/usr/share/perl5/LaTeXML/Package/amssymb.sty.ltxml is in latexml 0.8.1-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 | # -*- mode: Perl -*-
# /=====================================================================\ #
# | amssymb | #
# | Implementation for LaTeXML | #
# |=====================================================================| #
# | Part of LaTeXML: | #
# | Public domain software, produced as part of work done by the | #
# | United States Government & not subject to copyright in the US. | #
# |---------------------------------------------------------------------| #
# | Bruce Miller <bruce.miller@nist.gov> #_# | #
# | http://dlmf.nist.gov/LaTeXML/ (o o) | #
# \=========================================================ooo==U==ooo=/ #
package LaTeXML::Package::Pool;
use strict;
use warnings;
use LaTeXML::Package;
RequirePackage('amsfonts');
#======================================================================
# Lowercase Greek letters
DefMath('\digamma', "\x{03DD}"); # GREEK SMALL LETTER DIGAMMA
DefMath('\varkappa', "\x{03F0}"); # GREEK KAPPA SYMBOL
#======================================================================
# Hebrew
DefMath('\beth', "\x{2136}"); # BET SYMBOL
DefMath('\daleth', "\x{2138}"); # DALET SYMBOL
DefMath('\gimel', "\x{2137}"); # GIMEL SYMBOL
#======================================================================
# Miscellaneous
# \hbar in LaTeX
DefMath('\hslash', "\x{210F}", role => 'ID', meaning => 'Planck-constant-over-2-pi');
DefMath('\vartriangle', "\x{25B3}");
DefMath('\triangledown', "\x{25BD}");
# \square, \lozenge in amsfonts
DefMath('\circledS', "\x{24C8}");
# \angle in tex
DefMath('\measuredangle', "\x{2221}");
DefMath('\nexists', "\x{2204}", role => 'FUNCTION', meaning => 'not-exists');
# \mho in latex
DefMath('\Finv', "\x{2132}");
DefMath('\Game', "\x{2141}");
DefMath('\Bbbk', "\x{1D55C}");
DefMath('\backprime', "\x{2035}");
DefMath('\varnothing', "\x{2205}", role => 'ID', meaning => 'empty-set');
DefMath('\blacktriangle', "\x{25B2}");
DefMath('\blacktriangledown', "\x{25BC}");
DefMath('\blacksquare', "\x{25A0}");
DefMath('\blacklozenge', "\x{25C6}");
DefMath('\bigstar', "\x{2605}");
DefMath('\sphericalangle', "\x{2222}");
DefMath('\complement', "\x{2201}", meaning => 'complement');
DefMath('\eth', UTF(0xF0));
DefMath('\diagup', "\x{2571}");
DefMath('\diagdown', "\x{2572}");
#======================================================================
# Binary operators
DefMath('\dotplus', "\x{2214}", role => 'ADDOP'); # DOT PLUS
DefMath('\smallsetminus', "\x{2216}", role => 'ADDOP', meaning => 'set-minus');
DefMath('\Cap', "\x{22D2}", role => 'ADDOP', meaning => 'double-intersection');
DefMath('\doublecap', "\x{22D2}", role => 'ADDOP', meaning => 'double-intersection');
DefMath('\Cup', "\x{22D3}", role => 'ADDOP', meaning => 'double-union');
DefMath('\doublecup', "\x{22D3}", role => 'ADDOP', meaning => 'double-union');
DefMath('\barwedge', "\x{22BC}", role => 'ADDOP', meaning => 'not-and');
DefMath('\veebar', "\x{22BB}", role => 'ADDOP', meaning => 'exclusive-or');
DefMath('\doublebarwedge', "\x{2A5E}", role => 'ADDOP');
DefMath('\boxminus', "\x{229F}", role => 'ADDOP'); # SQUARED MINUS
DefMath('\boxtimes', "\x{22A0}", role => 'MULOP'); # SQUARED TIMES
DefMath('\boxdot', "\x{22A1}", role => 'MULOP'); # SQUARED DOT OPERATOR
DefMath('\boxplus', "\x{229E}", role => 'ADDOP'); # SQUARED PLUS
DefMath('\divideontimes', "\x{22C7}", role => 'MULOP'); # DIVISION TIMES
DefMath('\ltimes', "\x{22C9}", role => 'MULOP', meaning => 'left-normal-factor-semidirect-product');
DefMath('\rtimes', "\x{22CA}", role => 'MULOP', meaning => 'right-normal-factor-semidirect-product');
DefMath('\leftthreetimes', "\x{22CB}", role => 'MULOP', meaning => 'left-semidirect-product');
DefMath('\rightthreetimes', "\x{22CC}", role => 'MULOP', meaning => 'right-semidirect-product');
DefMath('\curlywedge', "\x{22CF}", role => 'ADDOP', meaning => 'and');
DefMath('\curlyvee', "\x{22CE}", role => 'ADDOP', meaning => 'or');
DefMath('\circleddash', "\x{229D}", role => 'ADDOP'); # CIRCLED DASH
DefMath('\circledast', "\x{229B}", role => 'MULOP'); # CIRCLED ASTERISK OPERATOR
DefMath('\circledcirc', "\x{229A}", role => 'MULOP'); # CIRCLED RING OPERATOR
DefMath('\centerdot', "\x{2219}", role => 'MULOP'); # CIRCLED DOT OPERATOR
DefMath('\intercal', "\x{22BA}", role => 'ADDOP'); # INTERCALATE
#======================================================================
# Binary relations
DefMath('\leqq', "\x{2266}", role => 'RELOP',
meaning => 'less-than-or-equals');
DefMath('\leqslant', "\x{2A7D}", role => 'RELOP',
meaning => 'less-than-or-equals');
DefMath('\eqslantless', "\x{2A95}", role => 'RELOP',
meaning => 'less-than-or-equals');
DefMath('\lesssim', "\x{2272}", role => 'RELOP',
meaning => 'less-than-or-similar-to');
DefMath('\lessapprox', "\x{2A85}", role => 'RELOP',
meaning => 'less-than-or-approximately-equals');
DefMath('\approxeq', "\x{224A}", role => 'RELOP',
meaning => 'approximately-equals-or-equals');
DefMath('\lessdot', "\x{22D6}", role => 'RELOP'); # LESS-THAN WITH DOT
DefMath('\lll', "\x{22D8}", role => 'RELOP',
meaning => 'very-much-less-than'); # VERY MUCH LESS-THAN
DefMath('\llless', "\x{22D8}", role => 'RELOP',
meaning => 'very-much-less-than'); # VERY MUCH LESS-THAN
DefMath('\lessgtr', "\x{2276}", role => 'RELOP',
meaning => 'less-than-or-greater-than');
DefMath('\lesseqgtr', "\x{22DA}", role => 'RELOP',
meaning => 'less-than-or-equals-or-greater-than');
DefMath('\lesseqqgtr', "\x{2A8B}", role => 'RELOP',
meaning => 'less-than-or-equals-or-greater-than');
DefMath('\doteqdot', "\x{2251}", role => 'RELOP',
meaning => 'geometrically-equals');
DefMath('\Doteq', "\x{2251}", role => 'RELOP',
meaning => 'geometrically-equals');
DefMath('\risingdotseq', "\x{2253}", role => 'RELOP',
meaning => 'image-of-or-approximately-equals');
DefMath('\fallingdotseq', "\x{2252}", role => 'RELOP',
meaning => 'approximately-equals-or-image-of');
DefMath('\backsim', "\x{223D}", role => 'RELOP'); # REVERSED TILDE
DefMath('\backsimeq', "\x{224C}", role => 'RELOP'); # ALL EQUAL TO; Note: this has double rather than single bar!!!
DefMath('\subseteqq', "\x{2AC5}", role => 'RELOP',
meaning => 'subset-of-or-equals');
DefMath('\Subset', "\x{22D0}", role => 'RELOP',
meaning => 'double-subset-of');
# \sqsubset in tex
DefMath('\preccurlyeq', "\x{227C}", role => 'RELOP',
meaning => 'precedes-or-equals');
DefMath('\curlyeqprec', "\x{22DE}", role => 'RELOP',
meaning => 'equals-or-preceeds');
DefMath('\precsim', "\x{227E}", role => 'RELOP',
meaning => 'precedes-or-equivalent-to');
DefMath('\precapprox', "\x{2AB7}", role => 'RELOP',
meaning => 'precedes-or-approximately-equals');
# \vartriangleleft, trianglelefteq in amsfonts
DefMath('\vDash', "\x{22A8}", role => 'RELOP'); # TRUE
DefMath('\Vvdash', "\x{22AA}", role => 'RELOP'); # TRIPLE VERTICAL BAR RIGHT TURNSTILE
DefMath('\smallsmile', "\x{2323}", role => 'RELOP'); # SMILE (small ?)
DefMath('\smallfrown', "\x{2322}", role => 'RELOP'); # FROWN (small ?)
DefMath('\bumpeq', "\x{224F}", role => 'RELOP',
meaning => 'difference-between');
DefMath('\Bumpeq', "\x{224E}", role => 'RELOP',
meaning => 'geometrically-equals');
DefMath('\geqq', "\x{2267}", role => 'RELOP',
meaning => 'greater-than-or-equals');
DefMath('\geqslant', "\x{2A7E}", role => 'RELOP',
meaning => 'greater-than-or-equals');
DefMath('\eqslantgtr', "\x{2A96}", role => 'RELOP',
meaning => 'greater-than-or-equals');
DefMath('\gtrsim', "\x{2273}", role => 'RELOP',
meaning => 'greater-than-or-equivalent-to');
DefMath('\gtrapprox', "\x{2A86}", role => 'RELOP',
meaning => 'greater-than-or-approximately-equals');
DefMath('\eqsim', "\x{2242}", role => 'RELOP'); # MINUS TILDE
DefMath('\gtrdot', "\x{22D7}", role => 'RELOP'); # GREATER-THAN WITH DOT
DefMath('\ggg', "\x{22D9}", role => 'RELOP',
meaning => 'very-much-greater-than');
DefMath('\gggtr', "\x{22D9}", role => 'RELOP',
meaning => 'very-much-greater-than');
DefMath('\gtrless', "\x{2277}", role => 'RELOP',
meaning => 'greater-than-or-less-than');
DefMath('\gtreqless', "\x{22DB}", role => 'RELOP',
meaning => 'greater-than-or-equals-or-less-than');
DefMath('\gtreqqless', "\x{2A8C}", role => 'RELOP',
meaning => 'greater-than-or-equals-or-less-than');
DefMath('\eqcirc', "\x{2256}", role => 'RELOP'); # RING IN EQUAL TO
DefMath('\circeq', "\x{2257}", role => 'RELOP'); # RING EQUAL TO
DefMath('\triangleq', "\x{225C}", role => 'RELOP'); # DELTA EQUAL TO
DefMath('\thicksim', "\x{223C}", role => 'RELOP'); # TILDE OPERATOR; Not thick!!!
DefMath('\thickapprox', "\x{2248}", role => 'RELOP',
meaning => 'approximately-equals');
DefMath('\supseteqq', "\x{2AC6}", role => 'RELOP',
meaning => 'superset-of-or-equals');
DefMath('\Supset', "\x{22D1}", role => 'RELOP',
meaning => 'double-superset-of');
# \sqsupset in TeX
DefMath('\succcurlyeq', "\x{227D}", role => 'RELOP',
meaning => 'succeeds-or-equals');
DefMath('\curlyeqsucc', "\x{22DF}", role => 'RELOP',
meaning => 'equals-or-succeeds');
DefMath('\succsim', "\x{227F}", role => 'RELOP',
meaning => 'succeeds-or-equivalent-to');
DefMath('\succapprox', "\x{2AB8}", role => 'RELOP',
meaning => 'succeeds-or-approximately-equals');
# \vartriangleright, \trianglerighteq in amsfonts
DefMath('\Vdash', "\x{22A9}", role => 'RELOP',
meaning => 'forces');
DefMath('\shortmid', "\x{2223}", role => 'RELOP',
meaning => 'divides');
DefMath('\shortparallel', "\x{2225}", role => 'RELOP',
meaning => 'parallel-to');
DefMath('\between', "\x{226C}", role => 'RELOP',
meaning => 'between');
DefMath('\pitchfork', "\x{22D4}", role => 'RELOP',
meaning => 'proper-intersection');
DefMath('\varpropto', "\x{221D}", role => 'RELOP',
meaning => 'proportional-to');
DefMath('\blacktriangleleft', "\x{25C0}", role => 'RELOP'); # BLACK LEFT-POINTING TRIANGLE
DefMath('\therefore', "\x{2234}", role => 'METARELOP',
meaning => 'therefore');
DefMath('\backepsilon', "\x{03F6}", role => 'RELOP'); # GREEK REVERSED LUNATE EPSILON SYMBOL
DefMath('\blacktriangleright', "\x{25B6}", role => 'RELOP'); # BLACK RIGHT-POINTING TRIANGLE
DefMath('\because', "\x{2235}", role => 'METARELOP',
meaning => 'because');
#======================================================================
# Negated relations
# NOTE: There are several here that I couldn't find, but all
# were negations of other symbols. I've used 0338 COMBINING LONG SOLIDUS OVERLAY
# to create them, but I don't know if that's right.
DefMath('\nless', "\x{226E}", role => 'RELOP',
meaning => 'not-less-than');
DefMath('\nleq', "\x{2270}", role => 'RELOP',
meaning => 'not-less-than-nor-greater-than');
DefMath('\nleqslant', "\x{2A7D}\x{0338}", role => 'RELOP',
meaning => 'not-less-than-nor-equals');
DefMath('\nleqq', "\x{2266}\x{0338}", role => 'RELOP',
meaning => 'not-less-than-nor-equals');
DefMath('\lneq', "\x{2A87}", role => 'RELOP',
meaning => 'less-than-and-not-equals');
DefMath('\lneqq', "\x{2268}", role => 'RELOP',
meaning => 'less-than-and-not-equals');
DefMath('\lvertneqq', "\x{2268}", role => 'RELOP',
meaning => 'less-than-and-not-equals');
DefMath('\lnsim', "\x{22E6}", role => 'RELOP',
meaning => 'less-than-and-not-equivalent-to');
DefMath('\lnapprox', "\x{2A89}", role => 'RELOP',
meaning => 'less-than-and-not-approximately-equals');
DefMath('\nprec', "\x{2280}", role => 'RELOP',
meaning => 'not-precedes');
DefMath('\npreceq', "\x{22E0}", role => 'RELOP',
meaning => 'not-precedes-nor-equals'); # Using slant equals?
DefMath('\precneqq', "\x{2AB5}", role => 'RELOP',
meaning => 'precedes-and-not-equals');
DefMath('\precnsim', "\x{22E8}", role => 'RELOP',
meaning => 'precedes-and-not-equivalent-to');
DefMath('\precnapprox', "\x{2AB9}", role => 'RELOP',
meaning => 'precedes-and-not-approximately-equals');
DefMath('\nsim', "\x{2241}", role => 'RELOP',
meaning => 'not-similar-to'); # NOTE TILDE
DefMath('\nshortmid', "\x{2224}", role => 'RELOP',
meaning => 'not-divides'); # DOES NOT DIVIDE; Note: not short!
DefMath('\nmid', "\x{2224}", role => 'RELOP',
meaning => 'not-divides'); # DOES NOT DIVIDE
DefMath('\nvdash', "\x{22AC}", role => 'RELOP',
meaning => 'not-proves');
DefMath('\nVdash', "\x{22AE}", role => 'RELOP',
meaning => 'not-forces');
DefMath('\ntriangleleft', "\x{22EA}", role => 'RELOP',
meaning => 'not-subgroup-of');
DefMath('\ntrianglelefteq', "\x{22EC}", role => 'RELOP',
meaning => 'not-subgroup-of-nor-equals');
DefMath('\nsubseteq', "\x{2288}", role => 'RELOP',
meaning => 'not-subset-of-nor-equals');
DefMath('\nsubseteqq', "\x{2AC5}\x{0338}", role => 'RELOP',
meaning => 'not-subset-of-nor-equals');
DefMath('\subsetneq', "\x{228A}", role => 'RELOP',
meaning => 'subset-of-and-not-equals');
DefMath('\varsubsetneq', "\x{228A}", role => 'RELOP',
meaning => 'subset-of-and-not-equals');
DefMath('\subsetneqq', "\x{2ACB}", role => 'RELOP',
meaning => 'subset-of-and-not-equals');
DefMath('\varsubsetneqq', "\x{2ACB}", role => 'RELOP',
meaning => 'subset-of-and-not-equals');
DefMath('\supsetneq', "\x{228B}", role => 'RELOP',
meaning => 'superset-of-and-not-equals');
DefMath('\varsupsetneq', "\x{228B}", role => 'RELOP',
meaning => 'superset-of-and-not-equals');
DefMath('\supsetneqq', "\x{2ACC}", role => 'RELOP',
meaning => 'superset-of-and-not-equals');
DefMath('\varsupsetneqq', "\x{2ACC}", role => 'RELOP',
meaning => 'superset-of-and-not-equals');
DefMath('\ngtr', "\x{226F}", role => 'RELOP',
meaning => 'not-greater-than');
DefMath('\ngeq', "\x{2271}", role => 'RELOP',
meaning => 'not-greater-than-nor-equals');
DefMath('\ngeqslant', "\x{2A7E}\x{0338}", role => 'RELOP',
meaning => 'not-greater-than-nor-equals');
DefMath('\ngeqq', "\x{2267}\x{0338}", role => 'RELOP',
meaning => 'not-greater-than-nor-equals');
DefMath('\gneq', "\x{2A88}", role => 'RELOP',
meaning => 'greater-than-and-not-equals');
DefMath('\gneqq', "\x{2269}", role => 'RELOP',
meaning => 'greater-than-and-not-equals');
DefMath('\gvertneqq', "\x{2269}", role => 'RELOP',
meaning => 'greater-than-and-not-equals');
DefMath('\gnsim', "\x{22E7}", role => 'RELOP',
meaning => 'greater-than-and-not-equivalent-to');
DefMath('\gnapprox', "\x{2A8A}", role => 'RELOP',
meaning => 'greater-than-and-not-approximately-equals');
DefMath('\nsucc', "\x{2281}", role => 'RELOP',
meaning => 'not-succeeds');
DefMath('\nsucceq', "\x{22E1}", role => 'RELOP',
meaning => 'not-succeeds-nor-equals');
DefMath('\succneqq', "\x{2AB6}", role => 'RELOP',
meaning => 'succeeds-and-not-equals');
DefMath('\succnsim', "\x{22E9}", role => 'RELOP',
meaning => 'succeeds-and-not-equivalent-to');
DefMath('\succnapprox', "\x{2ABA}", role => 'RELOP',
meaning => 'succeeds-and-not-approximately-equals');
DefMath('\ncong', "\x{2247}", role => 'RELOP',
meaning => 'not-approximately-equals');
DefMath('\nshortparallel', "\x{2226}", role => 'RELOP',
meaning => 'not-parallel-to');
DefMath('\nparallel', "\x{2226}", role => 'RELOP',
meaning => 'not-parallel-to');
DefMath('\nvDash', "\x{22AD}", role => 'RELOP'); # NOT TRUE
DefMath('\nVDash', "\x{22AF}", role => 'RELOP'); # NEGATED DOUBLE VERTICAL BAR DOUBLE RIGHT TURNSTILE
DefMath('\ntriangleright', "\x{22EB}", role => 'RELOP',
meaning => 'not-contains');
DefMath('\ntrianglerighteq', "\x{22ED}", role => 'RELOP',
meaning => 'not-contains-nor-equals');
DefMath('\nsupseteq', "\x{2289}", role => 'RELOP',
meaning => 'not-superset-of-nor-equals');
DefMath('\nsupseteqq', "\x{2AC6}\x{0338}", role => 'RELOP',
meaning => 'not-superset-of-nor-equals');
#======================================================================
# Arrows
DefMath('\leftleftarrows', "\x{21C7}", role => 'ARROW'); # LEFTWARDS PAIRED ARROWS
DefMath('\leftrightarrows', "\x{21C6}", role => 'ARROW'); # LEFTWARDS ARROW OVER RIGHTWARDS ARROW
DefMath('\Lleftarrow', "\x{21DA}", role => 'ARROW'); # LEFTWARDS TRIPLE ARROW
DefMath('\twoheadleftarrow', "\x{219E}", role => 'ARROW'); # LEFTWARDS TWHO HEADED ARROW
DefMath('\leftarrowtail', "\x{21A2}", role => 'ARROW'); # LEFTWARDS ARROW WITH TAIL
DefMath('\looparrowleft', "\x{21AB}", role => 'ARROW'); # leftwards arrow with loop
DefMath('\leftrightharpoons', "\x{21CB}", role => 'ARROW'); # LEFTWARDS HARPOON OVER RIGHTWARDS HARPOON
DefMath('\curvearrowleft', "\x{21B6}", role => 'ARROW'); # ANTICLOCKWISE TOP SEMICIRCLE ARROW
DefMath('\circlearrowleft', "\x{21BA}", role => 'ARROW'); # ANTICLOCKWISE OPEN CIRCLE ARROW
DefMath('\Lsh', "\x{21B0}", role => 'ARROW'); # UPWAARDS ARROW WITH TIP LEFTWARDS
DefMath('\upuparrows', "\x{21C8}", role => 'ARROW'); # UPWARDS PAIRED ARROWS
DefMath('\upharpoonleft', "\x{21BF}", role => 'ARROW'); # UPWARDS HARPOON WITH BARB LEFTWARDS
DefMath('\rightrightarrows', "\x{21C9}", role => 'ARROW'); # RIGHTWARDS PAIRED ARROWS
DefMath('\rightleftarrows', "\x{21C4}", role => 'ARROW'); # RIGHTWARDS ARROW OVER LEFTWARD ARROW
DefMath('\Rrightarrow', "\x{21DB}", role => 'ARROW'); # RIGHTWARDS TRIPLE ARROW
DefMath('\twoheadrightarrow', "\x{21A0}", role => 'ARROW'); # RIGHTWARDS TWO HEADED ARROW
DefMath('\rightarrowtail', "\x{21A3}", role => 'ARROW'); # RIGHTWARDS ARROW WITH TAIL
DefMath('\looparrowright', "\x{21AC}", role => 'ARROW'); # RIGHTWARDS ARROW WITH LOOP
# \rightleftharpoons 21CC # RIGHTWARDS HARPOON OVER LEFTWARDS HARPOON ; in amsfonts
DefMath('\curvearrowright', "\x{21B7}", role => 'ARROW'); # CLOCKWISE TOP SEMICIRCLE ARROW
DefMath('\circlearrowright', "\x{21BB}", role => 'ARROW'); # CLOCKWISE OPEN CIRCLE ARROW
DefMath('\Rsh', "\x{21B1}", role => 'ARROW'); # UPWAARDS ARROW WITH TIP RIGHTWARDS
DefMath('\downdownarrows', "\x{21CA}", role => 'ARROW'); # DOWNWARDS PAIRED ARROWS
DefMath('\upharpoonright', "\x{21BE}", role => 'ARROW'); # UPWARDS HARPOON WITH BARB RIGHTWARDS
DefMath('\restriction', "\x{21BE}", role => 'ARROW'); # UPWARDS HARPOON WITH BARB RIGHTWARDS
# (same as \upharpoonright)
DefMath('\downharpoonleft', "\x{21C3}", role => 'ARROW'); # DOWNWARDS HARPOON WITH BARB LEFTWARDS
DefMath('\multimap', "\x{22B8}", role => 'ARROW'); # MULTIMAP
DefMath('\leftrightsquigarrow', "\x{21AD}", role => 'ARROW'); # LEFT RIGHT WAVE ARROW
DefMath('\downharpoonright', "\x{21C2}", role => 'ARROW'); # DOWNWARDS HARPOON WITH BARB RIGHTWARDS
# \rightsquigarrow amsfonts
#======================================================================
# Negated arrows
DefMath('\nleftarrow', "\x{219A}", role => 'ARROW'); # LEFTWARDS ARROW WITH STROKE
DefMath('\nLeftarrow', "\x{21CD}", role => 'ARROW'); # LEFTWARDS DOUBLE ARROW WITH STROKE
DefMath('\nleftrightarrow', "\x{21AE}", role => 'ARROW'); # LEFT RIGHT ARROW WITH STROKE
DefMath('\nrightarrow', "\x{219B}", role => 'ARROW'); # RIGHTWARDS ARROW WITH STROKE
DefMath('\nRightarrow', "\x{21CF}", role => 'ARROW'); # LEFTWARDS DOUBLE ARROW WITH STROKE
DefMath('\nLeftrightarrow', "\x{21CE}", role => 'ARROW'); # LEFT RIGHT DOUBLE ARROW WITH STROKE
#======================================================================
1;
|