This file is indexed.

/usr/include/dune/istl/basearray.hh is in libdune-istl-dev 2.4.1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
// -*- tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 2 -*-
// vi: set et ts=4 sw=2 sts=2:
#ifndef DUNE_ISTL_BASEARRAY_HH
#define DUNE_ISTL_BASEARRAY_HH

#include "assert.h"
#include <cmath>
#include <cstddef>
#include <memory>
#include <algorithm>

#include "istlexception.hh"
#include <dune/common/iteratorfacades.hh>

/** \file
   \brief Implements several basic array containers.
 */

namespace Dune {

  /**  \brief A simple array container for objects of type B

     Implement.

       -  iterator access
       -  const_iterator access
       -  random access

           This container has *NO* memory management at all,
           copy constuctor, assignment and destructor are all default.

           The constructor is made protected to emphasize that objects
       are only usable in derived classes.

           Error checking: no error checking is provided normally.
           Setting the compile time switch DUNE_ISTL_WITH_CHECKING
           enables error checking.
   */
  template<class B, class A=std::allocator<B> >
  class base_array_unmanaged
  {
  public:

    //===== type definitions and constants

    //! export the type representing the components
    typedef B member_type;

    //! export the allocator type
    typedef A allocator_type;

    //! the type for the index access
    typedef typename A::size_type size_type;


    //===== access to components

    //! random access to blocks
    B& operator[] (size_type i)
    {
#ifdef DUNE_ISTL_WITH_CHECKING
      if (i>=n) DUNE_THROW(ISTLError,"index out of range");
#endif
      return p[i];
    }

    //! same for read only access
    const B& operator[] (size_type i) const
    {
#ifdef DUNE_ISTL_WITH_CHECKING
      if (i>=n) DUNE_THROW(ISTLError,"index out of range");
#endif
      return p[i];
    }

    /** \brief Iterator implementation class  */
    template<class T>
    class RealIterator
      :  public RandomAccessIteratorFacade<RealIterator<T>, T>
    {
    public:
      //! \brief The unqualified value type
      typedef typename remove_const<T>::type ValueType;

      friend class RandomAccessIteratorFacade<RealIterator<const ValueType>, const ValueType>;
      friend class RandomAccessIteratorFacade<RealIterator<ValueType>, ValueType>;
      friend class RealIterator<const ValueType>;
      friend class RealIterator<ValueType>;

      //! constructor
      RealIterator ()
        : p(0), i(0)
      {}

      RealIterator (const B* _p, B* _i) : p(_p), i(_i)
      {   }

      RealIterator(const RealIterator<ValueType>& it)
        : p(it.p), i(it.i)
      {}

      //! return index
      size_type index () const
      {
        return i-p;
      }

      //! equality
      bool equals (const RealIterator<ValueType>& other) const
      {
        assert(other.p==p);
        return i==other.i;
      }

      //! equality
      bool equals (const RealIterator<const ValueType>& other) const
      {
        assert(other.p==p);
        return i==other.i;
      }

      std::ptrdiff_t distanceTo(const RealIterator& o) const
      {
        return o.i-i;
      }

    private:
      //! prefix increment
      void increment()
      {
        ++i;
      }

      //! prefix decrement
      void decrement()
      {
        --i;
      }

      //! dereferencing
      B& dereference () const
      {
        return *i;
      }

      void advance(std::ptrdiff_t d)
      {
        i+=d;
      }

      const B* p;
      B* i;
    };

    //! iterator type for sequential access
    typedef RealIterator<B> iterator;


    //! begin iterator
    iterator begin ()
    {
      return iterator(p,p);
    }

    //! end iterator
    iterator end ()
    {
      return iterator(p,p+n);
    }

    //! @returns an iterator that is positioned before
    //! the end iterator of the vector, i.e. at the last entry.
    iterator beforeEnd ()
    {
      return iterator(p,p+n-1);
    }

    //! @returns an iterator that is positioned before
    //! the first entry of the vector.
    iterator beforeBegin ()
    {
      return iterator(p,p-1);
    }

    //! random access returning iterator (end if not contained)
    iterator find (size_type i)
    {
      if (i<n)
        return iterator(p,p+i);
      else
        return iterator(p,p+n);
    }

    //! iterator class for sequential access
    typedef RealIterator<const B> const_iterator;

    //! begin const_iterator
    const_iterator begin () const
    {
      return const_iterator(p,p+0);
    }

    //! end const_iterator
    const_iterator end () const
    {
      return const_iterator(p,p+n);
    }

    //! @returns an iterator that is positioned before
    //! the end iterator of the vector. i.e. at the last element.
    const_iterator beforeEnd () const
    {
      return const_iterator(p,p+n-1);
    }

    //! @returns an iterator that is positioned before
    //! the first entry of the vector.
    const_iterator beforeBegin () const
    {
      return const_iterator(p,p-1);
    }

    //! random access returning iterator (end if not contained)
    const_iterator find (size_type i) const
    {
      if (i<n)
        return const_iterator(p,p+i);
      else
        return const_iterator(p,p+n);
    }


    //===== sizes

    //! number of blocks in the array (are of size 1 here)
    size_type size () const
    {
      return n;
    }

  protected:
    //! makes empty array
    base_array_unmanaged ()
      : n(0), p(0)
    {}
    //! make an initialized array
    base_array_unmanaged (size_type n_, B* p_)
      : n(n_), p(p_)
    {}
    size_type n;     // number of elements in array
    B *p;      // pointer to dynamically allocated built-in array
  };



  /**  \brief Extend base_array_unmanaged by functions to manipulate

           This container has *NO* memory management at all,
           copy constuctor, assignment and destructor are all default.
           A container can be constructed as empty or from a given pointer
       and size. This class is used to implement a view into a larger
       array.

           You can copy such an object to a base_array to make a real copy.

           Error checking: no error checking is provided normally.
           Setting the compile time switch DUNE_ISTL_WITH_CHECKING
           enables error checking.
   */
  template<class B, class A=std::allocator<B> >
  class base_array_window : public base_array_unmanaged<B,A>
  {
  public:

    //===== type definitions and constants

    //! export the type representing the components
    typedef B member_type;

    //! export the allocator type
    typedef A allocator_type;

    //! make iterators available as types
    typedef typename base_array_unmanaged<B,A>::iterator iterator;

    //! make iterators available as types
    typedef typename base_array_unmanaged<B,A>::const_iterator const_iterator;

    //! The type used for the index access
    typedef typename base_array_unmanaged<B,A>::size_type size_type;

    //! The type used for the difference between two iterator positions
    typedef typename A::difference_type difference_type;

    //===== constructors and such

    //! makes empty array
    base_array_window ()
      : base_array_unmanaged<B,A>()
    {   }

    //! make array from given pointer and size
    base_array_window (B* _p, size_type _n)
      : base_array_unmanaged<B,A>(_n ,_p)
    {}

    //===== window manipulation methods

    //! set pointer and length
    void set (size_type _n, B* _p)
    {
      this->n = _n;
      this->p = _p;
    }

    //! advance pointer by newsize elements and then set size to new size
    void advance (difference_type newsize)
    {
      this->p += this->n;
      this->n = newsize;
    }

    //! increment pointer by offset and set size
    void move (difference_type offset, size_type newsize)
    {
      this->p += offset;
      this->n = newsize;
    }

    //! increment pointer by offset, leave size
    void move (difference_type offset)
    {
      this->p += offset;
    }

    //! return the pointer
    B* getptr ()
    {
      return this->p;
    }
  };



  /**  \brief  This container extends base_array_unmanaged by memory management
        with the usual copy semantics providing the full range of
        copy constructor, destructor and assignment operators.

            You can make

        - empty array
        - array with n components dynamically allocated
        - resize an array with complete loss of data
        - assign/construct from a base_array_window to make a copy of the data

            Error checking: no error checking is provided normally.
            Setting the compile time switch DUNE_ISTL_WITH_CHECKING
            enables error checking.
   */
  template<class B, class A=std::allocator<B> >
  class base_array : public base_array_unmanaged<B,A>
  {
  public:

    //===== type definitions and constants

    //! export the type representing the components
    typedef B member_type;

    //! export the allocator type
    typedef A allocator_type;

    //! make iterators available as types
    typedef typename base_array_unmanaged<B,A>::iterator iterator;

    //! make iterators available as types
    typedef typename base_array_unmanaged<B,A>::const_iterator const_iterator;

    //! The type used for the index access
    typedef typename base_array_unmanaged<B,A>::size_type size_type;

    //! The type used for the difference between two iterator positions
    typedef typename A::difference_type difference_type;

    //===== constructors and such

    //! makes empty array
    base_array ()
      : base_array_unmanaged<B,A>()
    {}

    //! make array with _n components
    base_array (size_type _n)
      : base_array_unmanaged<B,A>(_n, 0)
    {
      if (this->n>0) {
        this->p = allocator_.allocate(this->n);
        new (this->p)B[this->n];
      } else
      {
        this->n = 0;
        this->p = 0;
      }
    }

    //! copy constructor
    base_array (const base_array& a)
    {
      // allocate memory with same size as a
      this->n = a.n;

      if (this->n>0) {
        this->p = allocator_.allocate(this->n);
        new (this->p)B[this->n];
      } else
      {
        this->n = 0;
        this->p = 0;
      }

      // and copy elements
      for (size_type i=0; i<this->n; i++) this->p[i]=a.p[i];
    }

    //! construct from base class object
    base_array (const base_array_unmanaged<B,A>& _a)
    {
      const base_array& a = static_cast<const base_array&>(_a);

      // allocate memory with same size as a
      this->n = a.n;
      if (this->n>0) {
        this->p = allocator_.allocate(this->n);
        new (this->p)B[this->n];
      } else
      {
        this->n = 0;
        this->p = 0;
      }

      // and copy elements
      for (size_type i=0; i<this->n; i++) this->p[i]=a.p[i];
    }


    //! free dynamic memory
    ~base_array ()
    {
      if (this->n>0) {
        int i=this->n;
        while (i)
          this->p[--i].~B();
        allocator_.deallocate(this->p,this->n);
      }
    }

    //! reallocate array to given size, any data is lost
    void resize (size_type _n)
    {
      if (this->n==_n) return;

      if (this->n>0) {
        int i=this->n;
        while (i)
          this->p[--i].~B();
        allocator_.deallocate(this->p,this->n);
      }
      this->n = _n;
      if (this->n>0) {
        this->p = allocator_.allocate(this->n);
        new (this->p)B[this->n];
      } else
      {
        this->n = 0;
        this->p = 0;
      }
    }

    //! assignment
    base_array& operator= (const base_array& a)
    {
      if (&a!=this)     // check if this and a are different objects
      {
        // adjust size of array
        if (this->n!=a.n)           // check if size is different
        {
          if (this->n>0) {
            int i=this->n;
            while (i)
              this->p[--i].~B();
            allocator_.deallocate(this->p,this->n);                     // delete old memory
          }
          this->n = a.n;
          if (this->n>0) {
            this->p = allocator_.allocate(this->n);
            new (this->p)B[this->n];
          } else
          {
            this->n = 0;
            this->p = 0;
          }
        }
        // copy data
        for (size_type i=0; i<this->n; i++) this->p[i]=a.p[i];
      }
      return *this;
    }

    //! assign from base class object
    base_array& operator= (const base_array_unmanaged<B,A>& a)
    {
      return this->operator=(static_cast<const base_array&>(a));
    }

  protected:

    A allocator_;
  };




  /** \brief A simple array container with non-consecutive index set.

       Elements in the array are of type B. This class provides

       -  iterator access
       -  const_iterator access
       -  random access in log(n) steps using binary search
           -  find returning iterator

           This container has *NO* memory management at all,
           copy constuctor, assignment and destructor are all default.

           The constructor is made protected to emphasize that objects
       are only usably in derived classes.

           Error checking: no error checking is provided normally.
           Setting the compile time switch DUNE_ISTL_WITH_CHECKING
           enables error checking.
   */
  template<class B, class A=std::allocator<B> >
  class compressed_base_array_unmanaged
  {
  public:

    //===== type definitions and constants

    //! export the type representing the components
    typedef B member_type;

    //! export the allocator type
    typedef A allocator_type;

    //! The type used for the index access
    typedef typename A::size_type size_type;

    //===== access to components

    //! random access to blocks, assumes ascending ordering
    B& operator[] (size_type i)
    {
      const size_type* lb = std::lower_bound(j, j+n, i);
      if (lb == j+n || *lb != i)
        DUNE_THROW(ISTLError,"index "<<i<<" not in compressed array");
      return p[lb-j];
    }

    //! same for read only access, assumes ascending ordering
    const B& operator[] (size_type i) const
    {
      const size_type* lb = std::lower_bound(j, j+n, i);
      if (lb == j+n || *lb != i)
        DUNE_THROW(ISTLError,"index "<<i<<" not in compressed array");
      return p[lb-j];
    }

    //! iterator class for sequential access
    template<class T>
    class RealIterator
      : public BidirectionalIteratorFacade<RealIterator<T>, T>
    {
    public:
      //! \brief The unqualified value type
      typedef typename remove_const<T>::type ValueType;

      friend class BidirectionalIteratorFacade<RealIterator<const ValueType>, const ValueType>;
      friend class BidirectionalIteratorFacade<RealIterator<ValueType>, ValueType>;
      friend class RealIterator<const ValueType>;
      friend class RealIterator<ValueType>;

      //! constructor
      RealIterator ()
        : p(0), j(0), i(0)
      {}

      //! constructor
      RealIterator (B* _p, size_type* _j, size_type _i)
        : p(_p), j(_j), i(_i)
      {       }

      /**
       * @brief Copy constructor from mutable iterator
       */
      RealIterator(const RealIterator<ValueType>& it)
        : p(it.p), j(it.j), i(it.i)
      {}


      //! equality
      bool equals (const RealIterator<ValueType>& it) const
      {
        assert(p==it.p);
        return (i)==(it.i);
      }

      //! equality
      bool equals (const RealIterator<const ValueType>& it) const
      {
        assert(p==it.p);
        return (i)==(it.i);
      }


      //! return index corresponding to pointer
      size_type index () const
      {
        return j[i];
      }

      //! Set index corresponding to pointer
      void setindex (size_type k)
      {
        return j[i] = k;
      }

      /**
       * @brief offset from the first entry.
       *
       * An iterator positioned at the beginning
       * has to be increment this amount of times to
       * the same position.
       */
      size_type offset () const
      {
        return i;
      }

    private:
      //! prefix increment
      void increment()
      {
        ++i;
      }

      //! prefix decrement
      void decrement()
      {
        --i;
      }

      //! dereferencing
      B& dereference () const
      {
        return p[i];
      }

      B* p;
      size_type* j;
      size_type i;
    };

    /** @brief The iterator type. */
    typedef RealIterator<B> iterator;

    //! begin iterator
    iterator begin ()
    {
      return iterator(p,j,0);
    }

    //! end iterator
    iterator end ()
    {
      return iterator(p,j,n);
    }

    //! @returns an iterator that is positioned before
    //! the end iterator of the vector, i.e. at the last entry.
    iterator beforeEnd ()
    {
      return iterator(p,j,n-1);
    }

    //! @returns an iterator that is positioned before
    //! the first entry of the vector.
    iterator beforeBegin ()
    {
      return iterator(p,j,-1);
    }

    //! random access returning iterator (end if not contained)
    iterator find (size_type i)
    {
      const size_type* lb = std::lower_bound(j, j+n, i);
      return (lb != j+n && *lb == i)
        ? iterator(p,j,lb-j)
        : end();
    }

    //! const_iterator class for sequential access
    typedef RealIterator<const B> const_iterator;

    //! begin const_iterator
    const_iterator begin () const
    {
      return const_iterator(p,j,0);
    }

    //! end const_iterator
    const_iterator end () const
    {
      return const_iterator(p,j,n);
    }

    //! @returns an iterator that is positioned before
    //! the end iterator of the vector. i.e. at the last element.
    const_iterator beforeEnd () const
    {
      return const_iterator(p,j,n-1);
    }

    //! @returns an iterator that is positioned before
    //! the first entry of the vector.
    const_iterator beforeBegin () const
    {
      return const_iterator(p,j,-1);
    }

    //! random access returning iterator (end if not contained)
    const_iterator find (size_type i) const
    {
      const size_type* lb = std::lower_bound(j, j+n, i);
      return (lb != j+n && *lb == i)
        ? const_iterator(p,j,lb-j)
        : end();
    }

    //===== sizes

    //! number of blocks in the array (are of size 1 here)
    size_type size () const
    {
      return n;
    }

  protected:
    //! makes empty array
    compressed_base_array_unmanaged ()
      : n(0), p(0), j(0)
    {}

    size_type n;      // number of elements in array
    B *p;       // pointer to dynamically allocated built-in array
    size_type* j;     // the index set
  };

} // end namespace

#endif