type field_type;
typedef typename FieldTraits<field_type>::real_type real_type;
real_type maxValue_;
/** @brief The functor for calculating the norm. */
Norm norm_;
/** @brief index of the currently evaluated row. */
int row_;
/** @brief The norm of the current diagonal. */
real_type diagonal_;
};
/**
* @brief Dependency policy for symmetric matrices.
*/
template<class M, class N>
class SymmetricDependency : public Parameters
{
public:
/**
* @brief The matrix type we build the dependency of.
*/
typedef M Matrix;
/**
* @brief The norm to use for examining the matrix entries.
*/
typedef N Norm;
/**
* @brief Constant Row iterator of the matrix.
*/
typedef typename Matrix::row_type Row;
/**
* @brief Constant column iterator of the matrix.
*/
typedef typename Matrix::ConstColIterator ColIter;
void init(const Matrix* matrix);
void initRow(const Row& row, int index);
void examine(const ColIter& col);
template<class G>
void examine(G& graph, const typename G::EdgeIterator& edge, const ColIter& col);
bool isIsolated();
SymmetricDependency(const Parameters& parms)
: Parameters(parms)
{}
SymmetricDependency()
: Parameters()
{}
protected:
/** @brief The matrix we work on. */
const Matrix* matrix_;
/** @brief The current max value.*/
typedef typename Matrix::field_type field_type;
typedef typename FieldTraits<field_type>::real_type real_type;
real_type maxValue_;
/** @brief The functor for calculating the norm. */
Norm norm_;
/** @brief index of the currently evaluated row. */
int row_;
/** @brief The norm of the current diagonal. */
real_type diagonal_;
};
/**
* @brief Norm that uses only the [N][N] entry of the block to determine couplings.
*
*/
template<int N>
class Diagonal
{
public:
enum { /* @brief We preserve the sign.*/
is_sign_preserving = true
};
/**
* @brief compute the norm of a matrix.
* @param m The matrix ro compute the norm of.
*/
template<class M>
typename FieldTraits<typename M::field_type>::real_type operator()(const M& m) const
{
typedef typename M::field_type field_type;
typedef typename FieldTraits<field_type>::real_type real_type;
static_assert( std::is_convertible<field_type, real_type >::value,
"use of diagonal norm in AMG not implemented for complex field_type");
return m[N][N];
// possible implementation for complex types: return signed_abs(m[N][N]);
}
private:
//! return sign * abs_value; for real numbers this is just v
template<typename T>
static T signed_abs(const T & v)
{
return v;
}
//! return sign * abs_value; for complex numbers this is csgn(v) * abs(v)
template<typename T>
static T signed_abs(const std::complex<T> & v)
{
// return sign * abs_value
// in case of complex numbers this extends to using the csgn function to determine the sign
return csgn(v) * std::abs(v);
}
//! sign function for complex numbers; for real numbers we assume imag(v) = 0
template<typename T>
static T csgn(const T & v)
{
return (T(0) < v) - (v < T(0));
}
//! sign function for complex numbers
template<typename T>
static T csgn(std::complex<T> a)
{
return csgn(a.real())+(a.real() == 0.0)*csgn(a.imag());
}
};
/**
* @brief Norm that uses only the [0][0] entry of the block to determine couplings.
*
*/
class FirstDiagonal : public Diagonal<0>
{};
/**
* @brief Functor using the row sum (infinity) norm to determine strong couplings.
*
* The is proposed by several people for elasticity problems.
*/
struct RowSum
{
enum { /* @brief We preserve the sign.*/
is_sign_preserving = false
};
/**
* @brief compute the norm of a matrix.
* @param m The matrix row to compute the norm of.
*/
template<class M>
typename FieldTraits<typename M::field_type>::real_type operator()(const M& m) const
{
return m.infinity_norm();
}
};
struct FrobeniusNorm
{
enum { /* @brief We preserve the sign.*/
is_sign_preserving = false
};
/**
* @brief compute the norm of a matrix.
* @param m The matrix row to compute the norm of.
*/
template<class M>
typename FieldTraits<typename M::field_type>::real_type operator()(const M& m) const
{
return m.frobenius_norm();
}
};
struct AlwaysOneNorm
{
enum { /* @brief We preserve the sign.*/
is_sign_preserving = false
};
/**
* @brief compute the norm of a matrix.
* @param m The matrix row to compute the norm of.
*/
template<class M>
typename FieldTraits<typename M::field_type>::real_type operator()(const M& m) const
{
return 1;
}
};
/**
* @brief Criterion taking advantage of symmetric matrices.
*
* The two template parameters are:
* <dl>
* <dt>M</dt> <dd>The type of the matrix the amg coarsening works on, e. g. BCRSMatrix</dd>
* <dt>Norm</dt> <dd>The norm to use to determine the strong couplings between the nodes, e.g. FirstDiagonal or RowSum.</dd>
* </dl>
*/
template<class M, class Norm>
class SymmetricCriterion : public AggregationCriterion<SymmetricDependency<M,Norm> >
{
public:
SymmetricCriterion(const Parameters& parms)
: AggregationCriterion<SymmetricDependency<M,Norm> >(parms)
{}
SymmetricCriterion()
{}
};
/**
* @brief Criterion suited for unsymmetric matrices.
*
* Nevertheless the sparsity pattern has to be symmetric.
*
* The two template parameters are:
* <dl>
* <dt>M</dt> <dd>The type of the matrix the amg coarsening works on, e. g. BCRSMatrix</dd>
* <dt>Norm</dt> <dd>The norm to use to determine the strong couplings between the nodes, e.g. FirstDiagonal or RowSum.</dd>
* </dl>
*/
template<class M, class Norm>
class UnSymmetricCriterion : public AggregationCriterion<Dependency<M,Norm> >
{
public:
UnSymmetricCriterion(const Parameters& parms)
: AggregationCriterion<Dependency<M,Norm> >(parms)
{}
UnSymmetricCriterion()
{}
};
// forward declaration
template<class G> class Aggregator;
/**
* @brief Class providing information about the mapping of
* the vertices onto aggregates.
*
* It is assumed that the vertices are consecutively numbered
* from 0 to the maximum vertex number.
*/
template<class V>
class AggregatesMap
{
public:
/**
* @brief Identifier of not yet aggregated vertices.
*/
static const V UNAGGREGATED;
/**
* @brief Identifier of isolated vertices.
*/
static const V ISOLATED;
/**
* @brief The vertex descriptor type.
*/
typedef V VertexDescriptor;
/**
* @brief The aggregate descriptor type.
*/
typedef V AggregateDescriptor;
/**
* @brief The allocator we use for our lists and the
* set.
*/
typedef PoolAllocator<VertexDescriptor,100> Allocator;
/**
* @brief The type of a single linked list of vertex
* descriptors.
*/
typedef SLList<VertexDescriptor,Allocator> VertexList;
/**
* @brief A Dummy visitor that does nothing for each visited edge.
*/
class DummyEdgeVisitor
{
public:
template<class EdgeIterator>
void operator()(const EdgeIterator& edge) const
{
DUNE_UNUSED_PARAMETER(edge);
}
};
/**
* @brief Constructs without allocating memory.
*/
AggregatesMap();
/**
* @brief Constructs with allocating memory.
* @param noVertices The number of vertices we will hold information
* for.
*/
AggregatesMap(std::size_t noVertices);
/**
* @brief Destructor.
*/
~AggregatesMap();
/**
* @brief Build the aggregates.
* @param matrix The matrix describing the dependency.
* @param graph The graph corresponding to the matrix.
* @param criterion The aggregation criterion.
* @param finestLevel Whether this the finest level. In that case rows representing
* Dirichlet boundaries will be detected and ignored during aggregation.
* @return A tuple of the total number of aggregates, the number of isolated aggregates, the
* number of isolated aggregates, the number of aggregates consisting only of one vertex, and
* the number of skipped aggregates built.
*/
template<class M, class G, class C>
tuple<int,int,int,int> buildAggregates(const M& matrix, G& graph, const C& criterion,
bool finestLevel);
/**
* @brief Breadth first search within an aggregate
*
* The template parameters: <br>
* <dl><dt>reset</dt><dd>If true the visited flags of the vertices
* will be reset after
* the search</dd>
* <dt>G</dt><dd>The type of the graph we perform the search on.</dd>
* <dt>F</dt><dd>The type of the visitor to operate on the vertices</dd>
* </dl>
* @param start The vertex where the search should start
* from. This does not need to belong to the aggregate.
* @param aggregate The aggregate id.
* @param graph The matrix graph to perform the search on.
* @param visitedMap A map to mark the already visited vertices
* @param aggregateVisitor A functor that is called with
* each G::ConstEdgeIterator with an edge pointing to the
* aggregate. Use DummyVisitor if these are of no interest.
*/
template<bool reset, class G, class F, class VM>
std::size_t breadthFirstSearch(const VertexDescriptor& start,
const AggregateDescriptor& aggregate,
const G& graph,
F& aggregateVisitor,
VM& visitedMap) const;
/**
* @brief Breadth first search within an aggregate
*
* The template parameters: <br>
* <dl><dt>L</dt><dd>A container type providing push_back(Vertex), and
* pop_front() in case remove is true</dd>
* <dt>remove</dt><dd> If true the entries in the visited list
* will be removed.</dd>
* <dt>reset</dt><dd>If true the visited flag will be reset after
* the search</dd></dl>
* @param start The vertex where the search should start
* from. This does not need to belong to the aggregate.
* @param aggregate The aggregate id.
* @param graph The matrix graph to perform the search on.
* @param visited A list to store the visited vertices in.
* @param aggregateVisitor A functor that is called with
* each G::ConstEdgeIterator with an edge pointing to the
* aggregate. Use DummyVisitor these are of no interest.
* @param nonAggregateVisitor A functor that is called with
* each G::ConstEdgeIterator with an edge pointing to another
* aggregate. Use DummyVisitor these are of no interest.
* @param visitedMap A map to mark the already visited vertices
*/
template<bool remove, bool reset, class G, class L, class F1, class F2, class VM>
std::size_t breadthFirstSearch(const VertexDescriptor& start,
const AggregateDescriptor& aggregate,
const G& graph, L& visited, F1& aggregateVisitor,
F2& nonAggregateVisitor,
VM& visitedMap) const;
/**
* @brief Allocate memory for holding the information.
* @param noVertices The total number of vertices to be
* mapped.
*/
void allocate(std::size_t noVertices);
/**
* @brief Get the number of vertices.
*/
std::size_t noVertices() const;
/**
* @brief Free the allocated memory.
*/
void free();
/**
* @brief Get the aggregate a vertex belongs to.
* @param v The vertex we want to know the aggregate of.
* @return The aggregate the vertex is mapped to.
*/
AggregateDescriptor& operator[](const VertexDescriptor& v);
/**
* @brief Get the aggregate a vertex belongs to.
* @param v The vertex we want to know the aggregate of.
* @return The aggregate the vertex is mapped to.
*/
const AggregateDescriptor& operator[](const VertexDescriptor& v) const;
typedef const AggregateDescriptor* const_iterator;
const_iterator begin() const
{
return aggregates_;
}
const_iterator end() const
{
return aggregates_+noVertices();
}
typedef AggregateDescriptor* iterator;
iterator begin()
{
return aggregates_;
}
iterator end()
{
return aggregates_+noVertices();
}
private:
/** @brief Prevent copying. */
AggregatesMap(const AggregatesMap<V>& map)
{
throw "Auch!";
}
/** @brief Prevent assingment. */
AggregatesMap<V>& operator=(const AggregatesMap<V>& map)
{
throw "Auch!";
return this;
}
/**
* @brief The aggregates the vertices belong to.
*/
AggregateDescriptor* aggregates_;
/**
* @brief The number of vertices in the map.
*/
std::size_t noVertices_;
};
/**
* @brief Build the dependency of the matrix graph.
*/
template<class G, class C>
void buildDependency(G& graph,
const typename C::Matrix& matrix,
C criterion,
bool finestLevel);
/**
* @brief A class for temporarily storing the vertices of an
* aggregate in.
*/
template<class G, class S>
class Aggregate
{
public:
/***
* @brief The type of the matrix graph we work with.
*/
typedef G MatrixGraph;
/**
* @brief The vertex descriptor type.
*/
typedef typename MatrixGraph::VertexDescriptor Vertex;
/**
* @brief The allocator we use for our lists and the
* set.
*/
typedef PoolAllocator<Vertex,100> Allocator;
/**
* @brief The type of a single linked list of vertex
* descriptors.
*/
typedef S VertexSet;
/** @brief Const iterator over a vertex list. */
typedef typename VertexSet::const_iterator const_iterator;
/**
* @brief Type of the mapping of aggregate members onto distance spheres.
*/
typedef std::size_t* SphereMap;
/**
* @brief Constructor.
* @param graph The matrix graph we work on.
* @param aggregates The mapping of vertices onto aggregates.
* @param connectivity The set of vertices connected to the aggregate.
* distance spheres.
* @param front_ The vertices of the current aggregate front.
*/
Aggregate(MatrixGraph& graph, AggregatesMap<Vertex>& aggregates,
VertexSet& connectivity, std::vector<Vertex>& front_);
void invalidate()
{
--id_;
}
/**
* @brief Reconstruct the aggregat from an seed node.
*
* Will determine all vertices of the same agggregate
* and reference those.
*/
void reconstruct(const Vertex& vertex);
/**
* @brief Initialize the aggregate with one vertex.
*/
void seed(const Vertex& vertex);
/**
* @brief Add a vertex to the aggregate.
*/
void add(const Vertex& vertex);
void add(std::vector<Vertex>& vertex);
/**
* @brief Clear the aggregate.
*/
void clear();
/**
* @brief Get the size of the aggregate.
*/
typename VertexSet::size_type size();
/**
* @brief Get tne number of connections to other aggregates.
*/
typename VertexSet::size_type connectSize();
/**
* @brief Get the id identifying the aggregate.
*/
int id();
/** @brief get an iterator over the vertices of the aggregate. */
const_iterator begin() const;
/** @brief get an iterator over the vertices of the aggregate. */
const_iterator end() const;
private:
/**
* @brief The vertices of the aggregate.
*/
VertexSet vertices_;
/**
* @brief The number of the currently referenced
* aggregate.
*/
int id_;
/**
* @brief The matrix graph the aggregates live on.
*/
MatrixGraph& graph_;
/**
* @brief The aggregate mapping we build.
*/
AggregatesMap<Vertex>& aggregates_;
/**
* @brief The connections to other aggregates.
*/
VertexSet& connected_;
/**
* @brief The vertices of the current aggregate front.
*/
std::vector<Vertex>& front_;
};
/**
* @brief Class for building the aggregates.
*/
template<class G>
class Aggregator
{
public:
/**
* @brief The matrix graph type used.
*/
typedef G MatrixGraph;
/**
* @brief The vertex identifier
*/
typedef typename MatrixGraph::VertexDescriptor Vertex;
/** @brief The type of the aggregate descriptor. */
typedef typename MatrixGraph::VertexDescriptor AggregateDescriptor;
/**
* @brief Constructor.
*/
Aggregator();
/**
* @brief Destructor.
*/
~Aggregator();
/**
* @brief Build the aggregates.
*
* The template parameter C Is the type of the coarsening Criterion to
* use.
* @param m The matrix to build the aggregates accordingly.
* @param graph A (sub) graph of the matrix.
* @param aggregates Aggregate map we will build. All entries should be initialized
* to UNAGGREGATED!
* @param c The coarsening criterion to use.
* @param finestLevel Whether this the finest level. In that case rows representing
* Dirichlet boundaries will be detected and ignored during aggregation.
* @return A tuple of the total number of aggregates, the number of isolated aggregates, the
* number of isolated aggregates, the number of aggregates consisting only of one vertex, and
* the number of skipped aggregates built.
*/
template<class M, class C>
tuple<int,int,int,int> build(const M& m, G& graph,
AggregatesMap<Vertex>& aggregates, const C& c,
bool finestLevel);
private:
/**
* @brief The allocator we use for our lists and the
* set.
*/
typedef PoolAllocator<Vertex,100> Allocator;
/**
* @brief The single linked list we use.
*/
typedef SLList<Vertex,Allocator> VertexList;
/**
* @brief The set of vertices we use.
*/
typedef std::set<Vertex,std::less<Vertex>,Allocator> VertexSet;
/**
* @brief The type of mapping of aggregate members to spheres.
*/
typedef std::size_t* SphereMap;
/**
* @brief The graph we aggregate for.
*/
MatrixGraph* graph_;
/**
* @brief The vertices of the current aggregate-
*/
Aggregate<MatrixGraph,VertexSet>* aggregate_;
/**
* @brief The vertices of the current aggregate front.
*/
std::vector<Vertex> front_;
/**
* @brief The set of connected vertices.
*/
VertexSet connected_;
/**
* @brief Number of vertices mapped.
*/
int size_;
/**
* @brief Stack.
*/
class Stack
{
public:
static const Vertex NullEntry;
Stack(const MatrixGraph& graph,
const Aggregator<G>& aggregatesBuilder,
const AggregatesMap<Vertex>& aggregates);
~Stack();
Vertex pop();
private:
enum { N = 1300000 };
/** @brief The graph we work on. */
const MatrixGraph& graph_;
/** @brief The aggregates builder. */
const Aggregator<G>& aggregatesBuilder_;
/** @brief The aggregates information. */
const AggregatesMap<Vertex>& aggregates_;
/** @brief The current size. */
int size_;
Vertex maxSize_;
/** @brief The index of the top element. */
typename MatrixGraph::ConstVertexIterator begin_;
typename MatrixGraph::ConstVertexIterator end_;
/** @brief The values on the stack. */
Vertex* vals_;
};
friend class Stack;
/**
* @brief Visits all neighbours of vertex belonging to a
* specific aggregate.
*
* @param vertex The vertex whose neighbours we want to
* visit.
* @param aggregate The id of the aggregate.
* @param visitor The visitor evaluated for each EdgeIterator
* (by its method operator()(ConstEdgeIterator edge)
*/
template<class V>
void visitAggregateNeighbours(const Vertex& vertex, const AggregateDescriptor& aggregate,
const AggregatesMap<Vertex>& aggregates,
V& visitor) const;
/**
* @brief An Adaptor for vsitors that only
* evaluates edges pointing to a specific aggregate.
*/
template<class V>
class AggregateVisitor
{
public:
/**
* @brief The type of the adapted visitor
*/
typedef V Visitor;
/**
* @brief Constructor.
* @param aggregates The aggregate numbers of the
* vertices.
* @param aggregate The id of the aggregate to visit.
* @param visitor The visitor.
*/
AggregateVisitor(const AggregatesMap<Vertex>& aggregates, const AggregateDescriptor& aggregate,
Visitor& visitor);
/**
* @brief Examine an edge.
*
* The edge will be examined by the adapted visitor if
* it belongs to the right aggregate.
*/
void operator()(const typename MatrixGraph::ConstEdgeIterator& edge);
private:
/** @brief Mapping of vertices to aggregates. */
const AggregatesMap<Vertex>& aggregates_;
/** @brief The aggregate id we want to visit. */
AggregateDescriptor aggregate_;
/** @brief The visitor to use on the aggregate. */
Visitor* visitor_;
};
/**
* @brief A simple counter functor.
*/
class Counter
{
public:
/** @brief Constructor */
Counter();
/** @brief Access the current count. */
int value();
protected:
/** @brief Increment counter */
void increment();
/** @brief Decrement counter */
void decrement();
private:
int count_;
};
/**
* @brief Counts the number of edges to vertices belonging
* to the aggregate front.
*/
class FrontNeighbourCounter : public Counter
{
public:
/**
* @brief Constructor.
* @param front The vertices of the front.
*/
FrontNeighbourCounter(const MatrixGraph& front);
void operator()(const typename MatrixGraph::ConstEdgeIterator& edge);
private:
const MatrixGraph& graph_;
};
/**
* @brief Count the number of neighbours of a vertex that belong
* to the aggregate front.
*/
int noFrontNeighbours(const Vertex& vertex) const;
/**
* @brief Counter of TwoWayConnections.
*/
class TwoWayCounter : public Counter
{
public:
void operator()(const typename MatrixGraph::ConstEdgeIterator& edge);
};
/**
* @brief Count the number of twoway connection from
* a vertex to an aggregate.
*
* @param vertex The vertex whose connections are counted.
* @param aggregate The id of the aggregate the connections
* should point to.
* @param aggregates The mapping of the vertices onto aggregates.
* @return The number of one way connections from the vertex to
* the aggregate.
*/
int twoWayConnections(const Vertex&, const AggregateDescriptor& aggregate,
const AggregatesMap<Vertex>& aggregates) const;
/**
* @brief Counter of OneWayConnections.
*/
class OneWayCounter : public Counter
{
public:
void operator()(const typename MatrixGraph::ConstEdgeIterator& edge);
};
/**
* @brief Count the number of oneway connection from
* a vertex to an aggregate.
*
* @param vertex The vertex whose connections are counted.
* @param aggregate The id of the aggregate the connections
* should point to.
* @param aggregates The mapping of the vertices onto aggregates.
* @return The number of one way connections from the vertex to
* the aggregate.
*/
int oneWayConnections(const Vertex&, const AggregateDescriptor& aggregate,
const AggregatesMap<Vertex>& aggregates) const;
/**
* @brief Connectivity counter
*
* Increments count if the neighbour is already known as
* connected or is not yet aggregated.
*/
class ConnectivityCounter : public Counter
{
public:
/**
* @brief Constructor.
* @param connected The set of connected aggregates.
* @param aggregates Mapping of the vertices onto the aggregates.
* @param aggregates The mapping of aggregates to vertices.
*/
ConnectivityCounter(const VertexSet& connected, const AggregatesMap<Vertex>& aggregates);
void operator()(const typename MatrixGraph::ConstEdgeIterator& edge);
private:
/** @brief The connected aggregates. */
const VertexSet& connected_;
/** @brief The mapping of vertices to aggregates. */
const AggregatesMap<Vertex>& aggregates_;
};
/**
* @brief Get the connectivity of a vertex.
*
* For each unaggregated neighbour or neighbour of an aggregate
* that is already known as connected the count is increased by
* one. In all other cases by two.
*
* @param vertex The vertex whose connectivity we want.
* @param aggregates The mapping of the vertices onto the aggregates.
* @return The value of the connectivity.
*/
double connectivity(const Vertex& vertex, const AggregatesMap<Vertex>& aggregates) const;
/**
* @brief Test whether the vertex is connected to the aggregate.
* @param vertex The vertex descriptor.
* @param aggregate The aggregate descriptor.
* @param aggregates The mapping of the vertices onto the aggregates.
* @return True if there is a connection to the aggregate.
*/
bool connected(const Vertex& vertex, const AggregateDescriptor& aggregate,
const AggregatesMap<Vertex>& aggregates) const;
/**
* @brief Test whether the vertex is connected to an aggregate of a list.
* @param vertex The vertex descriptor.
* @param aggregateList The list of aggregate descriptors.
* @param aggregates The mapping of the vertices onto the aggregates.
* @return True if there is a connection to the aggregate.
*/
bool connected(const Vertex& vertex, const SLList<AggregateDescriptor>& aggregateList,
const AggregatesMap<Vertex>& aggregates) const;
/**
* @brief Counts the edges depending on the dependency.
*
* If the inluence flag of the edge is set the counter is
* increased and/or if the depends flag is set it is
* incremented, too.
*/
class DependencyCounter : public Counter
{
public:
/**
* @brief Constructor.
*/
DependencyCounter();
void operator()(const typename MatrixGraph::ConstEdgeIterator& edge);
};
/**
* @brief Adds the targets of each edge to
* the list of front vertices.
*
* Vertices already marked as front nodes will not get added.
*/
class FrontMarker
{
public:
/**
* @brief Constructor.
*
* @param front The list to store the front vertices in.
* @param graph The matrix graph we work on.
*/
FrontMarker(std::vector<Vertex>& front, MatrixGraph& graph);
void operator()(const typename MatrixGraph::ConstEdgeIterator& edge);
private:
/** @brief The list of front vertices. */
std::vector<Vertex>& front_;
/** @brief The matrix graph we work on. */
MatrixGraph& graph_;
};
/**
* @brief Unmarks all front vertices.
*/
void unmarkFront();
/**
* @brief counts the dependency between a vertex and unaggregated
* neighbours.
*
* If the inluence flag of the edge is set the counter is
* increased and/or if the depends flag is set it is
* incremented, too.
*
* @param vertex The vertex whose neighbours we count.
* @param aggregates The mapping of the vertices onto the aggregates.
* @return The sum of the number of unaggregated
* neighbours the vertex depends on and the number of unaggregated
* neighbours the vertex influences.
*/
int unusedNeighbours(const Vertex& vertex, const AggregatesMap<Vertex>& aggregates) const;
/**
* @brief Count connections to neighbours.
*
* Counts the number of strong connections of a vertex to vertices
* that are not yet aggregated
* and the ones that belong to specific aggregate.
*
* @param vertex The vertex that we count the neighbours of.
* @param aggregates The mapping of the vertices into aggregates.
* @param aggregate The descriptor of the aggregate.
* @return The pair of number of connections to unaggregate vertices
* and number of connections to vertices of the specific aggregate.
*/
std::pair<int,int> neighbours(const Vertex& vertex,
const AggregateDescriptor& aggregate,
const AggregatesMap<Vertex>& aggregates) const;
/**
* @brief Counts the number of neighbours belonging to an aggregate.
*
*
* If the inluence flag of the edge is set the counter is
* increased and/or if the depends flag is set it is
* incremented, too.
*
* @param vertex The vertex whose neighbours we count.
* @param aggregate The aggregate id.
* @param aggregates The mapping of the vertices onto the aggregates.
* @return The sum of the number of
* neighbours belonging to the aggregate
* the vertex depends on and the number of
* neighbours of the aggregate the vertex influences.
*/
int aggregateNeighbours(const Vertex& vertex, const AggregateDescriptor& aggregate, const AggregatesMap<Vertex>& aggregates) const;
/**
* @brief Checks wether a vertex is admisible to be added to an aggregate.
*
* @param vertex The vertex whose admissibility id to be checked.
* @param aggregate The id of the aggregate.
* @param aggregates The mapping of the vertices onto aggregates.
*/
bool admissible(const Vertex& vertex, const AggregateDescriptor& aggregate, const AggregatesMap<Vertex>& aggregates) const;
/**
* @brief The maximum distance of the vertex to any vertex in the
* current aggregate.
*
* @return The maximum of all shortest paths from the vertex to any
* vertex of the aggregate.
*/
std::size_t distance(const Vertex& vertex, const AggregatesMap<Vertex>& aggregates);
/**
* @brief Find a strongly connected cluster of a vertex.
*
* @param vertex The vertex whose neighbouring aggregate we search.
* @param aggregates The mapping of the vertices onto aggregates.
* @return A vertex of neighbouring aggregate the vertex is allowed to
* be added to.
*/
Vertex mergeNeighbour(const Vertex& vertex, const AggregatesMap<Vertex>& aggregates) const;
/**
* @brief Find a nonisolated connected aggregate.
*
* @param vertex The vertex whose neighbouring aggregate we search.
* @param aggregates The mapping of the vertices onto aggregates.
* @param[out] list to store the vertices of neighbouring aggregates the vertex is allowed to
* be added to.
*/
void nonisoNeighbourAggregate(const Vertex& vertex,
const AggregatesMap<Vertex>& aggregates,
SLList<Vertex>& neighbours) const;
/**
* @brief Grows the aggregate from a seed.
*
* @param seed The first vertex of the aggregate.
* @param aggregates The mapping of he vertices onto the aggregates.
* @param c The coarsen criterium.
*/
template<class C>
void growAggregate(const Vertex& vertex, const AggregatesMap<Vertex>& aggregates, const C& c);
template<class C>
void growIsolatedAggregate(const Vertex& vertex, const AggregatesMap<Vertex>& aggregates, const C& c);
};
#ifndef DOXYGEN
template<class M, class N>
inline void SymmetricDependency<M,N>::init(const Matrix* matrix)
{
matrix_ = matrix;
}
template<class M, class N>
inline void SymmetricDependency<M,N>::initRow(const Row& row, int index)
{
DUNE_UNUSED_PARAMETER(row);
maxValue_ = std::min(- std::numeric_limits<typename Matrix::field_type>::max(), std::numeric_limits<typename Matrix::field_type>::min());
row_ = index;
diagonal_ = norm_(matrix_->operator[](row_)[row_]);
}
template<class M, class N>
inline void SymmetricDependency<M,N>::examine(const ColIter& col)
{
real_type eij = norm_(*col);
typename Matrix::ConstColIterator opposite_entry =
matrix_->operator[](col.index()).find(row_);
if ( opposite_entry == matrix_->operator[](col.index()).end() )
{
// Consider this a weak connection we disregard.
return;
}
real_type eji = norm_(*opposite_entry);
// skip positive offdiagonals if norm preserves sign of them.
if(!N::is_sign_preserving || eij<0 || eji<0)
maxValue_ = std::max(maxValue_,
eij /diagonal_ * eji/
norm_(matrix_->operator[](col.index())[col.index()]));
}
template<class M, class N>
template<class G>
inline void SymmetricDependency<M,N>::examine(G& graph, const typename G::EdgeIterator& edge, const ColIter& col)
{
real_type eij = norm_(*col);
typename Matrix::ConstColIterator opposite_entry =
matrix_->operator[](col.index()).find(row_);
if ( opposite_entry == matrix_->operator[](col.index()).end() )
{
// Consider this as a weak connection we disregard.
return;
}
real_type eji = norm_(*opposite_entry);
// skip positve offdiagonals if norm preserves sign of them.
if(!N::is_sign_preserving || (eij<0 || eji<0))
if(eji / norm_(matrix_->operator[](edge.target())[edge.target()]) *
eij/ diagonal_ > alpha() * maxValue_) {
edge.properties().setDepends();
edge.properties().setInfluences();
typename G::EdgeProperties& other = graph.getEdgeProperties(edge.target(), edge.source());
other.setInfluences();
other.setDepends();
}
}
template<class M, class N>
inline bool SymmetricDependency<M,N>::isIsolated()
{
return maxValue_ < beta();
}
template<class M, class N>
inline void Dependency<M,N>::init(const Matrix* matrix)
{
matrix_ = matrix;
}
template<class M, class N>
inline void Dependency<M,N>::initRow(const Row& row, int index)
{
DUNE_UNUSED_PARAMETER(row);
maxValue_ = std::min(- std::numeric_limits<real_type>::max(), std::numeric_limits<real_type>::min());
row_ = index;
diagonal_ = norm_(matrix_->operator[](row_)[row_]);
}
template<class M, class N>
inline void Dependency<M,N>::examine(const ColIter& col)
{
maxValue_ = std::max(maxValue_,
-norm_(*col));
}
template<class M, class N>
template<class G>
inline void Dependency<M,N>::examine(G& graph, const typename G::EdgeIterator& edge, const ColIter& col)
{
if(-norm_(*col) >= maxValue_ * alpha()) {
edge.properties().setDepends();
typedef typename G::EdgeDescriptor ED;
ED e= graph.findEdge(edge.target(), edge.source());
if(e!=std::numeric_limits<ED>::max())
{
typename G::EdgeProperties& other = graph.getEdgeProperties(e);
other.setInfluences();
}
}
}
template<class M, class N>
inline bool Dependency<M,N>::isIsolated()
{
return maxValue_ < beta() * diagonal_;
}
template<class G,class S>
Aggregate<G,S>::Aggregate(MatrixGraph& graph, AggregatesMap<Vertex>& aggregates,
VertexSet& connected, std::vector<Vertex>& front)
: vertices_(), id_(-1), graph_(graph), aggregates_(aggregates),
connected_(connected), front_(front)
{}
template<class G,class S>
void Aggregate<G,S>::reconstruct(const Vertex& vertex)
{
/*
vertices_.push_back(vertex);
typedef typename VertexList::const_iterator iterator;
iterator begin = vertices_.begin();
iterator end = vertices_.end();*/
throw "Not yet implemented";
// while(begin!=end){
//for();
// }
}
template<class G,class S>
inline void Aggregate<G,S>::seed(const Vertex& vertex)
{
dvverb<<"Connected cleared"<<std::endl;
connected_.clear();
vertices_.clear();
connected_.insert(vertex);
dvverb << " Inserting "<<vertex<<" size="<<connected_.size();
++id_ ;
add(vertex);
}
template<class G,class S>
inline void Aggregate<G,S>::add(const Vertex& vertex)
{
vertices_.insert(vertex);
aggregates_[vertex]=id_;
if(front_.size())
front_.erase(std::lower_bound(front_.begin(), front_.end(), vertex));
typedef typename MatrixGraph::ConstEdgeIterator iterator;
const iterator end = graph_.endEdges(vertex);
for(iterator edge = graph_.beginEdges(vertex); edge != end; ++edge) {
dvverb << " Inserting "<<aggregates_[edge.target()];
connected_.insert(aggregates_[edge.target()]);
dvverb <<" size="<<connected_.size();
if(aggregates_[edge.target()]==AggregatesMap<Vertex>::UNAGGREGATED &&
!graph_.getVertexProperties(edge.target()).front())
{
front_.push_back(edge.target());
graph_.getVertexProperties(edge.target()).setFront();
}
}
dvverb <<std::endl;
std::sort(front_.begin(), front_.end());
}
template<class G,class S>
inline void Aggregate<G,S>::add(std::vector<Vertex>& vertices)
{
#ifndef NDEBUG
std::size_t oldsize = vertices_.size();
#endif
typedef typename std::vector<Vertex>::iterator Iterator;
typedef typename VertexSet::iterator SIterator;
SIterator pos=vertices_.begin();
std::vector<Vertex> newFront;
newFront.reserve(front_.capacity());
std::set_difference(front_.begin(), front_.end(), vertices.begin(), vertices.end(),
std::back_inserter(newFront));
front_=newFront;
for(Iterator vertex=vertices.begin(); vertex != vertices.end(); ++vertex)
{
pos=vertices_.insert(pos,*vertex);
vertices_.insert(*vertex);
graph_.getVertexProperties(*vertex).resetFront(); // Not a front node any more.
aggregates_[*vertex]=id_;
typedef typename MatrixGraph::ConstEdgeIterator iterator;
const iterator end = graph_.endEdges(*vertex);
for(iterator edge = graph_.beginEdges(*vertex); edge != end; ++edge) {
dvverb << " Inserting "<<aggregates_[edge.target()];
connected_.insert(aggregates_[edge.target()]);
if(aggregates_[edge.target()]==AggregatesMap<Vertex>::UNAGGREGATED &&
!graph_.getVertexProperties(edge.target()).front())
{
front_.push_back(edge.target());
graph_.getVertexProperties(edge.target()).setFront();
}
dvverb <<" size="<<connected_.size();
}
dvverb <<std::endl;
}
std::sort(front_.begin(), front_.end());
assert(oldsize+vertices.size()==vertices_.size());
}
template<class G,class S>
inline void Aggregate<G,S>::clear()
{
vertices_.clear();
connected_.clear();
id_=-1;
}
template<class G,class S>
inline typename Aggregate<G,S>::VertexSet::size_type
Aggregate<G,S>::size()
{
return vertices_.size();
}
template<class G,class S>
inline typename Aggregate<G,S>::VertexSet::size_type
Aggregate<G,S>::connectSize()
{
return connected_.size();
}
template<class G,class S>
inline int Aggregate<G,S>::id()
{
return id_;
}
template<class G,class S>
inline typename Aggregate<G,S>::const_iterator Aggregate<G,S>::begin() const
{
return vertices_.begin();
}
template<class G,class S>
inline typename Aggregate<G,S>::const_iterator Aggregate<G,S>::end() const
{
return vertices_.end();
}
template<class V>
const V AggregatesMap<V>::UNAGGREGATED = std::numeric_limits<V>::max();
template<class V>
const V AggregatesMap<V>::ISOLATED = std::numeric_limits<V>::max()-1;
template<class V>
AggregatesMap<V>::AggregatesMap()
: aggregates_(0)
{}
template<class V>
AggregatesMap<V>::~AggregatesMap()
{
if(aggregates_!=0)
delete[] aggregates_;
}
template<class V>
inline AggregatesMap<V>::AggregatesMap(std::size_t noVertices)
{
allocate(noVertices);
}
template<class V>
inline std::size_t AggregatesMap<V>::noVertices() const
{
return noVertices_;
}
template<class V>
inline void AggregatesMap<V>::allocate(std::size_t noVertices)
{
aggregates_ = new AggregateDescriptor[noVertices];
noVertices_ = noVertices;
for(std::size_t i=0; i < noVertices; i++)
aggregates_[i]=UNAGGREGATED;
}
template<class V>
inline void AggregatesMap<V>::free()
{
assert(aggregates_ != 0);
delete[] aggregates_;
aggregates_=0;
}
template<class V>
inline typename AggregatesMap<V>::AggregateDescriptor&
AggregatesMap<V>::operator[](const VertexDescriptor& v)
{
return aggregates_[v];
}
template<class V>
inline const typename AggregatesMap<V>::AggregateDescriptor&
AggregatesMap<V>::operator[](const VertexDescriptor& v) const
{
return aggregates_[v];
}
template<class V>
template<bool reset, class G, class F,class VM>
inline std::size_t AggregatesMap<V>::breadthFirstSearch(const V& start,
const AggregateDescriptor& aggregate,
const G& graph, F& aggregateVisitor,
VM& visitedMap) const
{
VertexList vlist;
DummyEdgeVisitor dummy;
return breadthFirstSearch<true,reset>(start, aggregate, graph, vlist, aggregateVisitor, dummy, visitedMap);
}
template<class V>
template<bool remove, bool reset, class G, class L, class F1, class F2, class VM>
std::size_t AggregatesMap<V>::breadthFirstSearch(const V& start,
const AggregateDescriptor& aggregate,
const G& graph,
L& visited,
F1& aggregateVisitor,
F2& nonAggregateVisitor,
VM& visitedMap) const
{
typedef typename L::const_iterator ListIterator;
int visitedSpheres = 0;
visited.push_back(start);
put(visitedMap, start, true);
ListIterator current = visited.begin();
ListIterator end = visited.end();
std::size_t i=0, size=visited.size();
// visit the neighbours of all vertices of the
// current sphere.
while(current != end) {
for(; i<size; ++current, ++i) {
typedef typename G::ConstEdgeIterator EdgeIterator;
const EdgeIterator endEdge = graph.endEdges(*current);
for(EdgeIterator edge = graph.beginEdges(*current);
edge != endEdge; ++edge) {
if(aggregates_[edge.target()]==aggregate) {
if(!get(visitedMap, edge.target())) {
put(visitedMap, edge.target(), true);
visited.push_back(edge.target());
aggregateVisitor(edge);
}
}else
nonAggregateVisitor(edge);
}
}
end = visited.end();
size = visited.size();
if(current != end)
visitedSpheres++;
}
if(reset)
for(current = visited.begin(); current != end; ++current)
put(visitedMap, *current, false);
if(remove)
visited.clear();
return visitedSpheres;
}
template<class G>
Aggregator<G>::Aggregator()
: graph_(0), aggregate_(0), front_(), connected_(), size_(-1)
{}
template<class G>
Aggregator<G>::~Aggregator()
{
size_=-1;
}
template<class G, class C>
void buildDependency(G& graph,
const typename C::Matrix& matrix,
C criterion, bool firstlevel)
{
// assert(graph.isBuilt());
typedef typename C::Matrix Matrix;
typedef typename G::VertexIterator VertexIterator;
criterion.init(&matrix);
for(VertexIterator vertex = graph.begin(); vertex != graph.end(); ++vertex) {
typedef typename Matrix::row_type Row;
const Row& row = matrix[*vertex];
// Tell the criterion what row we will examine now
// This might for example be used for calculating the
// maximum offdiagonal value
criterion.initRow(row, *vertex);
// On a first path all columns are examined. After this
// the calculator should know whether the vertex is isolated.
typedef typename Matrix::ConstColIterator ColIterator;
ColIterator end = row.end();
typename FieldTraits<typename Matrix::field_type>::real_type absoffdiag=0.;
if(firstlevel) {
for(ColIterator col = row.begin(); col != end; ++col)
if(col.index()!=*vertex) {
criterion.examine(col);
absoffdiag=std::max(absoffdiag, col->frobenius_norm());
}
if(absoffdiag==0)
vertex.properties().setExcludedBorder();
}
else
for(ColIterator col = row.begin(); col != end; ++col)
if(col.index()!=*vertex)
criterion.examine(col);
// reset the vertex properties
//vertex.properties().reset();
// Check whether the vertex is isolated.
if(criterion.isIsolated()) {
//std::cout<<"ISOLATED: "<<*vertex<<std::endl;
vertex.properties().setIsolated();
}else{
// Examine all the edges beginning at this vertex.
typedef typename G::EdgeIterator EdgeIterator;
typedef typename Matrix::ConstColIterator ColIterator;
EdgeIterator eEnd = vertex.end();
ColIterator col = matrix[*vertex].begin();
for(EdgeIterator edge = vertex.begin(); edge!= eEnd; ++edge, ++col) {
// Move to the right column.
while(col.index()!=edge.target())
++col;
criterion.examine(graph, edge, col);
}
}
}
}
template<class G>
template<class V>
inline Aggregator<G>::AggregateVisitor<V>::AggregateVisitor(const AggregatesMap<Vertex>& aggregates,
const AggregateDescriptor& aggregate, V& visitor)
: aggregates_(aggregates), aggregate_(aggregate), visitor_(&visitor)
{}
template<class G>
template<class V>
inline void Aggregator<G>::AggregateVisitor<V>::operator()(const typename MatrixGraph::ConstEdgeIterator& edge)
{
if(aggregates_[edge.target()]==aggregate_)
visitor_->operator()(edge);
}
template<class G>
template<class V>
inline void Aggregator<G>::visitAggregateNeighbours(const Vertex& vertex,
const AggregateDescriptor& aggregate,
const AggregatesMap<Vertex>& aggregates,
V& visitor) const
{
// Only evaluates for edge pointing to the aggregate
AggregateVisitor<V> v(aggregates, aggregate, visitor);
visitNeighbours(*graph_, vertex, v);
}
template<class G>
inline Aggregator<G>::Counter::Counter()
: count_(0)
{}
template<class G>
inline void Aggregator<G>::Counter::increment()
{
++count_;
}
template<class G>
inline void Aggregator<G>::Counter::decrement()
{
--count_;
}
template<class G>
inline int Aggregator<G>::Counter::value()
{
return count_;
}
template<class G>
inline void Aggregator<G>::TwoWayCounter::operator()(const typename MatrixGraph::ConstEdgeIterator& edge)
{
if(edge.properties().isTwoWay())
Counter::increment();
}
template<class G>
int Aggregator<G>::twoWayConnections(const Vertex& vertex, const AggregateDescriptor& aggregate,
const AggregatesMap<Vertex>& aggregates) const
{
TwoWayCounter counter;
visitAggregateNeighbours(vertex, aggregate, aggregates, counter);
return counter.value();
}
template<class G>
int Aggregator<G>::oneWayConnections(const Vertex& vertex, const AggregateDescriptor& aggregate,
const AggregatesMap<Vertex>& aggregates) const
{
OneWayCounter counter;
visitAggregateNeighbours(vertex, aggregate, aggregates, counter);
return counter.value();
}
template<class G>
inline void Aggregator<G>::OneWayCounter::operator()(const typename MatrixGraph::ConstEdgeIterator& edge)
{
if(edge.properties().isOneWay())
Counter::increment();
}
template<class G>
inline Aggregator<G>::ConnectivityCounter::ConnectivityCounter(const VertexSet& connected,
const AggregatesMap<Vertex>& aggregates)
: Counter(), connected_(connected), aggregates_(aggregates)
{}
template<class G>
inline void Aggregator<G>::ConnectivityCounter::operator()(const typename MatrixGraph::ConstEdgeIterator& edge)
{
if(connected_.find(aggregates_[edge.target()]) == connected_.end() || aggregates_[edge.target()]==AggregatesMap<Vertex>::UNAGGREGATED)
// Would be a new connection
Counter::increment();
else{
Counter::increment();
Counter::increment();
}
}
template<class G>
inline double Aggregator<G>::connectivity(const Vertex& vertex, const AggregatesMap<Vertex>& aggregates) const
{
ConnectivityCounter counter(connected_, aggregates);
double noNeighbours=visitNeighbours(*graph_, vertex, counter);
return (double)counter.value()/noNeighbours;
}
template<class G>
inline Aggregator<G>::DependencyCounter::DependencyCounter()
: Counter()
{}
template<class G>
inline void Aggregator<G>::DependencyCounter::operator()(const typename MatrixGraph::ConstEdgeIterator& edge)
{
if(edge.properties().depends())
Counter::increment();
if(edge.properties().influences())
Counter::increment();
}
template<class G>
int Aggregator<G>::unusedNeighbours(const Vertex& vertex, const AggregatesMap<Vertex>& aggregates) const
{
return aggregateNeighbours(vertex, AggregatesMap<Vertex>::UNAGGREGATED, aggregates);
}
template<class G>
std::pair<int,int> Aggregator<G>::neighbours(const Vertex& vertex,
const AggregateDescriptor& aggregate,
const AggregatesMap<Vertex>& aggregates) const
{
DependencyCounter unused, aggregated;
typedef AggregateVisitor<DependencyCounter> Counter;
typedef tuple<Counter,Counter> CounterTuple;
CombinedFunctor<CounterTuple> visitors(CounterTuple(Counter(aggregates, AggregatesMap<Vertex>::UNAGGREGATED, unused), Counter(aggregates, aggregate, aggregated)));
visitNeighbours(*graph_, vertex, visitors);
return std::make_pair(unused.value(), aggregated.value());
}
template<class G>
int Aggregator<G>::aggregateNeighbours(const Vertex& vertex, const AggregateDescriptor& aggregate, const AggregatesMap<Vertex>& aggregates) const
{
DependencyCounter counter;
visitAggregateNeighbours(vertex, aggregate, aggregates, counter);
return counter.value();
}
template<class G>
std::size_t Aggregator<G>::distance(const Vertex& vertex, const AggregatesMap<Vertex>& aggregates)
{
return 0;
typename PropertyMapTypeSelector<VertexVisitedTag,G>::Type visitedMap = get(VertexVisitedTag(), *graph_);
VertexList vlist;
typename AggregatesMap<Vertex>::DummyEdgeVisitor dummy;
return aggregates.template breadthFirstSearch<true,true>(vertex,
aggregate_->id(), *graph_,
vlist, dummy, dummy, visitedMap);
}
template<class G>
inline Aggregator<G>::FrontMarker::FrontMarker(std::vector<Vertex>& front, MatrixGraph& graph)
: front_(front), graph_(graph)
{}
template<class G>
inline void Aggregator<G>::FrontMarker::operator()(const typename MatrixGraph::ConstEdgeIterator& edge)
{
Vertex target = edge.target();
if(!graph_.getVertexProperties(target).front()) {
front_.push_back(target);
graph_.getVertexProperties(target).setFront();
}
}
template<class G>
inline bool Aggregator<G>::admissible(const Vertex& vertex, const AggregateDescriptor& aggregate, const AggregatesMap<Vertex>& aggregates) const
{
// Todo
Dune::dvverb<<" Admissible not yet implemented!"<<std::endl;
return true;
//Situation 1: front node depends on two nodes. Then these
// have to be strongly connected to each other
// Iterate over all all neighbours of front node
typedef typename MatrixGraph::ConstEdgeIterator Iterator;
Iterator vend = graph_->endEdges(vertex);
for(Iterator edge = graph_->beginEdges(vertex); edge != vend; ++edge) {
// if(edge.properties().depends() && !edge.properties().influences()
if(edge.properties().isStrong()
&& aggregates[edge.target()]==aggregate)
{
// Search for another link to the aggregate
Iterator edge1 = edge;
for(++edge1; edge1 != vend; ++edge1) {
//if(edge1.properties().depends() && !edge1.properties().influences()
if(edge1.properties().isStrong()
&& aggregates[edge.target()]==aggregate)
{
//Search for an edge connecting the two vertices that is
//strong
bool found=false;
Iterator v2end = graph_->endEdges(edge.target());
for(Iterator edge2 = graph_->beginEdges(edge.target()); edge2 != v2end; ++edge2) {
if(edge2.target()==edge1.target() &&
edge2.properties().isStrong()) {
found =true;
break;
}
}
if(found)
{
return true;
}
}
}
}
}
// Situation 2: cluster node depends on front node and other cluster node
/// Iterate over all all neighbours of front node
vend = graph_->endEdges(vertex);
for(Iterator edge = graph_->beginEdges(vertex); edge != vend; ++edge) {
//if(!edge.properties().depends() && edge.properties().influences()
if(edge.properties().isStrong()
&& aggregates[edge.target()]==aggregate)
{
// Search for a link from target that stays within the aggregate
Iterator v1end = graph_->endEdges(edge.target());
for(Iterator edge1=graph_->beginEdges(edge.target()); edge1 != v1end; ++edge1) {
//if(edge1.properties().depends() && !edge1.properties().influences()
if(edge1.properties().isStrong()
&& aggregates[edge1.target()]==aggregate)
{
bool found=false;
// Check if front node is also connected to this one
Iterator v2end = graph_->endEdges(vertex);
for(Iterator edge2 = graph_->beginEdges(vertex); edge2 != v2end; ++edge2) {
if(edge2.target()==edge1.target()) {
if(edge2.properties().isStrong())
found=true;
break;
}
}
if(found)
{
return true;
}
}
}
}
}
return false;
}
template<class G>
void Aggregator<G>::unmarkFront()
{
typedef typename std::vector<Vertex>::const_iterator Iterator;
for(Iterator vertex=front_.begin(); vertex != front_.end(); ++vertex)
graph_->getVertexProperties(*vertex).resetFront();
front_.clear();
}
template<class G>
inline void
Aggregator<G>::nonisoNeighbourAggregate(const Vertex& vertex,
const AggregatesMap<Vertex>& aggregates,
SLList<Vertex>& neighbours) const
{
typedef typename MatrixGraph::ConstEdgeIterator Iterator;
Iterator end=graph_->beginEdges(vertex);
neighbours.clear();
for(Iterator edge=graph_->beginEdges(vertex); edge!=end; ++edge)
{
if(aggregates[edge.target()]!=AggregatesMap<Vertex>::UNAGGREGATED && graph_->getVertexProperties(edge.target()).isolated())
neighbours.push_back(aggregates[edge.target()]);
}
}
template<class G>
inline typename G::VertexDescriptor Aggregator<G>::mergeNeighbour(const Vertex& vertex, const AggregatesMap<Vertex>& aggregates) const
{
typedef typename MatrixGraph::ConstEdgeIterator Iterator;
Iterator end = graph_->endEdges(vertex);
for(Iterator edge = graph_->beginEdges(vertex); edge != end; ++edge) {
if(aggregates[edge.target()] != AggregatesMap<Vertex>::UNAGGREGATED &&
graph_->getVertexProperties(edge.target()).isolated() == graph_->getVertexProperties(edge.source()).isolated()) {
if( graph_->getVertexProperties(vertex).isolated() ||
((edge.properties().depends() || edge.properties().influences())
&& admissible(vertex, aggregates[edge.target()], aggregates)))
return edge.target();
}
}
return AggregatesMap<Vertex>::UNAGGREGATED;
}
template<class G>
Aggregator<G>::FrontNeighbourCounter::FrontNeighbourCounter(const MatrixGraph& graph)
: Counter(), graph_(graph)
{}
template<class G>
void Aggregator<G>::FrontNeighbourCounter::operator()(const typename MatrixGraph::ConstEdgeIterator& edge)
{
if(graph_.getVertexProperties(edge.target()).front())
Counter::increment();
}
template<class G>
int Aggregator<G>::noFrontNeighbours(const Vertex& vertex) const
{
FrontNeighbourCounter counter(*graph_);
visitNeighbours(*graph_, vertex, counter);
return counter.value();
}
template<class G>
inline bool Aggregator<G>::connected(const Vertex& vertex,
const AggregateDescriptor& aggregate,
const AggregatesMap<Vertex>& aggregates) const
{
typedef typename G::ConstEdgeIterator iterator;
const iterator end = graph_->endEdges(vertex);
for(iterator edge = graph_->beginEdges(vertex); edge != end; ++edge)
if(aggregates[edge.target()]==aggregate)
return true;
return false;
}
template<class G>
inline bool Aggregator<G>::connected(const Vertex& vertex,
const SLList<AggregateDescriptor>& aggregateList,
const AggregatesMap<Vertex>& aggregates) const
{
typedef typename SLList<AggregateDescriptor>::const_iterator Iter;
for(Iter i=aggregateList.begin(); i!=aggregateList.end(); ++i)
if(connected(vertex, *i, aggregates))
return true;
return false;
}
template<class G>
template<class C>
void Aggregator<G>::growIsolatedAggregate(const Vertex& seed, const AggregatesMap<Vertex>& aggregates, const C& c)
{
SLList<Vertex> connectedAggregates;
nonisoNeighbourAggregate(seed, aggregates,connectedAggregates);
while(aggregate_->size()< c.minAggregateSize() && aggregate_->connectSize() < c.maxConnectivity()) {
double maxCon=-1;
std::size_t maxFrontNeighbours=0;
Vertex candidate=AggregatesMap<Vertex>::UNAGGREGATED;
typedef typename std::vector<Vertex>::const_iterator Iterator;
for(Iterator vertex = front_.begin(); vertex != front_.end(); ++vertex) {
if(distance(*vertex, aggregates)>c.maxDistance())
continue; // distance of proposes aggregate too big
if(connectedAggregates.size()>0) {
// there is already a neighbour cluster
// front node must be connected to same neighbour cluster
if(!connected(*vertex, connectedAggregates, aggregates))
continue;
}
double con = connectivity(*vertex, aggregates);
if(con == maxCon) {
std::size_t frontNeighbours = noFrontNeighbours(*vertex);
if(frontNeighbours >= maxFrontNeighbours) {
maxFrontNeighbours = frontNeighbours;
candidate = *vertex;
}
}else if(con > maxCon) {
maxCon = con;
maxFrontNeighbours = noFrontNeighbours(*vertex);
candidate = *vertex;
}
}
if(candidate==AggregatesMap<Vertex>::UNAGGREGATED)
break;
aggregate_->add(candidate);
}
}
template<class G>
template<class C>
void Aggregator<G>::growAggregate(const Vertex& seed, const AggregatesMap<Vertex>& aggregates, const C& c)
{
std::size_t distance_ =0;
while(aggregate_->size() < c.minAggregateSize()&& distance_<c.maxDistance()) {
int maxTwoCons=0, maxOneCons=0, maxNeighbours=-1;
double maxCon=-1;
std::vector<Vertex> candidates;
candidates.reserve(30);
typedef typename std::vector<Vertex>::const_iterator Iterator;
for(Iterator vertex = front_.begin(); vertex != front_.end(); ++vertex) {
// Only nonisolated nodes are considered
if(graph_->getVertexProperties(*vertex).isolated())
continue;
int twoWayCons = twoWayConnections(*vertex, aggregate_->id(), aggregates);
/* The case of two way connections. */
if( maxTwoCons == twoWayCons && twoWayCons > 0) {
double con = connectivity(*vertex, aggregates);
if(con == maxCon) {
int neighbours = noFrontNeighbours(*vertex);
if(neighbours > maxNeighbours) {
maxNeighbours = neighbours;
candidates.clear();
candidates.push_back(*vertex);
}else{
candidates.push_back(*vertex);
}
}else if( con > maxCon) {
maxCon = con;
maxNeighbours = noFrontNeighbours(*vertex);
candidates.clear();
candidates.push_back(*vertex);
}
}else if(twoWayCons > maxTwoCons) {
maxTwoCons = twoWayCons;
maxCon = connectivity(*vertex, aggregates);
maxNeighbours = noFrontNeighbours(*vertex);
candidates.clear();
candidates.push_back(*vertex);
// two way connections preceed
maxOneCons = std::numeric_limits<int>::max();
}
if(twoWayCons > 0)
{
continue; // THis is a two-way node, skip tests for one way nodes
}
/* The one way case */
int oneWayCons = oneWayConnections(*vertex, aggregate_->id(), aggregates);
if(oneWayCons==0)
continue; // No strong connections, skip the tests.
if(!admissible(*vertex, aggregate_->id(), aggregates))
continue;
if( maxOneCons == oneWayCons && oneWayCons > 0) {
double con = connectivity(*vertex, aggregates);
if(con == maxCon) {
int neighbours = noFrontNeighbours(*vertex);
if(neighbours > maxNeighbours) {
maxNeighbours = neighbours;
candidates.clear();
candidates.push_back(*vertex);
}else{
if(neighbours==maxNeighbours)
{
candidates.push_back(*vertex);
}
}
}else if( con > maxCon) {
maxCon = con;
maxNeighbours = noFrontNeighbours(*vertex);
candidates.clear();
candidates.push_back(*vertex);
}
}else if(oneWayCons > maxOneCons) {
maxOneCons = oneWayCons;
maxCon = connectivity(*vertex, aggregates);
maxNeighbours = noFrontNeighbours(*vertex);
candidates.clear();
candidates.push_back(*vertex);
}
}
if(!candidates.size())
break; // No more candidates found
distance_=distance(seed, aggregates);
candidates.resize(std::min(candidates.size(), c.maxAggregateSize()-
aggregate_->size()));
aggregate_->add(candidates);
}
}
template<typename V>
template<typename M, typename G, typename C>
tuple<int,int,int,int> AggregatesMap<V>::buildAggregates(const M& matrix, G& graph, const C& criterion,
bool finestLevel)
{
Aggregator<G> aggregator;
return aggregator.build(matrix, graph, *this, criterion, finestLevel);
}
template<class G>
template<class M, class C>
tuple<int,int,int,int> Aggregator<G>::build(const M& m, G& graph, AggregatesMap<Vertex>& aggregates, const C& c,
bool finestLevel)
{
// Stack for fast vertex access
Stack stack_(graph, *this, aggregates);
graph_ = &graph;
aggregate_ = new Aggregate<G,VertexSet>(graph, aggregates, connected_, front_);
Timer watch;
watch.reset();
buildDependency(graph, m, c, finestLevel);
dverb<<"Build dependency took "<< watch.elapsed()<<" seconds."<<std::endl;
int noAggregates, conAggregates, isoAggregates, oneAggregates;
std::size_t maxA=0, minA=1000000, avg=0;
int skippedAggregates;
noAggregates = conAggregates = isoAggregates = oneAggregates =
skippedAggregates = 0;
while(true) {
Vertex seed = stack_.pop();
if(seed == Stack::NullEntry)
// No more unaggregated vertices. We are finished!
break;
// Debugging output
if((noAggregates+1)%10000 == 0)
Dune::dverb<<"c";
unmarkFront();
if(graph.getVertexProperties(seed).excludedBorder()) {
aggregates[seed]=AggregatesMap<Vertex>::ISOLATED;
++skippedAggregates;
continue;
}
if(graph.getVertexProperties(seed).isolated()) {
if(c.skipIsolated()) {
// isolated vertices are not aggregated but skipped on the coarser levels.
aggregates[seed]=AggregatesMap<Vertex>::ISOLATED;
++skippedAggregates;
// skip rest as no agglomeration is done.
continue;
}else{
aggregate_->seed(seed);
growIsolatedAggregate(seed, aggregates, c);
}
}else{
aggregate_->seed(seed);
growAggregate(seed, aggregates, c);
}
/* The rounding step. */
while(!(graph.getVertexProperties(seed).isolated()) && aggregate_->size() < c.maxAggregateSize()) {
std::vector<Vertex> candidates;
candidates.reserve(30);
typedef typename std::vector<Vertex>::const_iterator Iterator;
for(Iterator vertex = front_.begin(); vertex != front_.end(); ++vertex) {
if(graph.getVertexProperties(*vertex).isolated())
continue; // No isolated nodes here
if(twoWayConnections( *vertex, aggregate_->id(), aggregates) == 0 &&
(oneWayConnections( *vertex, aggregate_->id(), aggregates) == 0 ||
!admissible( *vertex, aggregate_->id(), aggregates) ))
continue;
std::pair<int,int> neighbourPair=neighbours(*vertex, aggregate_->id(),
aggregates);
//if(aggregateNeighbours(*vertex, aggregate_->id(), aggregates) <= unusedNeighbours(*vertex, aggregates))
// continue;
if(neighbourPair.first >= neighbourPair.second)
continue;
if(distance(*vertex, aggregates) > c.maxDistance())
continue; // Distance too far
candidates.push_back(*vertex);
break;
}
if(!candidates.size()) break; // no more candidates found.
candidates.resize(std::min(candidates.size(), c.maxAggregateSize()-
aggregate_->size()));
aggregate_->add(candidates);
}
// try to merge aggregates consisting of only one nonisolated vertex with other aggregates
if(aggregate_->size()==1 && c.maxAggregateSize()>1) {
if(!graph.getVertexProperties(seed).isolated()) {
Vertex mergedNeighbour = mergeNeighbour(seed, aggregates);
if(mergedNeighbour != AggregatesMap<Vertex>::UNAGGREGATED) {
// assign vertex to the neighbouring cluster
aggregates[seed] = aggregates[mergedNeighbour];
aggregate_->invalidate();
}else{
++avg;
minA=std::min(minA,static_cast<std::size_t>(1));
maxA=std::max(maxA,static_cast<std::size_t>(1));
++oneAggregates;
++conAggregates;
}
}else{
++avg;
minA=std::min(minA,static_cast<std::size_t>(1));
maxA=std::max(maxA,static_cast<std::size_t>(1));
++oneAggregates;
++isoAggregates;
}
++avg;
}else{
avg+=aggregate_->size();
minA=std::min(minA,aggregate_->size());
maxA=std::max(maxA,aggregate_->size());
if(graph.getVertexProperties(seed).isolated())
++isoAggregates;
else
++conAggregates;
}
}
Dune::dinfo<<"connected aggregates: "<<conAggregates;
Dune::dinfo<<" isolated aggregates: "<<isoAggregates;
if(conAggregates+isoAggregates>0)
Dune::dinfo<<" one node aggregates: "<<oneAggregates<<" min size="
<<minA<<" max size="<<maxA
<<" avg="<<avg/(conAggregates+isoAggregates)<<std::endl;
delete aggregate_;
return make_tuple(conAggregates+isoAggregates,isoAggregates,
oneAggregates,skippedAggregates);
}
template<class G>
Aggregator<G>::Stack::Stack(const MatrixGraph& graph, const Aggregator<G>& aggregatesBuilder,
const AggregatesMap<Vertex>& aggregates)
: graph_(graph), aggregatesBuilder_(aggregatesBuilder), aggregates_(aggregates), begin_(graph.begin()), end_(graph.end())
{
//vals_ = new Vertex[N];
}
template<class G>
Aggregator<G>::Stack::~Stack()
{
//Dune::dverb << "Max stack size was "<<maxSize_<<" filled="<<filled_<<std::endl;
//delete[] vals_;
}
template<class G>
const typename Aggregator<G>::Vertex Aggregator<G>::Stack::NullEntry
= std::numeric_limits<typename G::VertexDescriptor>::max();
template<class G>
inline typename G::VertexDescriptor Aggregator<G>::Stack::pop()
{
for(; begin_!=end_ && aggregates_[*begin_] != AggregatesMap<Vertex>::UNAGGREGATED; ++begin_) ;
if(begin_!=end_)
{
typename G::VertexDescriptor current=*begin_;
++begin_;
return current;
}else
return NullEntry;
}
#endif // DOXYGEN
template<class V>
void printAggregates2d(const AggregatesMap<V>& aggregates, int n, int m, std::ostream& os)
{
std::ios_base::fmtflags oldOpts=os.flags();
os.setf(std::ios_base::right, std::ios_base::adjustfield);
V max=0;
int width=1;
for(int i=0; i< n*m; i++)
max=std::max(max, aggregates[i]);
for(int i=10; i < 1000000; i*=10)
if(max/i>0)
width++;
else
break;
for(int j=0, entry=0; j < m; j++) {
for(int i=0; i<n; i++, entry++) {
os.width(width);
os<<aggregates[entry]<<" ";
}
os<<std::endl;
}
os<<std::endl;
os.flags(oldOpts);
}
} // namespace Amg
} // namespace Dune
#endif
|