This file is indexed.

/usr/include/dune/istl/bcrsmatrix.hh is in libdune-istl-dev 2.4.1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
// -*- tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 2 -*-
// vi: set et ts=4 sw=2 sts=2:

#ifndef DUNE_ISTL_BCRSMATRIX_HH
#define DUNE_ISTL_BCRSMATRIX_HH

#include <cmath>
#include <complex>
#include <set>
#include <iostream>
#include <algorithm>
#include <numeric>
#include <vector>
#include <map>

#include "istlexception.hh"
#include "bvector.hh"
#include "matrixutils.hh"
#include <dune/common/stdstreams.hh>
#include <dune/common/iteratorfacades.hh>
#include <dune/common/typetraits.hh>
#include <dune/common/ftraits.hh>
#include <dune/common/nullptr.hh>

/*! \file
 * \brief Implementation of the BCRSMatrix class
 */

namespace Dune {

  /**
   * @defgroup ISTL_SPMV Sparse Matrix and Vector classes
   * @ingroup ISTL
   * @brief Matrix and Vector classes that support a block recursive
   * structure capable of representing the natural structure from Finite
   * Element discretisations.
   *
   *
   * The interface of our matrices is designed according to what they
   * represent from a mathematical point of view. The vector classes are
   * representations of vector spaces:
   *
   * - FieldVector represents a vector space \f$V=K^n\f$ where the field \f$K\f$
   *   is represented by a numeric type (e.g. double, float, complex). \f$n\f$
   *   is known at compile time.
   * - BlockVector represents a vector space \f$V=W\times W \times W \times\cdots\times W\f$
   *   where W is itself a vector space.
   * - VariableBlockVector represents a vector space having a two-level
   *   block structure of the form
   *   \f$V=B^{n_1}\times B^{n_2}\times\ldots \times B^{n_m}\f$, i.e. it is constructed
   *   from \f$m\f$ vector spaces, \f$i=1,\ldots,m\f$.
   *
   * The matrix classes represent linear maps \f$A: V \mapsto W\f$
   * from vector space \f$V\f$ to vector space \f$W\f$ the recursive block
   * structure of the matrix rows and columns immediately follows
   * from the recursive block structure of the vectors representing
   * the domain and range of the mapping, respectively:
   * - FieldMatrix represents a linear map \f$M: V_1 \to V_2\f$ where
   *   \f$V_1=K^n\f$ and \f$V_2=K^m\f$ are vector spaces over the same field represented by a numerix type.
   * - BCRSMatrix represents a linear map \f$M: V_1 \to V_2\f$ where
   *   \f$V_1=W\times W \times W \times\cdots\times W\f$ and \f$V_2=W\times W \times W \times\cdots\times W\f$
   *   where W is itself a vector space.
   * - VariableBCRSMatrix is not yet implemented.
   */
  /**
              @addtogroup ISTL_SPMV
              @{
   */

  template<typename M>
  struct MatrixDimension;

  //! Statistics about compression achieved in implicit mode.
  /**
   * To enable the user to tune parameters of the implicit build mode of a
   * Dune::BCRSMatrix manually, some statistics are exported upon during
   * the compression step.
   *
   */
  template<typename size_type>
  struct CompressionStatistics
  {
    //! average number of non-zeroes per row.
    double avg;
    //! maximum number of non-zeroes per row.
    size_type maximum;
    //! total number of elements written to the overflow area during construction.
    size_type overflow_total;
    //! fraction of wasted memory resulting from non-used overflow area.
    /**
     * mem_ratio is equal to `nonzeros()/(# allocated matrix entries)`.
     */
    double mem_ratio;
  };

  //! A wrapper for uniform access to the BCRSMatrix during and after the build stage in implicit build mode.
  /**
   * The implicit build mode of Dune::BCRSMatrix handles matrices differently during
   * assembly and afterwards. Using this class, one can wrap a BCRSMatrix to allow
   * use with code that is not written for the new build mode specifically. The wrapper
   * forwards any calls to operator[][] to the entry() method.The assembly code
   * does not even necessarily need to know that the underlying matrix is sparse.
   * Dune::AMG uses this to reassemble an existing matrix without code duplication.
   * The compress() method of Dune::BCRSMatrix still has to be called from outside
   * this wrapper after the pattern assembly is finished.
   *
   * \tparam M_ the matrix type
   */
  template<class M_>
  class ImplicitMatrixBuilder
  {

  public:

    //! The underlying matrix.
    typedef M_ Matrix;

    //! The block_type of the underlying matrix.
    typedef typename Matrix::block_type block_type;

    //! The size_type of the underlying matrix.
    typedef typename Matrix::size_type size_type;

    //! Proxy row object for entry access.
    /**
     * During matrix construction, there are no fully functional rows available
     * yet, so we instead hand out a simple proxy which only allows accessing
     * individual entries using operator[].
     */
    class row_object
    {

    public:

      //! Returns entry in column j.
      block_type& operator[](size_type j) const
      {
        return _m.entry(_i,j);
      }

#ifndef DOXYGEN

      row_object(Matrix& m, size_type i)
        : _m(m)
        , _i(i)
      {}

#endif

    private:

      Matrix& _m;
      size_type _i;

    };

    //! Creates an ImplicitMatrixBuilder for matrix m.
    /**
     * \note You can only pass a completely set up matrix to this constructor:
     *       All of setBuildMode(), setImplicitBuildModeParameters() and setSize()
     *       must have been called with the correct values.
     *
     */
    ImplicitMatrixBuilder(Matrix& m)
      : _m(m)
    {
      if (m.buildMode() != Matrix::implicit)
        DUNE_THROW(BCRSMatrixError,"You can only create an ImplicitBuilder for a matrix in implicit build mode");
      if (m.buildStage() != Matrix::building)
        DUNE_THROW(BCRSMatrixError,"You can only create an ImplicitBuilder for a matrix with set size that has not been compressed() yet");
    }

    //! Sets up matrix m for implicit construction using the given parameters and creates an ImplicitBmatrixuilder for it.
    /**
     * Using this constructor, you can perform the necessary matrix setup and the creation
     * of the ImplicitMatrixBuilder in a single step. The matrix must still be in the build stage
     * notAllocated, otherwise a BCRSMatrixError will be thrown. For a detailed explanation
     * of the matrix parameters, see BCRSMatrix.
     *
     * \param m                 the matrix to be built
     * \param rows              the number of matrix rows
     * \param cols              the number of matrix columns
     * \param avg_cols_per_row  the average number of non-zero columns per row
     * \param overflow_fraction the amount of overflow to reserve in the matrix
     *
     * \sa BCRSMatrix
     */
    ImplicitMatrixBuilder(Matrix& m, size_type rows, size_type cols, size_type avg_cols_per_row, double overflow_fraction)
      : _m(m)
    {
      if (m.buildStage() != Matrix::notAllocated)
        DUNE_THROW(BCRSMatrixError,"You can only set up a matrix for this ImplicitBuilder if it has no memory allocated yet");
      m.setBuildMode(Matrix::implicit);
      m.setImplicitBuildModeParameters(avg_cols_per_row,overflow_fraction);
      m.setSize(rows,cols);
    }

    //! Returns a proxy for entries in row i.
    row_object operator[](size_type i) const
    {
      return row_object(_m,i);
    }

    //! The number of rows in the matrix.
    size_type N() const
    {
      return _m.N();
    }

    //! The number of columns in the matrix.
    size_type M() const
    {
      return _m.M();
    }

  private:

    Matrix& _m;

  };

  /**
     \brief A sparse block matrix with compressed row storage

     Implements a block compressed row storage scheme. The block
     type B can be any type implementing the matrix interface.

     Different ways to build up a compressed row
     storage matrix are supported:

     1. Row-wise scheme
     2. Random scheme
     3. implicit scheme

     Error checking: no error checking is provided normally.
     Setting the compile time switch DUNE_ISTL_WITH_CHECKING
     enables error checking.

     Details:

     1. Row-wise scheme

     Rows are built up in sequential order. Size of the row and
     the column indices are defined. A row can be used as soon as it
     is initialized. With respect to memory there are two variants of
     this scheme: (a) number of non-zeroes known in advance (application
     finite difference schemes), (b) number of non-zeroes not known
     in advance (application: Sparse LU, ILU(n)).

     \code
     #include<dune/common/fmatrix.hh>
     #include<dune/istl/bcrsmatrix.hh>

     ...

     typedef FieldMatrix<double,2,2> M;
     // third parameter is an optional upper bound for the number
     // of nonzeros. If given the matrix will use one array for all values
     // as opposed to one for each row.
     BCRSMatrix<M> B(4,4,12,BCRSMatrix<M>::row_wise);

     typedef BCRSMatrix<M>::CreateIterator Iter;

     for(Iter row=B.createbegin(); row!=B.createend(); ++row){
       // Add nonzeros for left neighbour, diagonal and right neighbour
       if(row.index()>0)
         row.insert(row.index()-1);
       row.insert(row.index());
       if(row.index()<B.N()-1)
         row.insert(row.index()+1);
     }

     // Now the sparsity pattern is fully set up and we can add values

     B[0][0]=2;
     ...
     \endcode

     2. Random scheme

     For general finite element implementations the number of rows n
     is known, the number of non-zeroes might also be known (e.g.
     \#edges + \#nodes for P1) but the size of a row and the indices of a row
     can not be defined in sequential order.

     \code
     #include<dune/common/fmatrix.hh>
     #include<dune/istl/bcrsmatrix.hh>

     ...

     typedef FieldMatrix<double,2,2> M;
     BCRSMatrix<M> B(4,4,BCRSMatrix<M>::random);

     // initially set row size for each row
     B.setrowsize(0,1);
     B.setrowsize(3,4);
     B.setrowsize(2,1);
     B.setrowsize(1,1);
     // increase row size for row 2
     B.incrementrowsize(2)

     // finalize row setup phase
     B.endrowsizes();

     // add column entries to rows
     B.addindex(0,0);
     B.addindex(3,1);
     B.addindex(2,2);
     B.addindex(1,1);
     B.addindex(2,0);
     B.addindex(3,2);
     B.addindex(3,0);
     B.addindex(3,3);

     // finalize column setup phase
     B.endindices();

     // set entries using the random access operator
     B[0][0] = 1;
     B[1][1] = 2;
     B[2][0] = 3;
     B[2][2] = 4;
     B[3][1] = 5;
     B[3][2] = 6;
     B[3][0] = 7;
     B[3][3] = 8;
     \endcode

     3. implicit scheme
     With the above Random Scheme, the sparsity pattern has to be determined
     and stored before the matrix is assembled. This leads to increased memory
     usage and computation time. Often, one has good a priori
     knowledge about the number of entries a row contains on average. `implicit`
     mode tries to make use of that knowledge by allocating memory based on
     that average. Entries in rows with more non-zeroes than the average value
     are written to an overflow area during the initial assembly phase, up to a
     specified maximum number of overflow entries that must not be exceeded.
     After all indices are added a compression step optimizes the matrix and
     integrates any entries from the overflow area into the standard BCRS storage
     scheme.

     To use this mode use the following methods:

     Construct the matrix via
      - BCRSMatrix(size_type _n, size_type _m, size_type _avg, double _overflowsize, BuildMode bm)
      - void setSize(size_type rows, size_type columns, size_type nnz=0) after setting
        the buildmode to implicit and the compression parameters via setImplicitBuildModeParameters(size_type _avg, double _overflow)

     Here, the parameter `_avg` denotes the average number of matrix entries per row, while
     `_overflowsize` reserves `_n * _overflowsize * _avg` entries in the overflow area.

     \warning If you exceed this number of overflow entries during the assembly phase, matrix
              construction fails and an exception will be thrown!

     Start filling your matrix by calling entry(size_type row, size_type col),
     which returns the corresponding matrix entry, creating it on the fly if
     it did not exist yet. Please note that this method may be slightly slower than
     accessing entries via `matrix[row][col]` after the initial assembly because
     of the additional overhead of searching the overflow area.
     The matrix pattern is created by implicitly by simply accessing nonzero entries
     during the initial matrix assembly.

     After the entry-method has been called for each nonzero matrix entry at least once,
     you can call compress() to reorganize the data into the standard BCRS data layout,
     which sets the matrix state to `built`. No matrix entries may be added after
     this step. compress() returns a value of type Dune::CompressionStatistics, which
     you can inspect to tune the construction parameters `_avg` and `_overflowsize`.

     Use of copy constructor, assignment operator and matrix vector arithmetics
     are not supported until the matrix is fully built.

     In the following sample code, an array with 28 entries will be reserved
     \code
     #include<dune/common/fmatrix.hh>
     #include<dune/istl/bcrsmatrix.hh>

     typedef Dune::BCRSMatrix<Dune::FieldMatrix<double,1,1> > M;
     M m(10, 10, 2, 0.4, M::implicit);

     //fill in some arbitrary entries, even operations on these would be possible,
     //you get a reference to the entry! the order of these statements is irrelevant!
     m.entry(0,0) = 0.;
     m.entry(8,0) = 0.;
     m.entry(1,8) = 0.; m.entry(1,0) = 0.; m.entry(1,5) = 0.;
     m.entry(2,0) = 0.;
     m.entry(3,5) = 0.; m.entry(3,0) = 0.;  m.entry(3,8) = 0.;
     m.entry(4,0) = 0.;
     m.entry(9,0) = 0.; m.entry(9,5) = 0.; m.entry(9,8) = 0.;
     m.entry(5,0) = 0.; m.entry(5,5) = 0.; m.entry(5,8) = 0.;
     m.entry(6,0) = 0.;
     m.entry(7,0) = 0.; m.entry(7,5) = 0.; m.entry(7,8) = 0.;



     // internally the index array now looks like this (second row are the row pointers):
     // xxxxxxxx0x800x500x050x050x05
     // ........|.|.|.|.|.|.|.|.|.|.
     // and the overflow area contains (1,5,0.0), (3,8,0.0), (5,8,0.0), (7,8,0.0), (9,8,0.0)
     // the data array has similar structure.

     //finish building by compressing the array
     Dune::CompressionStatistics<M::size_type> stats = m.compress();

     // internally the index array now looks like this:
     // 00580058005800580058xxxxxxxx
     // ||..||..||..||..||..........

     \endcode
   */
  template<class B, class A=std::allocator<B> >
  class BCRSMatrix
  {
    friend struct MatrixDimension<BCRSMatrix>;
  public:
    enum BuildStage {
      /** @brief Matrix is not built at all, no memory has been allocated, build mode and size can still be set. */
      notbuilt=0,
      /** @brief Matrix is not built at all, no memory has been allocated, build mode and size can still be set. */
      notAllocated=0,
      /** @brief Matrix is currently being built, some memory has been allocated, build mode and size are fixed. */
      building=1,
      /** @brief The row sizes of the matrix are known.
       *
       * Only used in random mode.
       */
      rowSizesBuilt=2,
      /** @brief The matrix structure is fully built. */
      built=3
    };

    //===== type definitions and constants

    //! export the type representing the field
    typedef typename B::field_type field_type;

    //! export the type representing the components
    typedef B block_type;

    //! export the allocator type
    typedef A allocator_type;

    //! implement row_type with compressed vector
    typedef CompressedBlockVectorWindow<B,A> row_type;

    //! The type for the index access and the size
    typedef typename A::size_type size_type;

    //! The type for the statistics object returned by compress()
    typedef ::Dune::CompressionStatistics<size_type> CompressionStatistics;

    //! increment block level counter
    enum {
      //! The number of blocklevels the matrix contains.
      blocklevel = B::blocklevel+1
    };

    //! we support two modes
    enum BuildMode {
      /**
       * @brief Build in a row-wise manner.
       *
       * Rows are built up in sequential order. Size of the row and
       * the column indices are defined. A row can be used as soon as it
       * is initialized. With respect to memory there are two variants of
       * this scheme: (a) number of non-zeroes known in advance (application
       * finite difference schemes), (b) number of non-zeroes not known
       * in advance (application: Sparse LU, ILU(n)).
       */
      row_wise,
      /**
       * @brief Build entries randomly.
       *
       * For general finite element implementations the number of rows n
       * is known, the number of non-zeroes might also be known (e.g.
       * \#edges + \#nodes for P1) but the size of a row and the indices of a row
       * can not be defined in sequential order.
       */
      random,
      /**
       * @brief Build entries randomly with an educated guess on entries per row.
       *
       * Allows random order generation as in random mode, but row sizes do not need
       * to be given first. Instead an average number of non-zeroes per row is passed
       * to the constructor. Matrix setup is finished with compress(), full data access
       * during build stage is possible.
       */
      implicit,
      /**
       * @brief Build mode not set!
       */
      unknown
    };

    //===== random access interface to rows of the matrix

    //! random access to the rows
    row_type& operator[] (size_type i)
    {
#ifdef DUNE_ISTL_WITH_CHECKING
      if (build_mode == implicit && ready != built)
        DUNE_THROW(BCRSMatrixError,"You cannot use operator[] in implicit build mode before calling compress()");
      if (r==0) DUNE_THROW(BCRSMatrixError,"row not initialized yet");
      if (i>=n) DUNE_THROW(BCRSMatrixError,"index out of range");
#endif
      return r[i];
    }

    //! same for read only access
    const row_type& operator[] (size_type i) const
    {
#ifdef DUNE_ISTL_WITH_CHECKING
      if (build_mode == implicit && ready != built)
        DUNE_THROW(BCRSMatrixError,"You cannot use operator[] in implicit build mode before calling compress()");
      if (built!=ready) DUNE_THROW(BCRSMatrixError,"row not initialized yet");
      if (i>=n) DUNE_THROW(BCRSMatrixError,"index out of range");
#endif
      return r[i];
    }


    //===== iterator interface to rows of the matrix

    //! %Iterator access to matrix rows
    template<class T>
    class RealRowIterator
      : public RandomAccessIteratorFacade<RealRowIterator<T>, T>
    {

    public:
      //! \brief The unqualified value type
      typedef typename remove_const<T>::type ValueType;

      friend class RandomAccessIteratorFacade<RealRowIterator<const ValueType>, const ValueType>;
      friend class RandomAccessIteratorFacade<RealRowIterator<ValueType>, ValueType>;
      friend class RealRowIterator<const ValueType>;
      friend class RealRowIterator<ValueType>;

      //! constructor
      RealRowIterator (row_type* _p, size_type _i)
        : p(_p), i(_i)
      {}

      //! empty constructor, use with care!
      RealRowIterator ()
        : p(0), i(0)
      {}

      RealRowIterator(const RealRowIterator<ValueType>& it)
        : p(it.p), i(it.i)
      {}


      //! return index
      size_type index () const
      {
        return i;
      }

      std::ptrdiff_t distanceTo(const RealRowIterator<ValueType>& other) const
      {
        assert(other.p==p);
        return (other.i-i);
      }

      std::ptrdiff_t distanceTo(const RealRowIterator<const ValueType>& other) const
      {
        assert(other.p==p);
        return (other.i-i);
      }

      //! equality
      bool equals (const RealRowIterator<ValueType>& other) const
      {
        assert(other.p==p);
        return i==other.i;
      }

      //! equality
      bool equals (const RealRowIterator<const ValueType>& other) const
      {
        assert(other.p==p);
        return i==other.i;
      }

    private:
      //! prefix increment
      void increment()
      {
        ++i;
      }

      //! prefix decrement
      void decrement()
      {
        --i;
      }

      void advance(std::ptrdiff_t diff)
      {
        i+=diff;
      }

      T& elementAt(std::ptrdiff_t diff) const
      {
        return p[i+diff];
      }

      //! dereferencing
      row_type& dereference () const
      {
        return p[i];
      }

      row_type* p;
      size_type i;
    };

    //! The iterator over the (mutable matrix rows
    typedef RealRowIterator<row_type> iterator;
    typedef RealRowIterator<row_type> Iterator;

    //! Get iterator to first row
    Iterator begin ()
    {
      return Iterator(r,0);
    }

    //! Get iterator to one beyond last row
    Iterator end ()
    {
      return Iterator(r,n);
    }

    //! @returns an iterator that is positioned before
    //! the end iterator of the rows, i.e. at the last row.
    Iterator beforeEnd ()
    {
      return Iterator(r,n-1);
    }

    //! @returns an iterator that is positioned before
    //! the first row of the matrix.
    Iterator beforeBegin ()
    {
      return Iterator(r,-1);
    }

    //! rename the iterators for easier access
    typedef Iterator RowIterator;

    /** \brief Iterator for the entries of each row */
    typedef typename row_type::Iterator ColIterator;

    //! The const iterator over the matrix rows
    typedef RealRowIterator<const row_type> const_iterator;
    typedef RealRowIterator<const row_type> ConstIterator;


    //! Get const iterator to first row
    ConstIterator begin () const
    {
      return ConstIterator(r,0);
    }

    //! Get const iterator to one beyond last row
    ConstIterator end () const
    {
      return ConstIterator(r,n);
    }

    //! @returns an iterator that is positioned before
    //! the end iterator of the rows. i.e. at the last row.
    ConstIterator beforeEnd() const
    {
      return ConstIterator(r,n-1);
    }

    //! @returns an iterator that is positioned before
    //! the first row of the matrix.
    ConstIterator beforeBegin () const
    {
      return ConstIterator(r,-1);
    }

    //! rename the const row iterator for easier access
    typedef ConstIterator ConstRowIterator;

    //! Const iterator to the entries of a row
    typedef typename row_type::ConstIterator ConstColIterator;

    //===== constructors & resizers

    // we use a negative overflowsize to indicate that the implicit
    // mode parameters have not been set yet

    //! an empty matrix
    BCRSMatrix ()
      : build_mode(unknown), ready(notAllocated), n(0), m(0), nnz_(0),
        allocationSize(0), r(0), a(0),
        avg(0), overflowsize(-1.0)
    {}

    //! matrix with known number of nonzeroes
    BCRSMatrix (size_type _n, size_type _m, size_type _nnz, BuildMode bm)
      : build_mode(bm), ready(notAllocated), n(0), m(0), nnz_(0),
        allocationSize(0), r(0), a(0),
        avg(0), overflowsize(-1.0)
    {
      allocate(_n, _m, _nnz,true,false);
    }

    //! matrix with unknown number of nonzeroes
    BCRSMatrix (size_type _n, size_type _m, BuildMode bm)
      : build_mode(bm), ready(notAllocated), n(0), m(0), nnz_(0),
        allocationSize(0), r(0), a(0),
        avg(0), overflowsize(-1.0)
    {
      allocate(_n, _m,0,true,false);
    }

    //! \brief construct matrix with a known average number of entries per row
    /**
     * Constructs a matrix in implicit buildmode.
     *
     * @param _n number of rows of the matrix
     * @param _m number of columns of the matrix
     * @param _avg expected average number of entries per row
     * @param _overflowsize fraction of _n*_avg which is expected to be
     *   needed for elements that exceed _avg entries per row.
     *
     */
    BCRSMatrix (size_type _n, size_type _m, size_type _avg, double _overflowsize, BuildMode bm)
      : build_mode(bm), ready(notAllocated), n(0), m(0), nnz_(0),
        allocationSize(0), r(0), a(0),
        avg(_avg), overflowsize(_overflowsize)
    {
      if (bm != implicit)
        DUNE_THROW(BCRSMatrixError,"Only call this constructor when using the implicit build mode");
      // Prevent user from setting a negative overflowsize:
      // 1) It doesn't make sense
      // 2) We use a negative overflow value to indicate that the parameters
      //    have not been set yet
      if (_overflowsize < 0.0)
        DUNE_THROW(BCRSMatrixError,"You cannot set a negative overflow fraction");
      implicit_allocate(_n,_m);
    }

    /**
     * @brief copy constructor
     *
     * Does a deep copy as expected.
     */
    BCRSMatrix (const BCRSMatrix& Mat)
      : build_mode(Mat.build_mode), ready(notAllocated), n(0), m(0), nnz_(0),
        allocationSize(0), r(0), a(0),
        avg(Mat.avg), overflowsize(Mat.overflowsize)
    {
      if (!(Mat.ready == notAllocated || Mat.ready == built))
        DUNE_THROW(InvalidStateException,"BCRSMatrix can only be copy-constructed when source matrix is completely empty (size not set) or fully built)");

      // deep copy in global array
      size_type _nnz = Mat.nnz_;

      // in case of row-wise allocation
      if (_nnz<=0)
      {
        _nnz = 0;
        for (size_type i=0; i<Mat.n; i++)
          _nnz += Mat.r[i].getsize();
      }

      j_ = Mat.j_; // enable column index sharing, release array in case of row-wise allocation
      allocate(Mat.n, Mat.m, _nnz, true, true);

      // build window structure
      copyWindowStructure(Mat);
    }

    //! destructor
    ~BCRSMatrix ()
    {
      deallocate();
    }

    /**
     * @brief Sets the build mode of the matrix
     * @param bm The build mode to use.
     */
    void setBuildMode(BuildMode bm)
    {
      if (ready == notAllocated)
        {
          build_mode = bm;
          return;
        }
      if (ready == building && (build_mode == unknown || build_mode == random || build_mode == row_wise) && (bm == row_wise || bm == random))
        build_mode = bm;
      else
        DUNE_THROW(InvalidStateException, "Matrix structure cannot be changed at this stage anymore (ready == "<<ready<<").");
    }

    /**
     *  @brief Set the size of the matrix.
     *
     * Sets the number of rows and columns of the matrix and allocates
     * the memory needed for the storage of the matrix entries.
     *
     * @warning After calling this methods on an already allocated (and probably
     * setup matrix) results in all the structure and data being deleted. I.~e.
     * one has to setup the matrix again.
     *
     * @param rows The number of rows the matrix should contain.
     * @param columns the number of columns the matrix should contain.
     * @param nnz The number of nonzero entries the matrix should hold (if omitted
     * defaults to 0). Must be omitted in implicit mode.
     */
    void setSize(size_type rows, size_type columns, size_type nnz=0)
    {
      // deallocate already setup memory
      deallocate();

      if (build_mode == implicit)
      {
        if (nnz>0)
          DUNE_THROW(Dune::BCRSMatrixError,"number of non-zeroes may not be set in implicit mode, use setImplicitBuildModeParameters() instead");

        // implicit allocates differently
        implicit_allocate(rows,columns);
      }
      else
      {
        // allocate matrix memory
        allocate(rows, columns, nnz, true, false);
      }
    }

    /** @brief Set parameters needed for creation in implicit build mode.
     *
     * Use this method before setSize() to define storage behaviour of a matrix
     * in implicit build mode
     * @param _avg expected average number of entries per row
     * @param _overflowsize fraction of _n*_avg which is expected to be
     *   needed for elements that exceed _avg entries per row.
     */
    void setImplicitBuildModeParameters(size_type _avg, double _overflow)
    {
      // Prevent user from setting a negative overflowsize:
      // 1) It doesn't make sense
      // 2) We use a negative overflow value to indicate that the parameters
      //    have not been set yet
      if (_overflow < 0.0)
        DUNE_THROW(BCRSMatrixError,"You cannot set a negative overflow fraction");

      // make sure the parameters aren't changed after memory has been allocated
      if (ready != notAllocated)
        DUNE_THROW(InvalidStateException,"You cannot modify build mode parameters at this stage anymore");
      avg = _avg;
      overflowsize = _overflow;
    }

    /**
     * @brief assignment
     *
     * Frees and reallocates space.
     * Both sparsity pattern and values are set from Mat.
     */
    BCRSMatrix& operator= (const BCRSMatrix& Mat)
    {
      // return immediately when self-assignment
      if (&Mat==this) return *this;

      if (!((ready == notAllocated || ready == built) && (Mat.ready == notAllocated || Mat.ready == built)))
        DUNE_THROW(InvalidStateException,"BCRSMatrix can only be copied when both target and source are empty or fully built)");

      // make it simple: ALWAYS throw away memory for a and j_
      // and deallocate rows only if n != Mat.n
      deallocate(n!=Mat.n);

      // reallocate the rows if required
      if (n>0 && n!=Mat.n) {
        // free rows
        for(row_type *riter=r+(n-1), *rend=r-1; riter!=rend; --riter)
          rowAllocator_.destroy(riter);
        rowAllocator_.deallocate(r,n);
      }

      nnz_ = Mat.nnz_;
      if (nnz_ <= 0)
      {
        for (size_type i=0; i<Mat.n; i++)
          nnz_ += Mat.r[i].getsize();
      }

      // allocate a, share j_
      j_ = Mat.j_;
      allocate(Mat.n, Mat.m, nnz_, n!=Mat.n, true);

      // build window structure
      copyWindowStructure(Mat);
      return *this;
    }

    //! Assignment from a scalar
    BCRSMatrix& operator= (const field_type& k)
    {

      if (!(ready == notAllocated || ready == built))
        DUNE_THROW(InvalidStateException,"Scalar assignment only works on fully built BCRSMatrix)");

      for (size_type i=0; i<n; i++) r[i] = k;
      return *this;
    }

    //===== row-wise creation interface

    //! %Iterator class for sequential creation of blocks
    class CreateIterator
    {
    public:
      //! constructor
      CreateIterator (BCRSMatrix& _Mat, size_type _i)
        : Mat(_Mat), i(_i), nnz(0), current_row(nullptr, Mat.j_.get(), 0)
      {
        if (Mat.build_mode == unknown && Mat.ready == building)
          {
            Mat.build_mode = row_wise;
          }
        if (i==0 && Mat.ready != building)
          DUNE_THROW(BCRSMatrixError,"creation only allowed for uninitialized matrix");
        if(Mat.build_mode!=row_wise)
          DUNE_THROW(BCRSMatrixError,"creation only allowed if row wise allocation was requested in the constructor");
      }

      //! prefix increment
      CreateIterator& operator++()
      {
        // this should only be called if matrix is in creation
        if (Mat.ready != building)
          DUNE_THROW(BCRSMatrixError,"matrix already built up");

        // row i is defined through the pattern
        // get memory for the row and initialize the j_ array
        // this depends on the allocation mode

        // compute size of the row
        size_type s = pattern.size();

        if(s>0) {
          // update number of nonzeroes including this row
          nnz += s;

          // alloc memory / set window
          if (Mat.nnz_ > 0)
          {
            // memory is allocated in one long array

            // check if that memory is sufficient
            if (nnz > Mat.nnz_)
              DUNE_THROW(BCRSMatrixError,"allocated nnz too small");

            // set row i
            Mat.r[i].set(s,nullptr,current_row.getindexptr());
            current_row.setindexptr(current_row.getindexptr()+s);
          }else{
            // memory is allocated individually per row
            // allocate and set row i
            B* b = Mat.allocator_.allocate(s);
            // use placement new to call constructor that allocates
            // additional memory.
            new (b) B[s];
            size_type* j = Mat.sizeAllocator_.allocate(s);
            Mat.r[i].set(s,b,j);
          }
        }else
          // setup empty row
          Mat.r[i].set(0,0,0);

        // initialize the j array for row i from pattern
        size_type k=0;
        size_type *j =  Mat.r[i].getindexptr();
        for (typename PatternType::const_iterator it=pattern.begin(); it!=pattern.end(); ++it)
          j[k++] = *it;

        // now go to next row
        i++;
        pattern.clear();

        // check if this was last row
        if (i==Mat.n)
        {
          Mat.ready = built;
          if(Mat.nnz_ > 0)
          {
            // Set nnz to the exact number of nonzero blocks inserted
            // as some methods rely on it
            Mat.nnz_ = nnz;
            // allocate data array
            Mat.allocateData();
            Mat.setDataPointers();
          }
        }
        // done
        return *this;
      }

      //! inequality
      bool operator!= (const CreateIterator& it) const
      {
        return (i!=it.i) || (&Mat!=&it.Mat);
      }

      //! equality
      bool operator== (const CreateIterator& it) const
      {
        return (i==it.i) && (&Mat==&it.Mat);
      }

      //! dereferencing
      size_type index () const
      {
        return i;
      }

      //! put column index in row
      void insert (size_type j)
      {
        pattern.insert(j);
      }

      //! return true if column index is in row
      bool contains (size_type j)
      {
        if (pattern.find(j)!=pattern.end())
          return true;
        else
          return false;
      }
      /**
       * @brief Get the current row size.
       * @return The number of indices already
       * inserted for the current row.
       */
      size_type size() const
      {
        return pattern.size();
      }

    private:
      BCRSMatrix& Mat;     // the matrix we are defining
      size_type i;               // current row to be defined
      size_type nnz;             // count total number of nonzeros
      typedef std::set<size_type,std::less<size_type> > PatternType;
      PatternType pattern;     // used to compile entries in a row
      row_type current_row;     // row pointing to the current row to setup
    };

    //! allow CreateIterator to access internal data
    friend class CreateIterator;

    //! get initial create iterator
    CreateIterator createbegin ()
    {
      return CreateIterator(*this,0);
    }

    //! get create iterator pointing to one after the last block
    CreateIterator createend ()
    {
      return CreateIterator(*this,n);
    }


    //===== random creation interface

    //! set number of indices in row i to s
    void setrowsize (size_type i, size_type s)
    {
      if (build_mode!=random)
        DUNE_THROW(BCRSMatrixError,"requires random build mode");
      if (ready != building)
        DUNE_THROW(BCRSMatrixError,"matrix row sizes already built up");

      r[i].setsize(s);
    }

    //! get current number of indices in row i
    size_type getrowsize (size_type i) const
    {
#ifdef DUNE_ISTL_WITH_CHECKING
      if (r==0) DUNE_THROW(BCRSMatrixError,"row not initialized yet");
      if (i>=n) DUNE_THROW(BCRSMatrixError,"index out of range");
#endif
      return r[i].getsize();
    }

    //! increment size of row i by s (1 by default)
    void incrementrowsize (size_type i, size_type s = 1)
    {
      if (build_mode!=random)
        DUNE_THROW(BCRSMatrixError,"requires random build mode");
      if (ready != building)
        DUNE_THROW(BCRSMatrixError,"matrix row sizes already built up");

      r[i].setsize(r[i].getsize()+s);
    }

    //! indicate that size of all rows is defined
    void endrowsizes ()
    {
      if (build_mode!=random)
        DUNE_THROW(BCRSMatrixError,"requires random build mode");
      if (ready != building)
        DUNE_THROW(BCRSMatrixError,"matrix row sizes already built up");

      // compute total size, check positivity
      size_type total=0;
      for (size_type i=0; i<n; i++)
      {
        total += r[i].getsize();
      }

      if(nnz_ == 0)
        // allocate/check memory
        allocate(n,m,total,false,false);
      else if(nnz_ < total)
        DUNE_THROW(BCRSMatrixError,"Specified number of nonzeros ("<<nnz_<<") not "
                                                             <<"sufficient for calculated nonzeros ("<<total<<"! ");

      // set the window pointers correctly
      setColumnPointers(begin());

      // initialize j_ array with m (an invalid column index)
      // this indicates an unused entry
      for (size_type k=0; k<nnz_; k++)
        j_.get()[k] = m;
      ready = rowSizesBuilt;
    }

    //! \brief add index (row,col) to the matrix
    /*!
       This method can only be used when building the BCRSMatrix
       in random mode.

       addindex adds a new column entry to the row. If this column
       entry already exists, nothing is done.

       Don't call addindex after the setup phase is finished
       (after endindices is called).
     */
    void addindex (size_type row, size_type col)
    {
      if (build_mode!=random)
        DUNE_THROW(BCRSMatrixError,"requires random build mode");
      if (ready==built)
        DUNE_THROW(BCRSMatrixError,"matrix already built up");
      if (ready==building)
        DUNE_THROW(BCRSMatrixError,"matrix row sizes not built up yet");
      if (ready==notAllocated)
        DUNE_THROW(BCRSMatrixError,"matrix size not set and no memory allocated yet");

      if (col >= m)
        DUNE_THROW(BCRSMatrixError,"column index exceeds matrix size");

      // get row range
      size_type* const first = r[row].getindexptr();
      size_type* const last = first + r[row].getsize();

      // find correct insertion position for new column index
      size_type* pos = std::lower_bound(first,last,col);

      // check if index is already in row
      if (pos!=last && *pos == col) return;

      // find end of already inserted column indices
      size_type* end = std::lower_bound(pos,last,m);
      if (end==last)
        DUNE_THROW(BCRSMatrixError,"row is too small");

      // insert new column index at correct position
      std::copy_backward(pos,end,end+1);
      *pos = col;
    }

    //! Set all column indices for row from the given iterator range.
    /**
     * The iterator range has to be of the same length as the previously set row size.
     * The entries in the iterator range do not have to be in any particular order, but
     * must not contain duplicate values.
     *
     * Calling this method overwrites any previously set column indices!
     */
    template<typename It>
    void setIndices(size_type row, It begin, It end)
    {
      size_type row_size = r[row].size();
      size_type* col_begin = r[row].getindexptr();
      size_type* col_end;
      // consistency check between allocated row size and number of passed column indices
      if ((col_end = std::copy(begin,end,r[row].getindexptr())) != col_begin + row_size)
        DUNE_THROW(BCRSMatrixError,"Given size of row " << row
                   << " (" << row_size
                   << ") does not match number of passed entries (" << (col_end - col_begin) << ")");
      std::sort(col_begin,col_end);
    }

    //! indicate that all indices are defined, check consistency
    void endindices ()
    {
      if (build_mode!=random)
        DUNE_THROW(BCRSMatrixError,"requires random build mode");
      if (ready==built)
        DUNE_THROW(BCRSMatrixError,"matrix already built up");
      if (ready==building)
        DUNE_THROW(BCRSMatrixError,"row sizes are not built up yet");
      if (ready==notAllocated)
        DUNE_THROW(BCRSMatrixError,"matrix size not set and no memory allocated yet");

      // check if there are undefined indices
      RowIterator endi=end();
      for (RowIterator i=begin(); i!=endi; ++i)
      {
        ColIterator endj = (*i).end();
        for (ColIterator j=(*i).begin(); j!=endj; ++j) {
          if (j.index() >= m) {
            dwarn << "WARNING: size of row "<< i.index()<<" is "<<j.offset()<<". But was specified as being "<< (*i).end().offset()
                  <<". This means you are wasting valuable space and creating additional cache misses!"<<std::endl;
            r[i.index()].setsize(j.offset());
            break;
          }
        }
      }

      allocateData();
      setDataPointers();

      // if not, set matrix to built
      ready = built;
    }

    //===== implicit creation interface

    //! Returns reference to entry (row,col) of the matrix.
    /**
     * This method can only be used when the matrix is in implicit
     * building mode.
     *
     * A reference to entry (row, col) of the matrix is returned.
     * If entry (row, col) is accessed for the first time, it is created
     * on the fly.
     *
     * This method can only be used while building the matrix,
     * after compression operator[] gives a much better performance.
     */
    B& entry(size_type row, size_type col)
    {
#ifdef DUNE_ISTL_WITH_CHECKING
      if (build_mode!=implicit)
        DUNE_THROW(BCRSMatrixError,"requires implicit build mode");
      if (ready==built)
        DUNE_THROW(BCRSMatrixError,"matrix already built up, use operator[] for entry access now");
      if (ready==notAllocated)
        DUNE_THROW(BCRSMatrixError,"matrix size not set and no memory allocated yet");
      if (ready!=building)
        DUNE_THROW(InvalidStateException,"You may only use entry() during the 'building' stage");

      if (row >= n)
        DUNE_THROW(BCRSMatrixError,"row index exceeds matrix size");
      if (col >= m)
        DUNE_THROW(BCRSMatrixError,"column index exceeds matrix size");
#endif

      size_type* begin = r[row].getindexptr();
      size_type* end = begin + r[row].getsize();

      size_type* pos = std::find(begin, end, col);

      //treat the case that there was a match in the array
      if (pos != end)
        if (*pos == col)
        {
          std::ptrdiff_t offset = pos - r[row].getindexptr();
          B* aptr = r[row].getptr() + offset;

          return *aptr;
        }

      //determine whether overflow has to be taken into account or not
      if (r[row].getsize() == avg)
        return overflow[std::make_pair(row,col)];
      else
      {
        //modify index array
        *end = col;

        //do simulatenous operations on data array a
        std::ptrdiff_t offset = end - r[row].getindexptr();
        B* apos = r[row].getptr() + offset;

        //increase rowsize
        r[row].setsize(r[row].getsize()+1);

        //return reference to the newly created entry
        return *apos;
      }
    }

    //! Finishes the buildstage in implicit mode.
    /**
     * Performs compression of index and data arrays with linear
     * complexity in the number of nonzeroes.
     *
     * After calling this method, the matrix is in the built state
     * and no more entries can be added.
     *
     * \returns An object with some statistics about the compression for
     *          future optimization.
     */
    CompressionStatistics compress()
    {
      if (build_mode!=implicit)
        DUNE_THROW(BCRSMatrixError,"requires implicit build mode");
      if (ready==built)
        DUNE_THROW(BCRSMatrixError,"matrix already built up, no more need for compression");
      if (ready==notAllocated)
        DUNE_THROW(BCRSMatrixError,"matrix size not set and no memory allocated yet");
      if (ready!=building)
        DUNE_THROW(InvalidStateException,"You may only call compress() at the end of the 'building' stage");

      //calculate statistics
      CompressionStatistics stats;
      stats.overflow_total = overflow.size();
      stats.maximum = 0;

      //get insertion iterators pointing to one before start (for later use of ++it)
      size_type* jiit = j_.get();
      B* aiit = a;

      //get iterator to the smallest overflow element
      typename OverflowType::iterator oit = overflow.begin();

      //store a copy of index pointers on which to perform sortation
      std::vector<size_type*> perm;

      //iterate over all rows and copy elements into their position in the compressed array
      for (size_type i=0; i<n; i++)
      {
        //get old pointers into a and j and size without overflow changes
        size_type* begin = r[i].getindexptr();
        //B* apos = r[i].getptr();
        size_type size = r[i].getsize();

        perm.resize(size);

        typename std::vector<size_type*>::iterator it = perm.begin();
        for (size_type* iit = begin; iit < begin + size; ++iit, ++it)
          *it = iit;

        //sort permutation array
        std::sort(perm.begin(),perm.end(),PointerCompare<size_type>());

        //change row window pointer to their new positions
        r[i].setindexptr(jiit);
        r[i].setptr(aiit);

        for (it = perm.begin(); it != perm.end(); ++it)
        {
          //check whether there are elements in the overflow area which take precedence
          while ((oit!=overflow.end()) && (oit->first < std::make_pair(i,**it)))
          {
            //check whether there is enough memory to write to
            if (jiit > begin)
              DUNE_THROW(Dune::ImplicitModeOverflowExhausted,
                         "Allocated memory for BCRSMatrix exhausted during compress()!"
                         "Please increase either the average number of entries per row or the overflow fraction."
                         );
            //copy an element from the overflow area to the insertion position in a and j
            *jiit = oit->first.second;
            ++jiit;
            *aiit = oit->second;
            ++aiit;
            ++oit;
            r[i].setsize(r[i].getsize()+1);
          }

          //check whether there is enough memory to write to
          if (jiit > begin)
              DUNE_THROW(Dune::ImplicitModeOverflowExhausted,
                         "Allocated memory for BCRSMatrix exhausted during compress()!"
                         "Please increase either the average number of entries per row or the overflow fraction."
                         );

          //copy element from array
          *jiit = **it;
          ++jiit;
          B* apos = *it - j_.get() + a;
          *aiit = *apos;
          ++aiit;
        }

        //copy remaining elements from the overflow area
        while ((oit!=overflow.end()) && (oit->first.first == i))
        {
          //check whether there is enough memory to write to
          if (jiit > begin)
              DUNE_THROW(Dune::ImplicitModeOverflowExhausted,
                         "Allocated memory for BCRSMatrix exhausted during compress()!"
                         "Please increase either the average number of entries per row or the overflow fraction."
                         );

          //copy and element from the overflow area to the insertion position in a and j
          *jiit = oit->first.second;
          ++jiit;
          *aiit = oit->second;
          ++aiit;
          ++oit;
          r[i].setsize(r[i].getsize()+1);
        }

        // update maximum row size
        if (r[i].getsize()>stats.maximum)
          stats.maximum = r[i].getsize();
      }

      // overflow area may be cleared
      overflow.clear();

      //determine average number of entries and memory usage
      std::ptrdiff_t diff = (r[n-1].getindexptr() + r[n-1].getsize() - j_.get());
      nnz_ = diff;
      stats.avg = (double) (nnz_) / (double) n;
      stats.mem_ratio = (double) (nnz_) / (double) allocationSize;

      //matrix is now built
      ready = built;

      return stats;
    }

    //===== vector space arithmetic

    //! vector space multiplication with scalar
    BCRSMatrix& operator*= (const field_type& k)
    {
#ifdef DUNE_ISTL_WITH_CHECKING
      if (ready != built)
        DUNE_THROW(BCRSMatrixError,"You can only call arithmetic operations on fully built BCRSMatrix instances");
#endif

      if (nnz_ > 0)
      {
        // process 1D array
        for (size_type i=0; i<nnz_; i++)
          a[i] *= k;
      }
      else
      {
        RowIterator endi=end();
        for (RowIterator i=begin(); i!=endi; ++i)
        {
          ColIterator endj = (*i).end();
          for (ColIterator j=(*i).begin(); j!=endj; ++j)
            (*j) *= k;
        }
      }

      return *this;
    }

    //! vector space division by scalar
    BCRSMatrix& operator/= (const field_type& k)
    {
#ifdef DUNE_ISTL_WITH_CHECKING
      if (ready != built)
        DUNE_THROW(BCRSMatrixError,"You can only call arithmetic operations on fully built BCRSMatrix instances");
#endif

      if (nnz_ > 0)
      {
        // process 1D array
        for (size_type i=0; i<nnz_; i++)
          a[i] /= k;
      }
      else
      {
        RowIterator endi=end();
        for (RowIterator i=begin(); i!=endi; ++i)
        {
          ColIterator endj = (*i).end();
          for (ColIterator j=(*i).begin(); j!=endj; ++j)
            (*j) /= k;
        }
      }

      return *this;
    }


    /*! \brief Add the entries of another matrix to this one.
     *
     * \param b The matrix to add to this one. Its sparsity pattern
     * has to be subset of the sparsity pattern of this matrix.
     */
    BCRSMatrix& operator+= (const BCRSMatrix& b)
    {
#ifdef DUNE_ISTL_WITH_CHECKING
      if (ready != built || b.ready != built)
        DUNE_THROW(BCRSMatrixError,"You can only call arithmetic operations on fully built BCRSMatrix instances");
      if(N()!=b.N() || M() != b.M())
        DUNE_THROW(RangeError, "Matrix sizes do not match!");
#endif
      RowIterator endi=end();
      ConstRowIterator j=b.begin();
      for (RowIterator i=begin(); i!=endi; ++i, ++j) {
        i->operator+=(*j);
      }

      return *this;
    }

    /*! \brief Substract the entries of another matrix to this one.
     *
     * \param b The matrix to add to this one. Its sparsity pattern
     * has to be subset of the sparsity pattern of this matrix.
     */
    BCRSMatrix& operator-= (const BCRSMatrix& b)
    {
#ifdef DUNE_ISTL_WITH_CHECKING
      if (ready != built || b.ready != built)
        DUNE_THROW(BCRSMatrixError,"You can only call arithmetic operations on fully built BCRSMatrix instances");
      if(N()!=b.N() || M() != b.M())
        DUNE_THROW(RangeError, "Matrix sizes do not match!");
#endif
      RowIterator endi=end();
      ConstRowIterator j=b.begin();
      for (RowIterator i=begin(); i!=endi; ++i, ++j) {
        i->operator-=(*j);
      }

      return *this;
    }

    /*! \brief Add the scaled entries of another matrix to this one.
     *
     * Matrix axpy operation: *this += alpha * b
     *
     * \param alpha Scaling factor.
     * \param b     The matrix to add to this one. Its sparsity pattern has to
     *              be subset of the sparsity pattern of this matrix.
     */
    BCRSMatrix& axpy(field_type alpha, const BCRSMatrix& b)
    {
#ifdef DUNE_ISTL_WITH_CHECKING
      if (ready != built || b.ready != built)
        DUNE_THROW(BCRSMatrixError,"You can only call arithmetic operations on fully built BCRSMatrix instances");
      if(N()!=b.N() || M() != b.M())
        DUNE_THROW(RangeError, "Matrix sizes do not match!");
#endif
      RowIterator endi=end();
      ConstRowIterator j=b.begin();
      for(RowIterator i=begin(); i!=endi; ++i, ++j)
        i->axpy(alpha, *j);

      return *this;
    }

    //===== linear maps

    //! y = A x
    template<class X, class Y>
    void mv (const X& x, Y& y) const
    {
#ifdef DUNE_ISTL_WITH_CHECKING
      if (ready != built)
        DUNE_THROW(BCRSMatrixError,"You can only call arithmetic operations on fully built BCRSMatrix instances");
      if (x.N()!=M()) DUNE_THROW(BCRSMatrixError,
                                 "Size mismatch: M: " << N() << "x" << M() << " x: " << x.N());
      if (y.N()!=N()) DUNE_THROW(BCRSMatrixError,
                                 "Size mismatch: M: " << N() << "x" << M() << " y: " << y.N());
#endif
      ConstRowIterator endi=end();
      for (ConstRowIterator i=begin(); i!=endi; ++i)
      {
        y[i.index()]=0;
        ConstColIterator endj = (*i).end();
        for (ConstColIterator j=(*i).begin(); j!=endj; ++j)
          (*j).umv(x[j.index()],y[i.index()]);
      }
    }

    //! y += A x
    template<class X, class Y>
    void umv (const X& x, Y& y) const
    {
#ifdef DUNE_ISTL_WITH_CHECKING
      if (ready != built)
        DUNE_THROW(BCRSMatrixError,"You can only call arithmetic operations on fully built BCRSMatrix instances");
      if (x.N()!=M()) DUNE_THROW(BCRSMatrixError,"index out of range");
      if (y.N()!=N()) DUNE_THROW(BCRSMatrixError,"index out of range");
#endif
      ConstRowIterator endi=end();
      for (ConstRowIterator i=begin(); i!=endi; ++i)
      {
        ConstColIterator endj = (*i).end();
        for (ConstColIterator j=(*i).begin(); j!=endj; ++j)
          (*j).umv(x[j.index()],y[i.index()]);
      }
    }

    //! y -= A x
    template<class X, class Y>
    void mmv (const X& x, Y& y) const
    {
#ifdef DUNE_ISTL_WITH_CHECKING
      if (ready != built)
        DUNE_THROW(BCRSMatrixError,"You can only call arithmetic operations on fully built BCRSMatrix instances");
      if (x.N()!=M()) DUNE_THROW(BCRSMatrixError,"index out of range");
      if (y.N()!=N()) DUNE_THROW(BCRSMatrixError,"index out of range");
#endif
      ConstRowIterator endi=end();
      for (ConstRowIterator i=begin(); i!=endi; ++i)
      {
        ConstColIterator endj = (*i).end();
        for (ConstColIterator j=(*i).begin(); j!=endj; ++j)
          (*j).mmv(x[j.index()],y[i.index()]);
      }
    }

    //! y += alpha A x
    template<typename F, class X, class Y>
    void usmv (F&& alpha, const X& x, Y& y) const
    {
#ifdef DUNE_ISTL_WITH_CHECKING
      if (ready != built)
        DUNE_THROW(BCRSMatrixError,"You can only call arithmetic operations on fully built BCRSMatrix instances");
      if (x.N()!=M()) DUNE_THROW(BCRSMatrixError,"index out of range");
      if (y.N()!=N()) DUNE_THROW(BCRSMatrixError,"index out of range");
#endif
      ConstRowIterator endi=end();
      for (ConstRowIterator i=begin(); i!=endi; ++i)
      {
        ConstColIterator endj = (*i).end();
        for (ConstColIterator j=(*i).begin(); j!=endj; ++j)
          (*j).usmv(alpha,x[j.index()],y[i.index()]);
      }
    }

    //! y = A^T x
    template<class X, class Y>
    void mtv (const X& x, Y& y) const
    {
#ifdef DUNE_ISTL_WITH_CHECKING
      if (ready != built)
        DUNE_THROW(BCRSMatrixError,"You can only call arithmetic operations on fully built BCRSMatrix instances");
      if (x.N()!=N()) DUNE_THROW(BCRSMatrixError,"index out of range");
      if (y.N()!=M()) DUNE_THROW(BCRSMatrixError,"index out of range");
#endif
      for(size_type i=0; i<y.N(); ++i)
        y[i]=0;
      umtv(x,y);
    }

    //! y += A^T x
    template<class X, class Y>
    void umtv (const X& x, Y& y) const
    {
#ifdef DUNE_ISTL_WITH_CHECKING
      if (ready != built)
        DUNE_THROW(BCRSMatrixError,"You can only call arithmetic operations on fully built BCRSMatrix instances");
      if (x.N()!=N()) DUNE_THROW(BCRSMatrixError,"index out of range");
      if (y.N()!=M()) DUNE_THROW(BCRSMatrixError,"index out of range");
#endif
      ConstRowIterator endi=end();
      for (ConstRowIterator i=begin(); i!=endi; ++i)
      {
        ConstColIterator endj = (*i).end();
        for (ConstColIterator j=(*i).begin(); j!=endj; ++j)
          (*j).umtv(x[i.index()],y[j.index()]);
      }
    }

    //! y -= A^T x
    template<class X, class Y>
    void mmtv (const X& x, Y& y) const
    {
#ifdef DUNE_ISTL_WITH_CHECKING
      if (x.N()!=N()) DUNE_THROW(BCRSMatrixError,"index out of range");
      if (y.N()!=M()) DUNE_THROW(BCRSMatrixError,"index out of range");
#endif
      ConstRowIterator endi=end();
      for (ConstRowIterator i=begin(); i!=endi; ++i)
      {
        ConstColIterator endj = (*i).end();
        for (ConstColIterator j=(*i).begin(); j!=endj; ++j)
          (*j).mmtv(x[i.index()],y[j.index()]);
      }
    }

    //! y += alpha A^T x
    template<class X, class Y>
    void usmtv (const field_type& alpha, const X& x, Y& y) const
    {
#ifdef DUNE_ISTL_WITH_CHECKING
      if (ready != built)
        DUNE_THROW(BCRSMatrixError,"You can only call arithmetic operations on fully built BCRSMatrix instances");
      if (x.N()!=N()) DUNE_THROW(BCRSMatrixError,"index out of range");
      if (y.N()!=M()) DUNE_THROW(BCRSMatrixError,"index out of range");
#endif
      ConstRowIterator endi=end();
      for (ConstRowIterator i=begin(); i!=endi; ++i)
      {
        ConstColIterator endj = (*i).end();
        for (ConstColIterator j=(*i).begin(); j!=endj; ++j)
          (*j).usmtv(alpha,x[i.index()],y[j.index()]);
      }
    }

    //! y += A^H x
    template<class X, class Y>
    void umhv (const X& x, Y& y) const
    {
#ifdef DUNE_ISTL_WITH_CHECKING
      if (ready != built)
        DUNE_THROW(BCRSMatrixError,"You can only call arithmetic operations on fully built BCRSMatrix instances");
      if (x.N()!=N()) DUNE_THROW(BCRSMatrixError,"index out of range");
      if (y.N()!=M()) DUNE_THROW(BCRSMatrixError,"index out of range");
#endif
      ConstRowIterator endi=end();
      for (ConstRowIterator i=begin(); i!=endi; ++i)
      {
        ConstColIterator endj = (*i).end();
        for (ConstColIterator j=(*i).begin(); j!=endj; ++j)
          (*j).umhv(x[i.index()],y[j.index()]);
      }
    }

    //! y -= A^H x
    template<class X, class Y>
    void mmhv (const X& x, Y& y) const
    {
#ifdef DUNE_ISTL_WITH_CHECKING
      if (ready != built)
        DUNE_THROW(BCRSMatrixError,"You can only call arithmetic operations on fully built BCRSMatrix instances");
      if (x.N()!=N()) DUNE_THROW(BCRSMatrixError,"index out of range");
      if (y.N()!=M()) DUNE_THROW(BCRSMatrixError,"index out of range");
#endif
      ConstRowIterator endi=end();
      for (ConstRowIterator i=begin(); i!=endi; ++i)
      {
        ConstColIterator endj = (*i).end();
        for (ConstColIterator j=(*i).begin(); j!=endj; ++j)
          (*j).mmhv(x[i.index()],y[j.index()]);
      }
    }

    //! y += alpha A^H x
    template<class X, class Y>
    void usmhv (const field_type& alpha, const X& x, Y& y) const
    {
#ifdef DUNE_ISTL_WITH_CHECKING
      if (ready != built)
        DUNE_THROW(BCRSMatrixError,"You can only call arithmetic operations on fully built BCRSMatrix instances");
      if (x.N()!=N()) DUNE_THROW(BCRSMatrixError,"index out of range");
      if (y.N()!=M()) DUNE_THROW(BCRSMatrixError,"index out of range");
#endif
      ConstRowIterator endi=end();
      for (ConstRowIterator i=begin(); i!=endi; ++i)
      {
        ConstColIterator endj = (*i).end();
        for (ConstColIterator j=(*i).begin(); j!=endj; ++j)
          (*j).usmhv(alpha,x[i.index()],y[j.index()]);
      }
    }


    //===== norms

    //! square of frobenius norm, need for block recursion
    typename FieldTraits<field_type>::real_type frobenius_norm2 () const
    {
#ifdef DUNE_ISTL_WITH_CHECKING
      if (ready != built)
        DUNE_THROW(BCRSMatrixError,"You can only call arithmetic operations on fully built BCRSMatrix instances");
#endif

      double sum=0;

      ConstRowIterator endi=end();
      for (ConstRowIterator i=begin(); i!=endi; ++i)
      {
        ConstColIterator endj = (*i).end();
        for (ConstColIterator j=(*i).begin(); j!=endj; ++j)
          sum += (*j).frobenius_norm2();
      }

      return sum;
    }

    //! frobenius norm: sqrt(sum over squared values of entries)
    typename FieldTraits<field_type>::real_type frobenius_norm () const
    {
      return sqrt(frobenius_norm2());
    }

    //! infinity norm (row sum norm, how to generalize for blocks?)
    typename FieldTraits<field_type>::real_type infinity_norm () const
    {
      if (ready != built)
        DUNE_THROW(BCRSMatrixError,"You can only call arithmetic operations on fully built BCRSMatrix instances");

      double max=0;
      ConstRowIterator endi=end();
      for (ConstRowIterator i=begin(); i!=endi; ++i)
      {
        double sum=0;
        ConstColIterator endj = (*i).end();
        for (ConstColIterator j=(*i).begin(); j!=endj; ++j)
          sum += (*j).infinity_norm();
        max = std::max(max,sum);
      }
      return max;
    }

    //! simplified infinity norm (uses Manhattan norm for complex values)
    typename FieldTraits<field_type>::real_type infinity_norm_real () const
    {
#ifdef DUNE_ISTL_WITH_CHECKING
      if (ready != built)
        DUNE_THROW(BCRSMatrixError,"You can only call arithmetic operations on fully built BCRSMatrix instances");
#endif

      double max=0;
      ConstRowIterator endi=end();
      for (ConstRowIterator i=begin(); i!=endi; ++i)
      {
        double sum=0;
        ConstColIterator endj = (*i).end();
        for (ConstColIterator j=(*i).begin(); j!=endj; ++j)
          sum += (*j).infinity_norm_real();
        max = std::max(max,sum);
      }
      return max;
    }


    //===== sizes

    //! number of rows (counted in blocks)
    size_type N () const
    {
      return n;
    }

    //! number of columns (counted in blocks)
    size_type M () const
    {
      return m;
    }

    //! number of blocks that are stored (the number of blocks that possibly are nonzero)
    size_type nonzeroes () const
    {
      return nnz_;
    }

    //! The current build stage of the matrix.
    BuildStage buildStage() const
    {
      return ready;
    }

    //! The currently selected build mode of the matrix.
    BuildMode buildMode() const
    {
      return build_mode;
    }

    //===== query

    //! return true if (i,j) is in pattern
    bool exists (size_type i, size_type j) const
    {
#ifdef DUNE_ISTL_WITH_CHECKING
      if (i<0 || i>=n) DUNE_THROW(BCRSMatrixError,"row index out of range");
      if (j<0 || j>=m) DUNE_THROW(BCRSMatrixError,"column index out of range");
#endif
      if (r[i].size() && r[i].find(j)!=r[i].end())
        return true;
      else
        return false;
    }


  protected:
    // state information
    BuildMode build_mode;     // row wise or whole matrix
    BuildStage ready;               // indicate the stage the matrix building is in

    // The allocator used for memory management
    typename A::template rebind<B>::other allocator_;

    typename A::template rebind<row_type>::other rowAllocator_;

    typename A::template rebind<size_type>::other sizeAllocator_;

    // size of the matrix
    size_type n;       // number of rows
    size_type m;       // number of columns
    size_type nnz_;     // number of nonzeroes contained in the matrix
    size_type allocationSize; //allocated size of a and j arrays, except in implicit mode: nnz_==allocationsSize
    // zero means that memory is allocated separately for each row.

    // the rows are dynamically allocated
    row_type* r;     // [n] the individual rows having pointers into a,j arrays

    // dynamically allocated memory
    B*   a;      // [allocationSize] non-zero entries of the matrix in row-wise ordering
    // If a single array of column indices is used, it can be shared
    // between different matrices with the same sparsity pattern
    std::shared_ptr<size_type> j_;  // [allocationSize] column indices of entries

    // additional data is needed in implicit buildmode
    size_type avg;
    double overflowsize;

    typedef std::map<std::pair<size_type,size_type>, B> OverflowType;
    OverflowType overflow;

    void setWindowPointers(ConstRowIterator row)
    {
      row_type current_row(a,j_.get(),0); // Pointers to current row data
      for (size_type i=0; i<n; i++, ++row) {
        // set row i
        size_type s = row->getsize();

        if (s>0) {
          // setup pointers and size
          r[i].set(s,current_row.getptr(), current_row.getindexptr());
          // update pointer for next row
          current_row.setptr(current_row.getptr()+s);
          current_row.setindexptr(current_row.getindexptr()+s);
        } else{
          // empty row
          r[i].set(0,0,0);
        }
      }
    }

    //! Copy row sizes from iterator range starting at row and set column index pointers for all rows.
    /**
     * This method does not modify the data pointers, as those are set only
     * after building the pattern (to allow for a delayed allocation).
     */
    void setColumnPointers(ConstRowIterator row)
    {
      size_type* jptr = j_.get();
      for (size_type i=0; i<n; ++i, ++row) {
        // set row i
        size_type s = row->getsize();

        if (s>0) {
          // setup pointers and size
          r[i].setsize(s);
          r[i].setindexptr(jptr);
        } else{
          // empty row
          r[i].set(0,0,0);
        }

        // advance position in global array
        jptr += s;
      }
    }

    //! Set data pointers for all rows.
    /**
     * This method assumes that column pointers and row sizes have been correctly set up
     * by a prior call to setColumnPointers().
     */
    void setDataPointers()
    {
      B* aptr = a;
      for (size_type i=0; i<n; ++i) {
        // set row i
        if (r[i].getsize() > 0) {
          // setup pointers and size
          r[i].setptr(aptr);
        } else{
          // empty row
          r[i].set(0,0,0);
        }

        // advance position in global array
        aptr += r[i].getsize();
      }
    }

    //! \brief Copy the window structure from another matrix
    void copyWindowStructure(const BCRSMatrix& Mat)
    {
      setWindowPointers(Mat.begin());

      // copy data
      for (size_type i=0; i<n; i++) r[i] = Mat.r[i];

      // finish off
      build_mode = row_wise; // dummy
      ready = built;
    }

    /**
     * @brief deallocate memory of the matrix.
     * @param deallocateRows Whether we have to deallocate the row pointers, too.
     * If false they will not be touched. (Defaults to true).
     */
    void deallocate(bool deallocateRows=true)
    {

      if (notAllocated)
        return;

      if (allocationSize>0)
      {
        // a,j_ have been allocated as one long vector
        j_.reset();
        if (a)
          {
            for(B *aiter=a+(allocationSize-1), *aend=a-1; aiter!=aend; --aiter)
              allocator_.destroy(aiter);
            allocator_.deallocate(a,allocationSize);
            a = nullptr;
          }
      }
      else if (r)
      {
        // check if memory for rows have been allocated individually
        for (size_type i=0; i<n; i++)
          if (r[i].getsize()>0)
          {
            for (B *col=r[i].getptr()+(r[i].getsize()-1),
                 *colend = r[i].getptr()-1; col!=colend; --col) {
              allocator_.destroy(col);
            }
            sizeAllocator_.deallocate(r[i].getindexptr(),1);
            allocator_.deallocate(r[i].getptr(),1);
            // clear out row data in case we don't want to deallocate the rows
            // otherwise we might run into a double free problem here later
            r[i].set(0,nullptr,nullptr);
          }
      }

      // deallocate the rows
      if (n>0 && deallocateRows && r) {
        for(row_type *riter=r+(n-1), *rend=r-1; riter!=rend; --riter)
          rowAllocator_.destroy(riter);
        rowAllocator_.deallocate(r,n);
        r = nullptr;
      }

      // Mark matrix as not built at all.
      ready=notAllocated;

    }

    /** \brief Class used by shared_ptr to deallocate memory using the proper allocator */
    class Deallocator
    {
      typename A::template rebind<size_type>::other& sizeAllocator_;

    public:
      Deallocator(typename A::template rebind<size_type>::other& sizeAllocator)
        : sizeAllocator_(sizeAllocator)
      {}

      void operator()(size_type* p) { sizeAllocator_.deallocate(p,1); }
    };


    /**
     *  @brief Allocate memory for the matrix structure
     *
     * Sets the number of rows and columns of the matrix and allocates
     * the memory needed for the storage of the matrix entries.
     *
     * @warning After calling this methods on an already allocated (and probably
     * setup matrix) results in all the structure and data being lost. Please
     * call deallocate() before calling allocate in this case.
     *
     * @param row The number of rows the matrix should contain.
     * @param columns the number of columns the matrix should contain.
     * @param allocationSize_ The number of nonzero entries the matrix should hold (if omitted
     * defaults to 0).
     * @param allocateRow Whether we have to allocate the row pointers, too. (Defaults to
     * true)
     */
    void allocate(size_type rows, size_type columns, size_type allocationSize_, bool allocateRows, bool allocate_data)
    {
      // Store size
      n = rows;
      m = columns;
      nnz_ = allocationSize_;
      allocationSize = allocationSize_;

      // allocate rows
      if(allocateRows) {
        if (n>0) {
          if (r)
            DUNE_THROW(InvalidStateException,"Rows have already been allocated, cannot allocate a second time");
          r = rowAllocator_.allocate(rows);
        }else{
          r = 0;
        }
      }

      // allocate a and j_ array
      if (allocate_data)
        allocateData();
      if (allocationSize>0) {
        // allocate column indices only if not yet present (enable sharing)
        if (!j_.get())
          j_.reset(sizeAllocator_.allocate(allocationSize),Deallocator(sizeAllocator_));
      }else{
        j_.reset();
        for(row_type* ri=r; ri!=r+rows; ++ri)
          rowAllocator_.construct(ri, row_type());
      }

      // Mark the matrix as not built.
      ready = building;
    }

    void allocateData()
    {
      if (a)
        DUNE_THROW(InvalidStateException,"Cannot allocate data array (already allocated)");
      if (allocationSize>0) {
        a = allocator_.allocate(allocationSize);
        // use placement new to call constructor that allocates
        // additional memory.
        new (a) B[allocationSize];
      } else {
        a = nullptr;
      }
    }

    /** @brief organizes allocation implicit mode
     * calculates correct array size to be allocated and sets the
     * the window pointers to their correct positions for insertion.
     * internally uses allocate() for the real allocation.
     */
    void implicit_allocate(size_type _n, size_type _m)
    {
      if (build_mode != implicit)
        DUNE_THROW(InvalidStateException,"implicit_allocate() may only be called in implicit build mode");
      if (ready != notAllocated)
        DUNE_THROW(InvalidStateException,"memory has already been allocated");

      // check to make sure the user has actually set the parameters
      if (overflowsize < 0)
        DUNE_THROW(InvalidStateException,"You have to set the implicit build mode parameters before starting to build the matrix");
      //calculate size of overflow region, add buffer for row sort!
      size_type osize = (size_type) (_n*avg)*overflowsize + 4*avg;
      allocationSize = _n*avg + osize;

      allocate(_n, _m, allocationSize,true,true);

      //set row pointers correctly
      size_type* jptr = j_.get() + osize;
      B* aptr = a + osize;
      for (size_type i=0; i<n; i++)
      {
        r[i].set(0,aptr,jptr);
        jptr = jptr + avg;
        aptr = aptr + avg;
      }

      ready = building;
    }
  };


  /** @} end documentation */

} // end namespace

#endif