/usr/include/dune/istl/novlpschwarz.hh is in libdune-istl-dev 2.4.1-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 | // -*- tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 2 -*-
// vi: set et ts=4 sw=2 sts=2:
#ifndef DUNE_ISTL_NOVLPSCHWARZ_HH
#define DUNE_ISTL_NOVLPSCHWARZ_HH
#include <iostream> // for input/output to shell
#include <fstream> // for input/output to files
#include <vector> // STL vector class
#include <sstream>
#include <cmath> // Yes, we do some math here
#include <dune/common/timer.hh>
#include "io.hh"
#include "bvector.hh"
#include "vbvector.hh"
#include "bcrsmatrix.hh"
#include "io.hh"
#include "gsetc.hh"
#include "ilu.hh"
#include "operators.hh"
#include "solvers.hh"
#include "preconditioners.hh"
#include "scalarproducts.hh"
#include "owneroverlapcopy.hh"
namespace Dune {
/**
* @defgroup ISTL_Parallel Parallel Solvers
* @ingroup ISTL_Solvers
* Instead of using parallel data structures (matrices and vectors) that
* (implicitly) know the data distribution and communication patterns,
* there is a clear separation of the parallel data composition together
* with the communication APIs from the data structures. This allows for
* implementing overlapping and nonoverlapping domain decompositions as
* well as data parallel parallelisation approaches.
*
* The \ref ISTL_Solvers "solvers" can easily be turned into parallel solvers
* initializing them with matching parallel subclasses of the the base classes
* ScalarProduct, Preconditioner and LinearOperator.
*
* The information of the data distribution is provided by OwnerOverlapCopyCommunication
* of \ref ISTL_Comm "communication API".
*
* Currently only data parallel versions are shipped with dune-istl. Domain
* decomposition can be found in module dune-dd.
*/
/**
@addtogroup ISTL_Operators
@{
*/
/**
* @brief A nonoverlapping operator with communication object.
*/
template<class M, class X, class Y, class C>
class NonoverlappingSchwarzOperator : public AssembledLinearOperator<M,X,Y>
{
public:
//! \brief The type of the matrix we operate on.
typedef M matrix_type;
//! \brief The type of the domain.
typedef X domain_type;
//! \brief The type of the range.
typedef Y range_type;
//! \brief The field type of the range
typedef typename X::field_type field_type;
//! \brief The type of the communication object
typedef C communication_type;
typedef typename C::PIS PIS;
typedef typename C::RI RI;
typedef typename RI::RemoteIndexList RIL;
typedef typename RI::const_iterator RIIterator;
typedef typename RIL::const_iterator RILIterator;
typedef typename M::ConstColIterator ColIterator;
typedef typename M::ConstRowIterator RowIterator;
typedef std::multimap<int,int> MM;
typedef std::multimap<int,std::pair<int,RILIterator> > RIMap;
typedef typename RIMap::iterator RIMapit;
enum {
//! \brief The solver category.
category=SolverCategory::nonoverlapping
};
/**
* @brief constructor: just store a reference to a matrix.
*
* @param A The assembled matrix.
* @param com The communication object for syncing owner and copy
* data points. (E.~g. OwnerOverlapCommunication )
*/
NonoverlappingSchwarzOperator (const matrix_type& A, const communication_type& com)
: _A_(A), communication(com), buildcomm(true)
{}
//! apply operator to x: \f$ y = A(x) \f$
virtual void apply (const X& x, Y& y) const
{
y = 0;
novlp_op_apply(x,y,1);
communication.addOwnerCopyToOwnerCopy(y,y);
}
//! apply operator to x, scale and add: \f$ y = y + \alpha A(x) \f$
virtual void applyscaleadd (field_type alpha, const X& x, Y& y) const
{
// only apply communication to alpha*A*x to make it consistent,
// y already has to be consistent.
Y y1(y);
y = 0;
novlp_op_apply(x,y,alpha);
communication.addOwnerCopyToOwnerCopy(y,y);
y += y1;
}
//! get matrix via *
virtual const matrix_type& getmat () const
{
return _A_;
}
void novlp_op_apply (const X& x, Y& y, field_type alpha) const
{
//get index sets
const PIS& pis=communication.indexSet();
const RI& ri = communication.remoteIndices();
// at the beginning make a multimap "bordercontribution".
// process has i and j as border dofs but is not the owner
// => only contribute to Ax if i,j is in bordercontribution
if (buildcomm == true) {
// set up mask vector
if (mask.size()!=static_cast<typename std::vector<double>::size_type>(x.size())) {
mask.resize(x.size());
for (typename std::vector<double>::size_type i=0; i<mask.size(); i++)
mask[i] = 1;
for (typename PIS::const_iterator i=pis.begin(); i!=pis.end(); ++i)
if (i->local().attribute()==OwnerOverlapCopyAttributeSet::copy)
mask[i->local().local()] = 0;
else if (i->local().attribute()==OwnerOverlapCopyAttributeSet::overlap)
mask[i->local().local()] = 2;
}
for (MM::iterator iter = bordercontribution.begin();
iter != bordercontribution.end(); ++iter)
bordercontribution.erase(iter);
std::map<int,int> owner; //key: local index i, value: process, that owns i
RIMap rimap;
// for each local index make multimap rimap:
// key: local index i, data: pair of process that knows i and pointer to RI entry
for (RowIterator i = _A_.begin(); i != _A_.end(); ++i)
if (mask[i.index()] == 0)
for (RIIterator remote = ri.begin(); remote != ri.end(); ++remote) {
RIL& ril = *(remote->second.first);
for (RILIterator rindex = ril.begin(); rindex != ril.end(); ++rindex)
if (rindex->attribute() != OwnerOverlapCopyAttributeSet::overlap)
if (rindex->localIndexPair().local().local() == i.index()) {
rimap.insert
(std::make_pair(i.index(),
std::pair<int,RILIterator>(remote->first, rindex)));
if(rindex->attribute()==OwnerOverlapCopyAttributeSet::owner)
owner.insert(std::make_pair(i.index(),remote->first));
}
}
int iowner = 0;
for (RowIterator i = _A_.begin(); i != _A_.end(); ++i) {
if (mask[i.index()] == 0) {
std::map<int,int>::iterator it = owner.find(i.index());
iowner = it->second;
std::pair<RIMapit, RIMapit> foundiit = rimap.equal_range(i.index());
for (ColIterator j = _A_[i.index()].begin(); j != _A_[i.index()].end(); ++j) {
if (mask[j.index()] == 0) {
bool flag = true;
for (RIMapit foundi = foundiit.first; foundi != foundiit.second; ++foundi) {
std::pair<RIMapit, RIMapit> foundjit = rimap.equal_range(j.index());
for (RIMapit foundj = foundjit.first; foundj != foundjit.second; ++foundj)
if (foundj->second.first == foundi->second.first)
if (foundj->second.second->attribute() == OwnerOverlapCopyAttributeSet::owner
|| foundj->second.first == iowner
|| foundj->second.first < communication.communicator().rank()) {
flag = false;
continue;
}
if (flag == false)
continue;
}
// donĀ“t contribute to Ax if
// 1. the owner of j has i as interior/border dof
// 2. iowner has j as interior/border dof
// 3. there is another process with smaller rank that has i and j
// as interor/border dofs
// if the owner of j does not have i as interior/border dof,
// it will not be taken into account
if (flag==true)
bordercontribution.insert(std::pair<int,int>(i.index(),j.index()));
}
}
}
}
buildcomm = false;
}
//compute alpha*A*x nonoverlapping case
for (RowIterator i = _A_.begin(); i != _A_.end(); ++i) {
if (mask[i.index()] == 0) {
//dof doesn't belong to process but is border (not ghost)
for (ColIterator j = _A_[i.index()].begin(); j != _A_[i.index()].end(); ++j) {
if (mask[j.index()] == 1) //j is owner => then sum entries
(*j).usmv(alpha,x[j.index()],y[i.index()]);
else if (mask[j.index()] == 0) {
std::pair<MM::iterator, MM::iterator> itp =
bordercontribution.equal_range(i.index());
for (MM::iterator it = itp.first; it != itp.second; ++it)
if ((*it).second == (int)j.index())
(*j).usmv(alpha,x[j.index()],y[i.index()]);
}
}
}
else if (mask[i.index()] == 1) {
for (ColIterator j = _A_[i.index()].begin(); j != _A_[i.index()].end(); ++j)
if (mask[j.index()] != 2)
(*j).usmv(alpha,x[j.index()],y[i.index()]);
}
}
}
private:
const matrix_type& _A_;
const communication_type& communication;
mutable bool buildcomm;
mutable std::vector<double> mask;
mutable std::multimap<int,int> bordercontribution;
};
/** @} */
/**
* @addtogroup ISTL_SP
* @{
*/
/**
* \brief Nonoverlapping Scalar Product with communication object.
*
* Consistent vectors in interior and border are assumed.
*/
template<class X, class C>
class NonoverlappingSchwarzScalarProduct : public ScalarProduct<X>
{
public:
//! \brief The type of the domain.
typedef X domain_type;
//! \brief The type of the range
typedef typename X::field_type field_type;
//! \brief The type of the communication object
typedef C communication_type;
//! define the category
enum {category=SolverCategory::nonoverlapping};
/*! \brief Constructor
* \param com The communication object for syncing owner and copy
* data points. (E.~g. OwnerOverlapCommunication )
*/
NonoverlappingSchwarzScalarProduct (const communication_type& com)
: communication(com)
{}
/*! \brief Dot product of two vectors.
It is assumed that the vectors are consistent on the interior+border
partition.
*/
virtual field_type dot (const X& x, const X& y)
{
field_type result;
communication.dot(x,y,result);
return result;
}
/*! \brief Norm of a right-hand side vector.
The vector must be consistent on the interior+border partition
*/
virtual double norm (const X& x)
{
return communication.norm(x);
}
/*! \brief make additive vector consistent
*/
void make_consistent (X& x) const
{
communication.copyOwnerToAll(x,x);
}
private:
const communication_type& communication;
};
template<class X, class C>
struct ScalarProductChooser<X,C,SolverCategory::nonoverlapping>
{
/** @brief The type of the scalar product for the nonoverlapping case. */
typedef NonoverlappingSchwarzScalarProduct<X,C> ScalarProduct;
/** @brief The type of the communication object to use. */
typedef C communication_type;
enum {
/** @brief The solver category. */
solverCategory=SolverCategory::nonoverlapping
};
static ScalarProduct* construct(const communication_type& comm)
{
return new ScalarProduct(comm);
}
};
namespace Amg
{
template<class T> class ConstructionTraits;
}
/**
* @brief Nonoverlapping parallel preconditioner.
*
* This is essentially a wrapper that take a sequential
* preconditoner. In each step the sequential preconditioner
* is applied and then all owner data points are updated on
* all other processes.
*/
template<class C, class P>
class NonoverlappingBlockPreconditioner
: public Dune::Preconditioner<typename P::domain_type,typename P::range_type> {
friend class Amg::ConstructionTraits<NonoverlappingBlockPreconditioner<C,P> >;
public:
//! \brief The domain type of the preconditioner.
typedef typename P::domain_type domain_type;
//! \brief The range type of the preconditioner.
typedef typename P::range_type range_type;
//! \brief The type of the communication object.
typedef C communication_type;
// define the category
enum {
//! \brief The category the preconditioner is part of.
category=SolverCategory::nonoverlapping
};
/*! \brief Constructor.
constructor gets all parameters to operate the prec.
\param prec The sequential preconditioner.
\param c The communication object for syncing owner and copy
data points. (E.~g. OwnerOverlapCommunication )
*/
NonoverlappingBlockPreconditioner (P& prec, const communication_type& c)
: preconditioner(prec), communication(c)
{}
/*!
\brief Prepare the preconditioner.
\copydoc Preconditioner::pre(domain_type&,range_type&)
*/
virtual void pre (domain_type& x, range_type& b)
{
preconditioner.pre(x,b);
}
/*!
\brief Apply the preconditioner
\copydoc Preconditioner::apply(domain_type&,const range_type&)
*/
virtual void apply (domain_type& v, const range_type& d)
{
// block preconditioner equivalent to WrappedPreconditioner from
// pdelab/backend/ovlpistsolverbackend.hh,
// but not to BlockPreconditioner from schwarz.hh
preconditioner.apply(v,d);
communication.addOwnerCopyToOwnerCopy(v,v);
}
/*!
\brief Clean up.
\copydoc Preconditioner::post(domain_type&)
*/
virtual void post (domain_type& x)
{
preconditioner.post(x);
}
private:
//! \brief a sequential preconditioner
P& preconditioner;
//! \brief the communication object
const communication_type& communication;
};
/** @} end documentation */
} // end namespace
#endif
|