/usr/include/dune/istl/matrixredistribute.hh is in libdune-istl-dev 2.4.1-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 | // -*- tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 2 -*-
// vi: set et ts=4 sw=2 sts=2:
#ifndef DUNE_ISTL_MATRIXREDISTRIBUTE_HH
#define DUNE_ISTL_MATRIXREDISTRIBUTE_HH
#include "repartition.hh"
#include <dune/common/exceptions.hh>
#include <dune/common/parallel/indexset.hh>
#include <dune/common/unused.hh>
#include <dune/istl/owneroverlapcopy.hh>
/**
* @file
* @brief Functionality for redistributing a sparse matrix.
* @author Markus Blatt
*/
namespace Dune
{
template<typename T>
struct RedistributeInformation
{
bool isSetup() const
{
return false;
}
template<class D>
void redistribute(const D& from, D& to) const
{
DUNE_UNUSED_PARAMETER(from);
DUNE_UNUSED_PARAMETER(to);
}
template<class D>
void redistributeBackward(D& from, const D& to) const
{
DUNE_UNUSED_PARAMETER(from);
DUNE_UNUSED_PARAMETER(to);
}
void resetSetup()
{}
void setNoRows(std::size_t size)
{
DUNE_UNUSED_PARAMETER(size);
}
void setNoCopyRows(std::size_t size)
{
DUNE_UNUSED_PARAMETER(size);
}
void setNoBackwardsCopyRows(std::size_t size)
{
DUNE_UNUSED_PARAMETER(size);
}
std::size_t getRowSize(std::size_t index) const
{
DUNE_UNUSED_PARAMETER(index);
return -1;
}
std::size_t getCopyRowSize(std::size_t index) const
{
DUNE_UNUSED_PARAMETER(index);
return -1;
}
std::size_t getBackwardsCopyRowSize(std::size_t index) const
{
DUNE_UNUSED_PARAMETER(index);
return -1;
}
};
#if HAVE_MPI
template<typename T, typename T1>
class RedistributeInformation<OwnerOverlapCopyCommunication<T,T1> >
{
public:
typedef OwnerOverlapCopyCommunication<T,T1> Comm;
RedistributeInformation()
: interface(), setup_(false)
{}
RedistributeInterface& getInterface()
{
return interface;
}
template<typename IS>
void checkInterface(const IS& source,
const IS& target, MPI_Comm comm)
{
RemoteIndices<IS> *ri=new RemoteIndices<IS>(source, target, comm);
ri->template rebuild<true>();
Interface inf;
typename OwnerOverlapCopyCommunication<int>::OwnerSet flags;
int rank;
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
inf.free();
inf.build(*ri, flags, flags);
#ifdef DEBUG_REPART
if(inf!=interface) {
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
if(rank==0)
std::cout<<"Interfaces do not match!"<<std::endl;
std::cout<<rank<<": redist interface new :"<<inf<<std::endl;
std::cout<<rank<<": redist interface :"<<interface<<std::endl;
throw "autsch!";
delete ri;
}else
#endif
delete ri;
}
void setSetup()
{
setup_=true;
interface.strip();
}
void resetSetup()
{
setup_=false;
}
template<class GatherScatter, class D>
void redistribute(const D& from, D& to) const
{
BufferedCommunicator communicator;
communicator.template build<D>(from,to, interface);
communicator.template forward<GatherScatter>(from, to);
communicator.free();
}
template<class GatherScatter, class D>
void redistributeBackward(D& from, const D& to) const
{
BufferedCommunicator communicator;
communicator.template build<D>(from,to, interface);
communicator.template backward<GatherScatter>(from, to);
communicator.free();
}
template<class D>
void redistribute(const D& from, D& to) const
{
redistribute<CopyGatherScatter<D> >(from,to);
}
template<class D>
void redistributeBackward(D& from, const D& to) const
{
redistributeBackward<CopyGatherScatter<D> >(from,to);
}
bool isSetup() const
{
return setup_;
}
void reserve(std::size_t size)
{}
std::size_t& getRowSize(std::size_t index)
{
return rowSize[index];
}
std::size_t getRowSize(std::size_t index) const
{
return rowSize[index];
}
std::size_t& getCopyRowSize(std::size_t index)
{
return copyrowSize[index];
}
std::size_t getCopyRowSize(std::size_t index) const
{
return copyrowSize[index];
}
std::size_t& getBackwardsCopyRowSize(std::size_t index)
{
return backwardscopyrowSize[index];
}
std::size_t getBackwardsCopyRowSize(std::size_t index) const
{
return backwardscopyrowSize[index];
}
void setNoRows(std::size_t rows)
{
rowSize.resize(rows, 0);
}
void setNoCopyRows(std::size_t rows)
{
copyrowSize.resize(rows, 0);
}
void setNoBackwardsCopyRows(std::size_t rows)
{
backwardscopyrowSize.resize(rows, 0);
}
private:
std::vector<std::size_t> rowSize;
std::vector<std::size_t> copyrowSize;
std::vector<std::size_t> backwardscopyrowSize;
RedistributeInterface interface;
bool setup_;
};
/**
* @brief Utility class to communicate and set the row sizes
* of a redistributed matrix.
*
* @tparam M The type of the matrix that the row size
* is communicated of.
* @tparam RI The type of class for redistribution information
*/
template<class M, class RI>
struct CommMatrixRowSize
{
// Make the default communication policy work.
typedef typename M::size_type value_type;
typedef typename M::size_type size_type;
/**
* @brief Constructor.
* @param m_ The matrix whose sparsity pattern is communicated.
* @param[out] rowsize_ RedistributeInformation object
*/
CommMatrixRowSize(const M& m_, RI& rowsize_)
: matrix(m_), rowsize(rowsize_)
{}
const M& matrix;
RI& rowsize;
};
/**
* @brief Utility class to communicate and build the sparsity pattern
* of a redistributed matrix.
*
* @tparam M The type of the matrix that the sparsity pattern
* is communicated of.
* @tparam I The type of the index set.
*/
template<class M, class I>
struct CommMatrixSparsityPattern
{
typedef typename M::size_type size_type;
/**
* @brief Constructor for the original side
* @param m_ The matrix whose sparsity pattern is communicated.
* @param idxset_ The index set corresponding to the local matrix.
* @param aggidxset_ The index set corresponding to the redistributed matrix.
*/
CommMatrixSparsityPattern(const M& m_, const Dune::GlobalLookupIndexSet<I>& idxset_, const I& aggidxset_)
: matrix(m_), idxset(idxset_), aggidxset(aggidxset_), rowsize()
{}
/**
* @brief Constructor for the redistruted side.
* @param m_ The matrix whose sparsity pattern is communicated.
* @param idxset_ The index set corresponding to the local matrix.
* @param aggidxset_ The index set corresponding to the redistributed matrix.
* @param rowsize_ The row size for the redistributed owner rows.
*/
CommMatrixSparsityPattern(const M& m_, const Dune::GlobalLookupIndexSet<I>& idxset_, const I& aggidxset_,
const std::vector<typename M::size_type>& rowsize_)
: matrix(m_), idxset(idxset_), aggidxset(aggidxset_), sparsity(aggidxset_.size()), rowsize(&rowsize_)
{}
/**
* @brief Creates and stores the sparsity pattern of the redistributed matrix.
*
* After the pattern is communicated this function can be used.
* @param m The matrix to build.
*/
void storeSparsityPattern(M& m)
{
// insert diagonal to overlap rows
typedef typename Dune::GlobalLookupIndexSet<I>::const_iterator IIter;
typedef typename Dune::OwnerOverlapCopyCommunication<int>::OwnerSet OwnerSet;
std::size_t nnz=0;
#ifdef DEBUG_REPART
int rank;
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
#endif
for(IIter i= aggidxset.begin(), end=aggidxset.end(); i!=end; ++i) {
if(!OwnerSet::contains(i->local().attribute())) {
#ifdef DEBUG_REPART
std::cout<<rank<<" Inserting diagonal for"<<i->local()<<std::endl;
#endif
sparsity[i->local()].insert(i->local());
}
nnz+=sparsity[i->local()].size();
}
assert( aggidxset.size()==sparsity.size());
if(nnz>0) {
m.setSize(aggidxset.size(), aggidxset.size(), nnz);
m.setBuildMode(M::row_wise);
typename M::CreateIterator citer=m.createbegin();
#ifdef DEBUG_REPART
std::size_t idx=0;
bool correct=true;
Dune::GlobalLookupIndexSet<I> global(aggidxset);
#endif
typedef typename std::vector<std::set<size_type> >::const_iterator Iter;
for(Iter i=sparsity.begin(), end=sparsity.end(); i!=end; ++i, ++citer)
{
typedef typename std::set<size_type>::const_iterator SIter;
for(SIter si=i->begin(), send=i->end(); si!=send; ++si)
citer.insert(*si);
#ifdef DEBUG_REPART
if(i->find(idx)==i->end()) {
const typename I::IndexPair* gi=global.pair(idx);
assert(gi);
std::cout<<rank<<": row "<<idx<<" is missing a diagonal entry! global="<<gi->global()<<" attr="<<gi->local().attribute()<<" "<<
OwnerSet::contains(gi->local().attribute())<<
" row size="<<i->size()<<std::endl;
correct=false;
}
++idx;
#endif
}
#ifdef DEBUG_REPART
if(!correct)
throw "bla";
#endif
}
}
/**
* @brief Completes the sparsity pattern of the redistributed matrix with data
* from copy rows for the novlp case.
*
* After the pattern communication this function can be used.
* @param add_sparsity Sparsity pattern from the copy rows.
*/
void completeSparsityPattern(std::vector<std::set<size_type> > add_sparsity)
{
for (unsigned int i = 0; i != sparsity.size(); ++i) {
if (add_sparsity[i].size() != 0) {
typedef std::set<size_type> Set;
Set tmp_set;
std::insert_iterator<Set> tmp_insert (tmp_set, tmp_set.begin());
std::set_union(add_sparsity[i].begin(), add_sparsity[i].end(),
sparsity[i].begin(), sparsity[i].end(), tmp_insert);
sparsity[i].swap(tmp_set);
}
}
}
const M& matrix;
typedef Dune::GlobalLookupIndexSet<I> LookupIndexSet;
const Dune::GlobalLookupIndexSet<I>& idxset;
const I& aggidxset;
std::vector<std::set<size_type> > sparsity;
const std::vector<size_type>* rowsize;
};
template<class M, class I>
struct CommPolicy<CommMatrixSparsityPattern<M,I> >
{
typedef CommMatrixSparsityPattern<M,I> Type;
/**
* @brief The indexed type we send.
* This is the global index indentitfying the column.
*/
typedef typename I::GlobalIndex IndexedType;
/** @brief Each row varies in size. */
typedef VariableSize IndexedTypeFlag;
static typename M::size_type getSize(const Type& t, std::size_t i)
{
if(!t.rowsize)
return t.matrix[i].size();
else
{
assert((*t.rowsize)[i]>0);
return (*t.rowsize)[i];
}
}
};
/**
* @brief Utility class for comunicating the matrix entries.
*
* @tparam M The type of the matrix.
* @tparam I The type of the ParallelIndexSet.
*/
template<class M, class I>
struct CommMatrixRow
{
/**
* @brief Constructor.
* @param m_ The matrix to communicate the values. That is the local original matrix
* as the source of the communication and the redistributed at the target of the
* communication.
* @param idxset_ The index set for the original matrix.
* @param aggidxset_ The index set for the redistributed matrix.
*/
CommMatrixRow(M& m_, const Dune::GlobalLookupIndexSet<I>& idxset_, const I& aggidxset_)
: matrix(m_), idxset(idxset_), aggidxset(aggidxset_), rowsize()
{}
/**
* @brief Constructor.
*/
CommMatrixRow(M& m_, const Dune::GlobalLookupIndexSet<I>& idxset_, const I& aggidxset_,
std::vector<size_t>& rowsize_)
: matrix(m_), idxset(idxset_), aggidxset(aggidxset_), rowsize(&rowsize_)
{}
/**
* @brief Sets the non-owner rows correctly as Dirichlet boundaries.
*
* This should be called after the communication.
*/
void setOverlapRowsToDirichlet()
{
typedef typename Dune::GlobalLookupIndexSet<I>::const_iterator Iter;
typedef typename Dune::OwnerOverlapCopyCommunication<int>::OwnerSet OwnerSet;
for(Iter i= aggidxset.begin(), end=aggidxset.end(); i!=end; ++i)
if(!OwnerSet::contains(i->local().attribute())) {
// Set to Dirchlet
typedef typename M::ColIterator CIter;
for(CIter c=matrix[i->local()].begin(), cend= matrix[i->local()].end();
c!= cend; ++c)
{
*c=0;
if(c.index()==i->local()) {
typedef typename M::block_type::RowIterator RIter;
for(RIter r=c->begin(), rend=c->end();
r != rend; ++r)
(*r)[r.index()]=1;
}
}
}
}
/** @brief The matrix to communicate the values of. */
M& matrix;
/** @brief Index set for the original matrix. */
const Dune::GlobalLookupIndexSet<I>& idxset;
/** @brief Index set for the redistributed matrix. */
const I& aggidxset;
/** @brief row size information for the receiving side. */
std::vector<size_t>* rowsize; // row sizes differ from sender side in overlap!
};
template<class M, class I>
struct CommPolicy<CommMatrixRow<M,I> >
{
typedef CommMatrixRow<M,I> Type;
/**
* @brief The indexed type we send.
* This is the pair of global index indentitfying the column and the value itself.
*/
typedef std::pair<typename I::GlobalIndex,typename M::block_type> IndexedType;
/** @brief Each row varies in size. */
typedef VariableSize IndexedTypeFlag;
static std::size_t getSize(const Type& t, std::size_t i)
{
if(!t.rowsize)
return t.matrix[i].size();
else
{
assert((*t.rowsize)[i]>0);
return (*t.rowsize)[i];
}
}
};
template<class M, class I, class RI>
struct MatrixRowSizeGatherScatter
{
typedef CommMatrixRowSize<M,RI> Container;
static const typename M::size_type gather(const Container& cont, std::size_t i)
{
return cont.matrix[i].size();
}
static void scatter(Container& cont, const typename M::size_type& rowsize, std::size_t i)
{
assert(rowsize);
cont.rowsize.getRowSize(i)=rowsize;
}
};
template<class M, class I, class RI>
struct MatrixCopyRowSizeGatherScatter
{
typedef CommMatrixRowSize<M,RI> Container;
static const typename M::size_type gather(const Container& cont, std::size_t i)
{
return cont.matrix[i].size();
}
static void scatter(Container& cont, const typename M::size_type& rowsize, std::size_t i)
{
assert(rowsize);
if (rowsize > cont.rowsize.getCopyRowSize(i))
cont.rowsize.getCopyRowSize(i)=rowsize;
}
};
template<class M, class I>
struct MatrixSparsityPatternGatherScatter
{
typedef typename I::GlobalIndex GlobalIndex;
typedef CommMatrixSparsityPattern<M,I> Container;
typedef typename M::ConstColIterator ColIter;
static ColIter col;
static GlobalIndex numlimits;
static const GlobalIndex& gather(const Container& cont, std::size_t i, std::size_t j)
{
if(j==0)
col=cont.matrix[i].begin();
else if (col!=cont.matrix[i].end())
++col;
//copy communication: different row sizes for copy rows with the same global index
//are possible. If all values of current matrix row are sent, send
//std::numeric_limits<GlobalIndex>::max()
//and receiver will ignore it.
if (col==cont.matrix[i].end()) {
numlimits = std::numeric_limits<GlobalIndex>::max();
return numlimits;
}
else {
const typename I::IndexPair* index=cont.idxset.pair(col.index());
assert(index);
// Only send index if col is no ghost
if ( index->local().attribute() != 2)
return index->global();
else {
numlimits = std::numeric_limits<GlobalIndex>::max();
return numlimits;
}
}
}
static void scatter(Container& cont, const GlobalIndex& gi, std::size_t i, std::size_t j)
{
DUNE_UNUSED_PARAMETER(j);
try{
if (gi != std::numeric_limits<GlobalIndex>::max()) {
const typename I::IndexPair& ip=cont.aggidxset.at(gi);
assert(ip.global()==gi);
std::size_t column = ip.local();
cont.sparsity[i].insert(column);
typedef typename Dune::OwnerOverlapCopyCommunication<int>::OwnerSet OwnerSet;
if(!OwnerSet::contains(ip.local().attribute()))
// preserve symmetry for overlap
cont.sparsity[column].insert(i);
}
}
catch(Dune::RangeError er) {
// Entry not present in the new index set. Ignore!
#ifdef DEBUG_REPART
typedef typename Container::LookupIndexSet GlobalLookup;
typedef typename GlobalLookup::IndexPair IndexPair;
typedef typename Dune::OwnerOverlapCopyCommunication<int>::OwnerSet OwnerSet;
GlobalLookup lookup(cont.aggidxset);
const IndexPair* pi=lookup.pair(i);
assert(pi);
if(OwnerSet::contains(pi->local().attribute())) {
int rank;
MPI_Comm_rank(MPI_COMM_WORLD,&rank);
std::cout<<rank<<cont.aggidxset<<std::endl;
std::cout<<rank<<": row "<<i<<" (global="<<gi <<") not in index set for owner index "<<pi->global()<<std::endl;
throw er;
}
#endif
}
}
};
template<class M, class I>
typename MatrixSparsityPatternGatherScatter<M,I>::ColIter MatrixSparsityPatternGatherScatter<M,I>::col;
template<class M, class I>
typename MatrixSparsityPatternGatherScatter<M,I>::GlobalIndex MatrixSparsityPatternGatherScatter<M,I>::numlimits;
template<class M, class I>
struct MatrixRowGatherScatter
{
typedef typename I::GlobalIndex GlobalIndex;
typedef CommMatrixRow<M,I> Container;
typedef typename M::ConstColIterator ColIter;
typedef typename std::pair<GlobalIndex,typename M::block_type> Data;
static ColIter col;
static Data datastore;
static GlobalIndex numlimits;
static const Data& gather(const Container& cont, std::size_t i, std::size_t j)
{
if(j==0)
col=cont.matrix[i].begin();
else if (col!=cont.matrix[i].end())
++col;
// copy communication: different row sizes for copy rows with the same global index
// are possible. If all values of current matrix row are sent, send
// std::numeric_limits<GlobalIndex>::max()
// and receiver will ignore it.
if (col==cont.matrix[i].end()) {
numlimits = std::numeric_limits<GlobalIndex>::max();
datastore = std::make_pair(numlimits,*col);
return datastore;
}
else {
// convert local column index to global index
const typename I::IndexPair* index=cont.idxset.pair(col.index());
assert(index);
// Store the data to prevent reference to temporary
// Only send index if col is no ghost
if ( index->local().attribute() != 2)
datastore = std::make_pair(index->global(),*col);
else {
numlimits = std::numeric_limits<GlobalIndex>::max();
datastore = std::make_pair(numlimits,*col);
}
return datastore;
}
}
static void scatter(Container& cont, const Data& data, std::size_t i, std::size_t j)
{
DUNE_UNUSED_PARAMETER(j);
try{
if (data.first != std::numeric_limits<GlobalIndex>::max()) {
typename M::size_type column=cont.aggidxset.at(data.first).local();
cont.matrix[i][column]=data.second;
}
}
catch(Dune::RangeError er) {
// This an overlap row and might therefore lack some entries!
}
}
};
template<class M, class I>
typename MatrixRowGatherScatter<M,I>::ColIter MatrixRowGatherScatter<M,I>::col;
template<class M, class I>
typename MatrixRowGatherScatter<M,I>::Data MatrixRowGatherScatter<M,I>::datastore;
template<class M, class I>
typename MatrixRowGatherScatter<M,I>::GlobalIndex MatrixRowGatherScatter<M,I>::numlimits;
template<typename M, typename C>
void redistributeSparsityPattern(M& origMatrix, M& newMatrix, C& origComm, C& newComm,
RedistributeInformation<C>& ri)
{
typename C::CopySet copyflags;
typename C::OwnerSet ownerflags;
typedef typename C::ParallelIndexSet IndexSet;
typedef RedistributeInformation<C> RI;
std::vector<typename M::size_type> rowsize(newComm.indexSet().size(), 0);
std::vector<typename M::size_type> copyrowsize(newComm.indexSet().size(), 0);
std::vector<typename M::size_type> backwardscopyrowsize(origComm.indexSet().size(), 0);
// get owner rowsizes
CommMatrixRowSize<M,RI> commRowSize(origMatrix, ri);
ri.template redistribute<MatrixRowSizeGatherScatter<M,IndexSet,RI> >(commRowSize,commRowSize);
origComm.buildGlobalLookup();
for (std::size_t i=0; i < newComm.indexSet().size(); i++) {
rowsize[i] = ri.getRowSize(i);
}
// get sparsity pattern from owner rows
CommMatrixSparsityPattern<M,IndexSet>
origsp(origMatrix, origComm.globalLookup(), newComm.indexSet());
CommMatrixSparsityPattern<M,IndexSet>
newsp(origMatrix, origComm.globalLookup(), newComm.indexSet(), rowsize);
ri.template redistribute<MatrixSparsityPatternGatherScatter<M,IndexSet> >(origsp,newsp);
// build copy to owner interface to get missing matrix values for novlp case
if (origComm.getSolverCategory() == SolverCategory::nonoverlapping) {
RemoteIndices<IndexSet> *ris = new RemoteIndices<IndexSet>(origComm.indexSet(),
newComm.indexSet(),
origComm.communicator());
ris->template rebuild<true>();
ri.getInterface().free();
ri.getInterface().build(*ris,copyflags,ownerflags);
// get copy rowsizes
CommMatrixRowSize<M,RI> commRowSize_copy(origMatrix, ri);
ri.template redistribute<MatrixCopyRowSizeGatherScatter<M,IndexSet,RI> >(commRowSize_copy,
commRowSize_copy);
for (std::size_t i=0; i < newComm.indexSet().size(); i++) {
copyrowsize[i] = ri.getCopyRowSize(i);
}
//get copy rowsizes for sender
ri.redistributeBackward(backwardscopyrowsize,copyrowsize);
for (std::size_t i=0; i < origComm.indexSet().size(); i++) {
ri.getBackwardsCopyRowSize(i) = backwardscopyrowsize[i];
}
// get sparsity pattern from copy rows
CommMatrixSparsityPattern<M,IndexSet> origsp_copy(origMatrix,
origComm.globalLookup(),
newComm.indexSet(),
backwardscopyrowsize);
CommMatrixSparsityPattern<M,IndexSet> newsp_copy(origMatrix, origComm.globalLookup(),
newComm.indexSet(), copyrowsize);
ri.template redistribute<MatrixSparsityPatternGatherScatter<M,IndexSet> >(origsp_copy,
newsp_copy);
newsp.completeSparsityPattern(newsp_copy.sparsity);
newsp.storeSparsityPattern(newMatrix);
}
else
newsp.storeSparsityPattern(newMatrix);
#ifdef DUNE_ISTL_WITH_CHECKING
// Check for symmetry
int ret=0;
typedef typename M::ConstRowIterator RIter;
for(RIter row=newMatrix.begin(), rend=newMatrix.end(); row != rend; ++row) {
typedef typename M::ConstColIterator CIter;
for(CIter col=row->begin(), cend=row->end(); col!=cend; ++col)
{
try{
newMatrix[col.index()][row.index()];
}catch(Dune::ISTLError e) {
std::cerr<<newComm.communicator().rank()<<": entry ("
<<col.index()<<","<<row.index()<<") missing! for symmetry!"<<std::endl;
ret=1;
}
}
}
if(ret)
DUNE_THROW(ISTLError, "Matrix not symmetric!");
#endif
}
template<typename M, typename C>
void redistributeMatrixEntries(M& origMatrix, M& newMatrix, C& origComm, C& newComm,
RedistributeInformation<C>& ri)
{
typedef typename C::ParallelIndexSet IndexSet;
typename C::OwnerSet ownerflags;
std::vector<typename M::size_type> rowsize(newComm.indexSet().size(), 0);
std::vector<typename M::size_type> copyrowsize(newComm.indexSet().size(), 0);
std::vector<typename M::size_type> backwardscopyrowsize(origComm.indexSet().size(), 0);
for (std::size_t i=0; i < newComm.indexSet().size(); i++) {
rowsize[i] = ri.getRowSize(i);
if (origComm.getSolverCategory() == SolverCategory::nonoverlapping) {
copyrowsize[i] = ri.getCopyRowSize(i);
}
}
for (std::size_t i=0; i < origComm.indexSet().size(); i++)
if (origComm.getSolverCategory() == SolverCategory::nonoverlapping)
backwardscopyrowsize[i] = ri.getBackwardsCopyRowSize(i);
if (origComm.getSolverCategory() == SolverCategory::nonoverlapping) {
// fill sparsity pattern from copy rows
CommMatrixRow<M,IndexSet> origrow_copy(origMatrix, origComm.globalLookup(),
newComm.indexSet(), backwardscopyrowsize);
CommMatrixRow<M,IndexSet> newrow_copy(newMatrix, origComm.globalLookup(),
newComm.indexSet(),copyrowsize);
ri.template redistribute<MatrixRowGatherScatter<M,IndexSet> >(origrow_copy,
newrow_copy);
ri.getInterface().free();
RemoteIndices<IndexSet> *ris = new RemoteIndices<IndexSet>(origComm.indexSet(),
newComm.indexSet(),
origComm.communicator());
ris->template rebuild<true>();
ri.getInterface().build(*ris,ownerflags,ownerflags);
}
CommMatrixRow<M,IndexSet>
origrow(origMatrix, origComm.globalLookup(), newComm.indexSet());
CommMatrixRow<M,IndexSet>
newrow(newMatrix, origComm.globalLookup(), newComm.indexSet(),rowsize);
ri.template redistribute<MatrixRowGatherScatter<M,IndexSet> >(origrow,newrow);
if (origComm.getSolverCategory() != static_cast<int>(SolverCategory::nonoverlapping))
newrow.setOverlapRowsToDirichlet();
if(newMatrix.N()>0&&newMatrix.N()<20)
printmatrix(std::cout, newMatrix, "redist", "row");
}
/**
* @brief Redistribute a matrix according to given domain decompositions.
*
* All the parameters for this function can be obtained by calling
* graphRepartition with the graph of the original matrix.
*
* @param origMatrix The matrix on the original partitioning.
* @param newMatrix An empty matrix to store the new redistributed matrix in.
* @param origComm The parallel information of the original partitioning.
* @param newComm The parallel information of the new partitioning.
* @param ri The remote index information between the original and the new partitioning.
* Upon exit of this method it will be prepared for copying from owner to owner vertices
* for data redistribution.
* @tparam M The matrix type. It is assumed to be sparse. E.g. BCRSMatrix.
* @tparam C The type of the parallel information, see OwnerOverlapCopyCommunication.
*/
template<typename M, typename C>
void redistributeMatrix(M& origMatrix, M& newMatrix, C& origComm, C& newComm,
RedistributeInformation<C>& ri)
{
ri.setNoRows(newComm.indexSet().size());
ri.setNoCopyRows(newComm.indexSet().size());
ri.setNoBackwardsCopyRows(origComm.indexSet().size());
redistributeSparsityPattern(origMatrix, newMatrix, origComm, newComm, ri);
redistributeMatrixEntries(origMatrix, newMatrix, origComm, newComm, ri);
}
#endif
}
#endif
|