This file is indexed.

/usr/include/oct/oct_fun.h is in libapron-dev 0.9.10-7.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
/*
 * oct_fun.h
 *
 * Direct access to hi-level octagonal functions bypassing the manager.
 * The only file you need to include to use octagons.
 *
 * APRON Library / Octagonal Domain
 *
 * Copyright (C) Antoine Mine' 2006
 *
 */

/* This file is part of the APRON Library, released under LGPL license.
   Please read the COPYING file packaged in the distribution.
*/

#ifndef __OCT_FUN_H
#define __OCT_FUN_H


/* dependencies */

#include <assert.h>
#include <stdlib.h>
#include <stdio.h>

#define NUMFLT_PRINT_PREC ap_scalar_print_prec

#include "num.h"
#include "bound.h"

#include "ap_coeff.h"
#include "ap_dimension.h"
#include "ap_expr0.h"
#include "ap_manager.h"
#include "oct.h"

#ifdef __cplusplus
extern "C" {
#endif



/* ============================================================ */
/* I.1 Memory */
/* ============================================================ */

struct _oct_t;
typedef struct _oct_t oct_t;
  /* Abstract data type of octagons (defined in oct_private.h). */

oct_t* oct_copy(ap_manager_t* man, oct_t* a);
  /* Return a copy of an abstract value, on
     which destructive update does not affect the initial value. */

void oct_free(ap_manager_t* man, oct_t* a);
  /* Free all the memory used by the abstract value */

size_t oct_size(ap_manager_t* man, oct_t* a);
  /* Return the abstract size of an abstract value (see ap_manager_t) */


struct _oct_internal_t;
typedef struct _oct_internal_t oct_internal_t;
  /* Abstract data type of library-specific manager options. */


oct_t*          oct_of_abstract0(ap_abstract0_t* a);
ap_abstract0_t* abstract0_of_oct(ap_manager_t* man, oct_t* oct);
  /* Wrapping / unwrapping of oct_t in ap_abstract0_t (no copy) */


/* ============================================================ */
/* I.2 Control of internal representation */
/* ============================================================ */

/* NOT IMPLEMENTED */

void oct_minimize(ap_manager_t* man, oct_t* a);

void oct_canonicalize(ap_manager_t* man, oct_t* a);

int oct_hash(ap_manager_t* man, oct_t* a);

void oct_approximate(ap_manager_t* man, oct_t* a, int algorithm);

bool oct_is_minimal(ap_manager_t* man, oct_t* a);

bool oct_is_canonical(ap_manager_t* man, oct_t* a);



/* ============================================================ */
/* I.3 Printing */
/* ============================================================ */

void oct_fprint(FILE* stream,
		ap_manager_t* man,
		oct_t* a,
		char** name_of_dim);
  /* Print the abstract value in a pretty way, using function
     name_of_dim to name dimensions */

void oct_fprintdiff(FILE* stream,
		    ap_manager_t* man,
		    oct_t* a1, oct_t* a2,
		    char** name_of_dim);
  /* Print the difference between a1 (old value) and a2 (new value),
     using function name_of_dim to name dimensions.
     The meaning of difference is library dependent. */

void oct_fdump(FILE* stream, ap_manager_t* man, oct_t* a);
  /* Dump the internal representation of an abstract value,
     for debugging purposes */


/* ============================================================ */
/* I.4 Serialization */
/* ============================================================ */

ap_membuf_t oct_serialize_raw(ap_manager_t* man, oct_t* a);
/* Allocate a memory buffer (with malloc), output the abstract value in raw
   binary format to it and return a pointer on the memory buffer and the size
   of bytes written.  It is the user responsability to free the memory
   afterwards (with free). */

oct_t* oct_deserialize_raw(ap_manager_t* man, void* ptr, size_t* size);
/* Return the abstract value read in raw binary format from the input stream
   and store in size the number of bytes read */


/* ********************************************************************** */
/* II. Constructor, accessors, tests and property extraction */
/* ********************************************************************** */

/* ============================================================ */
/* II.1 Basic constructors */
/* ============================================================ */

/* We assume that dimensions [0..intdim-1] correspond to integer variables, and
   dimensions [intdim..intdim+realdim-1] to real variables */

oct_t* oct_bottom(ap_manager_t* man, size_t intdim, size_t realdim);
  /* Create a bottom (empty) value */

oct_t* oct_top(ap_manager_t* man, size_t intdim, size_t realdim);
  /* Create a top (universe) value */


oct_t* oct_of_box(ap_manager_t* man,
		  size_t intdim, size_t realdim,
		  ap_interval_t** tinterval);
  /* Abstract an hypercube defined by the array of intervals
     of size intdim+realdim */

oct_t* oct_of_lincons_array(ap_manager_t* man,
			      size_t intdim, size_t realdim,
			      ap_lincons0_array_t* array);
  /* Abstract a convex polyhedra defined by an array of linear constraints */

oct_t* oct_of_tcons_array(ap_manager_t* man,
			  size_t intdim, size_t realdim,
			  ap_tcons0_array_t* array);
  /* Abstract a conjunction of tree expressions constraints */

oct_t* oct_of_generator_array(ap_manager_t* man,
			      size_t intdim, size_t realdim,
			      ap_generator0_array_t* array);
  /* Abstract a convex polyhedra defined an array of generators */


/* ============================================================ */
/* II.2 Accessors */
/* ============================================================ */

ap_dimension_t oct_dimension(ap_manager_t* man, oct_t* a);
/* Return the total number of dimensions of the abstract values */


/* ============================================================ */
/* II.3 Tests */
/* ============================================================ */

bool oct_is_bottom(ap_manager_t* man, oct_t* a);
bool oct_is_top(ap_manager_t* man, oct_t* a);

bool oct_is_leq(ap_manager_t* man, oct_t* a1, oct_t* a2);
  /* inclusion check */

bool oct_is_eq(ap_manager_t* man, oct_t* a1, oct_t* a2);
  /* equality check */

/* NOT IMPLEMENTED */
bool oct_sat_lincons(ap_manager_t* man, oct_t* a, ap_lincons0_t* cons);
  /* does the abstract value satisfy the linear constraint ? */

bool oct_sat_tcons(ap_manager_t* man, oct_t* a, ap_tcons0_t* cons);
  /* does the abstract value satisfy the tree expression constraint ? */

bool oct_sat_interval(ap_manager_t* man, oct_t* a,
		      ap_dim_t dim, ap_interval_t* interval);
  /* is the dimension included in the interval in the abstract value ? */

bool oct_is_dimension_unconstrained(ap_manager_t* man, oct_t* a,
				    ap_dim_t dim);
  /* is the dimension unconstrained ? */

/* ============================================================ */
/* II.4 Extraction of properties */
/* ============================================================ */

ap_interval_t* oct_bound_linexpr(ap_manager_t* man,
				 oct_t* a, ap_linexpr0_t* expr);
  /* Returns the interval taken by a linear expression
     over the abstract value */

ap_interval_t* oct_bound_texpr(ap_manager_t* man,
			       oct_t* a, ap_texpr0_t* expr);
  /* Returns the interval taken by a tree expression
     over the abstract value */

ap_interval_t* oct_bound_dimension(ap_manager_t* man,
				   oct_t* a, ap_dim_t dim);
  /* Returns the interval taken by the dimension
     over the abstract value */

ap_lincons0_array_t oct_to_lincons_array(ap_manager_t* man, oct_t* a);
  /* Converts an abstract value to a polyhedra
     (conjunction of linear constraints). */

ap_tcons0_array_t oct_to_tcons_array(ap_manager_t* man, oct_t* a);
  /* Converts an abstract value to a conjunction
     of tree expressions constraints */

ap_interval_t** oct_to_box(ap_manager_t* man, oct_t* a);
  /* Converts an abstract value to an interval/hypercube.
     The size of the resulting array is oct_dimension(man,a).  This
     function can be reimplemented by using oct_bound_linexpr */

ap_generator0_array_t oct_to_generator_array(ap_manager_t* man, oct_t* a);
  /* Converts an abstract value to a system of generators. */


/* ********************************************************************** */
/* III. Operations */
/* ********************************************************************** */

/* ============================================================ */
/* III.1 Meet and Join */
/* ============================================================ */

oct_t* oct_meet(ap_manager_t* man, bool destructive, oct_t* a1, oct_t* a2);
oct_t* oct_join(ap_manager_t* man, bool destructive, oct_t* a1, oct_t* a2);
  /* Meet and Join of 2 abstract values */

oct_t* oct_meet_array(ap_manager_t* man, oct_t** tab, size_t size);
oct_t* oct_join_array(ap_manager_t* man, oct_t** tab, size_t size);
  /* Meet and Join of an array of abstract values.
     Raises an [[exc_invalid_argument]] exception if [[size==0]]
     (no way to define the dimensionality of the result in such a case */

oct_t* oct_meet_lincons_array(ap_manager_t* man,
			      bool destructive, oct_t* a,
			      ap_lincons0_array_t* array);
  /* Meet of an abstract value with a set of constraints
     (generalize oct_of_lincons_array) */

oct_t* oct_meet_tcons_array(ap_manager_t* man,
			    bool destructive, oct_t* a,
			    ap_tcons0_array_t* array);
  /* Meet of an abstract value with a set of tree expressions constraints.
     (generalize oct_of_tcons_array) */

oct_t* oct_add_ray_array(ap_manager_t* man,
			 bool destructive, oct_t* a,
			 ap_generator0_array_t* array);
  /* Generalized time elapse operator.
     Note: this is not like adding arbitrary generators because:
     - oct_add_ray_array is strict
     - array can only contain rays and lines, not vertices
   */

/* ============================================================ */
/* III.2 Assignement and Substitutions */
/* ============================================================ */

oct_t* oct_assign_linexpr_array(ap_manager_t* man,
				bool destructive, oct_t* a,
				ap_dim_t* tdim,
				ap_linexpr0_t** texpr,
				size_t size,
				oct_t* dest);
oct_t* oct_substitute_linexpr_array(ap_manager_t* man,
				    bool destructive, oct_t* a,
				    ap_dim_t* tdim,
				    ap_linexpr0_t** texpr,
				    size_t size,
				    oct_t* dest);
oct_t* oct_assign_texpr_array(ap_manager_t* man,
			      bool destructive, oct_t* a,
			      ap_dim_t* tdim,
			      ap_texpr0_t** texpr,
			      size_t size,
			      oct_t* dest);
oct_t* oct_substitute_texpr_array(ap_manager_t* man,
				  bool destructive, oct_t* a,
				  ap_dim_t* tdim,
				  ap_texpr0_t** texpr,
				  size_t size,
				  oct_t* dest);
  

  /* Parallel Assignement and Substitution of several dimensions by
     expressions in abstract value org.

     dest is an optional argument. If not NULL, semantically speaking,
     the result of the transformation is intersected with dest. This is
     useful for precise backward transformations in lattices like intervals or
     octagons. */

/* ============================================================ */
/* III.3 Projections */
/* ============================================================ */

oct_t* oct_forget_array(ap_manager_t* man,
			bool destructive, oct_t* a,
			ap_dim_t* tdim, size_t size,
			bool project);

/* ============================================================ */
/* III.4 Change and permutation of dimensions */
/* ============================================================ */

oct_t* oct_add_dimensions(ap_manager_t* man,
			  bool destructive, oct_t* a,
			  ap_dimchange_t* dimchange,
			  bool project);

oct_t* oct_remove_dimensions(ap_manager_t* man,
			     bool destructive, oct_t* a,
			     ap_dimchange_t* dimchange);

oct_t* oct_permute_dimensions(ap_manager_t* man,
			      bool destructive,
			      oct_t* a,
			      ap_dimperm_t* permutation);

/* ============================================================ */
/* III.5 Expansion and folding of dimensions */
/* ============================================================ */

oct_t* oct_expand(ap_manager_t* man,
		  bool destructive, oct_t* a,
		  ap_dim_t dim,
		  size_t n);
  /* Expand the dimension dim into itself + n additional dimensions.
     It results in (n+1) unrelated dimensions having same
     relations with other dimensions. The (n+1) dimensions are put as follows:

     - original dimension dim

     - if the dimension is integer, the n additional dimensions are put at the
       end of integer dimensions; if it is real, at the end of the real
       dimensions.
  */

oct_t* oct_fold(ap_manager_t* man,
		bool destructive, oct_t* a,
		ap_dim_t* tdim,
		size_t size);
  /* Fold the dimensions in the array tdim of size n>=1 and put the result
     in the first dimension in the array. The other dimensions of the array
     are then removed. */

/* ============================================================ */
/* III.6 Widening, Narrowing */
/* ============================================================ */

oct_t* oct_widening(ap_manager_t* man, oct_t* a1, oct_t* a2);
  /* Standard widening: set unstable constraints to +oo */

oct_t* oct_widening_thresholds(ap_manager_t* man,
			       oct_t* a1, oct_t* a2,
			       ap_scalar_t** array,
			       size_t nb);
  /* Widening with threshold.
     array is assumed to contain nb thresholds, sorted in increasing order. */

oct_t* oct_narrowing(ap_manager_t* man, oct_t* a1, oct_t* a2);
  /* Standard narrowing: refine only +oo constraint */

oct_t* oct_add_epsilon(ap_manager_t* man, oct_t* a, ap_scalar_t* epsilon);
  /* Enlarge each bound by epsilon times the maximum finite bound in
     the octagon */

oct_t* oct_add_epsilon_bin(ap_manager_t* man, oct_t* a1, oct_t* a2,
			   ap_scalar_t* epsilon);
  /* Enlarge each bound from a1 by epsilon times the maximum finite bound in
     a2. Only bounds in a1 that are not stable in a2 are enlarged. */


/* ============================================================ */
/* III.7 Topological closure operation */
/* ============================================================ */

oct_t* oct_closure(ap_manager_t* man, bool destructive, oct_t* a);
  /* Returns the topological closure of a possibly opened abstract value */


#ifdef __cplusplus
}
#endif

#endif /* __OCT_FUN_H */