/usr/share/hol88-2.02.19940316/contrib/rule-induction/ind-defs.ml is in hol88-contrib-source 2.02.19940316-31.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 | % ===================================================================== %
% FILE : ind-defs.ml %
% DESCRIPTION : inductive definitions package. %
% %
% AUTHOR : (c) T. F. Melham 1990 %
% DATE : 90.11.13 %
% REVISED : 91.10.19 %
% ===================================================================== %
% ===================================================================== %
% INDUCTIVE DEFINITIONS. %
% ===================================================================== %
begin_section prove_inductive_relation_exists;;
% --------------------------------------------------------------------- %
% INTERNAL FUNCTION: mk_predv %
% %
% The function mk_predv, given a list of terms: %
% %
% ["t1:ty1"; "t2:ty2"; ...; "tn:tyn"] %
% %
% returns a variable P of type: %
% %
% P : ty1 -> ty2 -> ... -> tyn -> bool %
% %
% The choice of name `P` is fixed; but the variable may be primed later %
% if it is found to conflict with some other variable name present in %
% the rules supplied by the user. %
% --------------------------------------------------------------------- %
let mk_predv =
let itfn tm ty = mk_type(`fun`,[type_of tm;ty]) in
\ts. mk_var(`P`,itlist itfn ts ":bool");;
% --------------------------------------------------------------------- %
% INTERNAL FUNCTION: checkfilter %
% %
% The function checkfilter takes two lists "ps" and "as", where ps is a %
% sublist of as, and returns a function from lists to list. Suppose %
% that: %
% %
% ps = [u1;...;un] and as = [v1;...;vm] %
% %
% where {u1,...,un} is a subset of {v1,...,vm}. Then checkfilter ps as %
% is a function that takes a list %
% %
% l = [w1,...,wm] %
% %
% and fails unless l has the same length as the list as and wi=vi for %
% all i such that vi is an element of ps. If checkfilter ps as l %
% succeeds, then it returns the sublist of l consisting of those %
% elements wi for which the corresponding element vi is not in ps. %
% --------------------------------------------------------------------- %
let checkfilter =
letrec check ps as =
if (null as) then assert null else
let cktl = check ps (tl as) in
if (mem (hd as) ps)
then let v = hd as in \(h.t). (h=v) => cktl t | fail
else \(h.t). h . cktl t in
\ps as. let f = check ps as in
\l. f l ? failwith `ill-formed membership assertion`;;
% --------------------------------------------------------------------- %
% INTERNAL FUNCTION: checkside %
% %
% This function is used to check that the relation R being defined does %
% not occur in a side condition of a rule. It fails with an appropriate %
% error message if R occurs free in tm and otherwise returns tm. %
% --------------------------------------------------------------------- %
let checkside R tm =
if (free_in R tm) then
(let name = fst(dest_var R) in
failwith `"` ^ name ^ `" free in side-condition(s)`) else tm;;
% --------------------------------------------------------------------- %
% INTERNAL FUNCTION : mk_mk_pred %
% %
% The arguments to this function are the user-supplied pattern pat, and %
% the list of global parameters ps (see below for a specification of %
% required format of these inputs). The pattern, pat, is expected to %
% have the form shown below: %
% %
% pat = "R x1 ... xn" %
% %
% and mk_mk_pred fails (with an appropriate message) if: %
% %
% 1: pat is not a boolean term %
% 2: any one of R, x1, ... xn is not a variable %
% 3: the xi's are not all distinct %
% %
% The second argument, ps, is a list of global parameter variables: %
% %
% ["y1",...,"ym"] %
% %
% where {"y1",...,"ym"} is expected to be a subset of {"x1",...,"xm"}. %
% Failure occurs if: %
% %
% 1: any one of "y1",...,"ym" is not a variable %
% 2: any "yi" is not an element of {"x1",...,"xm"}. %
% 3: the "yi"'s are not all distinct %
% %
% A successful call to mk_mk_pred pat ps, where the inputs pat and ps %
% are as described above, returns a function that maps applications of %
% the form: %
% %
% "R a1 ... an" %
% %
% to applications of the form: %
% %
% "P ai ... aj" %
% %
% where ai,...,aj is the subsequence of a1,...,an consisting of those %
% arguments to R whose positions correspond to the positions of the %
% variables in the pattern "R x1 ... xn" that do NOT occur in the %
% global paramter list ps. Furthermore, at all other positions (ie at %
% those positions that correspond to global parameters) the a's must %
% be identical to the parameter variables y1,...,ym. %
% %
% For example, if: %
% %
% pat = "R x1 x2 x3 x4" and ps = ["x1";"x3"] %
% %
% then the function returned by mk_mk_pred expects input terms of the %
% form "R x1 a1 x3 a2" and maps these to "P a1 a2". Failure occurs if %
% the agument to this function does not have the correct form. %
% %
% For convenience, the function mk_mk_pred also returns the variables %
% R and P. %
% --------------------------------------------------------------------- %
let mk_mk_pred =
let chk p = \st. \x. (p x => x | failwith st) in
let ckb = chk (\t. type_of t = ":bool") `pattern not boolean` in
let ckv = chk is_var `non-variable in pattern` in
let ckp = chk is_var `non-variable parameter` in
let itfn ck st = \v l. (mem (ck v) l => failwith st | v.l) in
let cka = C (itlist (itfn ckv `duplicate argument in pattern`)) [] in
let ckpa = C (itlist (itfn ckp `duplicate variable in parameters`)) [] in
\(pat,ps,vs).
let R,args = (ckv # cka) (strip_comb(ckb pat)) in
if (exists ($not o C mem args) (ckpa ps)) then
failwith `spurious parameter variable` else
let P = variant vs (mk_predv (subtract args ps)) in
let checkhyp = checkfilter ps args in
R,P,\tm.
let f,as = strip_comb tm in
if (f = R) then
list_mk_comb (P, checkhyp as) else checkside R tm;;
% --------------------------------------------------------------------- %
% INTERNAL FUNCTION : make_rule %
% %
% The function make_rule takes a user-supplied rule specification: %
% %
% (as, c) %
% %
% where as are the assumptions and side conditions and c is the %
% conclusion, and generates the logical representation of the assertion %
% that the relation P (supplied as one of the arguments) closed under %
% the rule. The variable ps is the global paramter list, and the %
% function mkp is the mapping from membership assertions: %
% %
% R a1 ... an %
% %
% which occur in the assumptions as and the conclusion c, to membership %
% assertions of the form: %
% %
% P ai ... aj %
% %
% where the global parameters in ps that occur among the arguments %
% a1,...,an are eliminated. In what follows, we let mkp(c) stand for %
% the result of this operation. %
% %
% For an axiom of the form ([],c), the term returned is %
% %
% "!xs.mkp(c)" %
% %
% where xs are the variables that occur free in mkp(c). For a rule with %
% side conditions ss and premisses p1,...,pi, the result is: %
% %
% "!xs. (?zs. mkp(p1) /\ ... /\ mkp(pi) /\ ss) ==> !ys. mkp(c) %
% %
% where ys are the variables that appear free only in mkp(c), xz are %
% the variables that appear free only in mkp(p1),...,mkp(pi),ss, and xs %
% are the remaining free variables of the rule. %
% --------------------------------------------------------------------- %
let make_rule (P,R,ps,mkp) (as,c) =
if (not(fst(strip_comb c)) = R) then
failwith `ill-formed rule conclusion` else
let getvs tm = subtract (frees tm) (P.R.ps) in
let con = mkp c in
if (null as) then
list_mk_forall(getvs con,con) else
let asm = list_mk_conj (map mkp as) in
let pvs = getvs asm and cvs = getvs con in
let qcon = list_mk_forall(subtract cvs pvs, con) in
let qasm = list_mk_exists(subtract pvs cvs, asm) in
let avs = intersect pvs cvs in
list_mk_forall(avs,mk_imp(qasm,qcon));;
% --------------------------------------------------------------------- %
% INTERNAL FUNCTION : make_definition %
% %
% The function make_definition creates an appropriate non-recursive %
% defining equation for the user-specified inducively-defined predicate %
% described by the pattern pat, the parameter list ps and the rule list %
% rules. (See below for a description of the required format of these %
% input values). Error checking of the user input is also done here. %
% %
% The rules have the form (as,c), where as are a list of premisses and %
% side conditions and c is the conclusion. Each rule is transformed %
% into the logical assertion that the relation P is closed under the %
% rule (see make_rule above). Let RULES[P] be the conjunction of these %
% assertions. Then the smallest relation closed under the rules has %
% the defining equation: %
% %
% !ps xs. REL ps xs = !P. RULES(ps)[P] ==> P xs %
% %
% Note that the rules may depend on the global parameters ps. %
% --------------------------------------------------------------------- %
let make_definition (pat,ps) rules =
let vs = freesl (flat (map (\(x,y). y.x) rules)) in
let R,P,mkp = mk_mk_pred (pat,ps,vs) in
let frules = map ((flat o map conjuncts) # I) rules in
let crules = list_mk_conj(map (make_rule (P,R,ps,mkp)) frules) in
let right = mk_forall(P,mk_imp (crules,mkp pat)) in
let eqn = mk_eq(pat,right) in
let args = subtract (snd(strip_comb pat)) ps in
list_mk_forall(ps @ args, eqn);;
% --------------------------------------------------------------------- %
% INTERNAL FUNCTION : derive_induction %
% %
% This derives rule induction from the definition of an inductively %
% defined relation REL. %
% %
% The input, def, has the form: %
% %
% !ps xs. REL ps xs = !P. RULES(ps)[P] ==> P xs %
% %
% where RULES(ps)[P] states that P is closed under the set of rules %
% RULES(ps) and ps are the global parameters to the rules. %
% %
% The output is the rule induction theorem: %
% %
% def |- !ps. !P. RULES(ps)[P] ==> !xs. P xs ==> REL ps xs %
% %
% --------------------------------------------------------------------- %
let derive_induction def =
let vs,(left,right) = (I # dest_eq) (strip_forall def) in
let P,(as,con) = (I # dest_imp) (dest_forall right) in
let rvs = snd(strip_comb con) in
let th1 = UNDISCH (fst(EQ_IMP_RULE (SPECL vs (ASSUME def)))) in
let th2 = GENL rvs (DISCH left (UNDISCH (SPEC P th1))) in
GENL (subtract vs rvs) (GEN P (DISCH as th2));;
% --------------------------------------------------------------------- %
% INTERNAL FUNCTION : usedef %
% %
% This returns functions that use the non-recursive definition of an %
% inductively defined relation REL to abbreviate an application of REL. %
% %
% The input has the form: %
% %
% rvs = ps...xs %
% dth = |- REL ps xs = !P. RULES(ps)[P] ==> P xs %
% %
% where RULES(ps)[P] states that P is closed under the set of rules %
% RULES(ps) and ps are the global parameters to the rules. %
% %
% The result is a pair consisting of an inference rule (type thm->thm) %
% and a conversion (term->thm). The conversion maps terms of the form %
% "P vs" to the theorem: %
% %
% RULES(ps)[P] |- REL ps vs ==> P vs %
% %
% The inference rule maps a theorem of the form: %
% %
% |- !P. RULES(ps)[P] ==> P vs %
% %
% to the theorem: %
% %
% def |- REL ps vs %
% --------------------------------------------------------------------- %
let usedef (rvs,dth) =
let left,right = EQ_IMP_RULE dth in
let ante,v = (I # (fst o dest_forall)) (dest_imp (concl left)) in
let lth = GENL rvs (DISCH ante (UNDISCH (SPEC v (UNDISCH left)))) in
let as tm = SPECL (snd(strip_comb tm)) lth in
let rth = GENL rvs right in
let ab th =
let ts = snd(strip_comb(rand(snd(dest_forall(concl th))))) in
MP (SPECL ts rth) th in
(ab,as);;
% --------------------------------------------------------------------- %
% INTERNAL FUNCTION : eximp %
% %
% forward proof rule for existentially quantifying variables in both %
% the antecedent and consequent of an implication. %
% %
% A call to: %
% %
% eximp ["v1",...,"vn"] A |- P ==> Q %
% %
% returns a pair (tm,th) where: %
% %
% tm = "?v1...vn. P" and th = A,tm |- ?v1...vn. Q %
% %
% --------------------------------------------------------------------- %
let eximp =
let exfn v th = EXISTS(mk_exists(v,concl th),v)th in
let chfn v (a,th) =
let tm = mk_exists(v,a) in (tm,CHOOSE (v,ASSUME tm) th) in
\vs th. let A,C = dest_imp(concl th) in
itlist chfn vs (A,itlist exfn vs (UNDISCH th));;
% --------------------------------------------------------------------- %
% INTERNAL FUNCTION : derive_rule %
% %
% This proves that a rule holds of the inductively-defined relation REL %
% defined by the rules. Axioms have the form: %
% %
% "!ps. REL ps <args>" %
% %
% and rules proper have the form %
% %
% "!xs. (?zs. REL ps <args> /\ ... /\ REL ps <args> /\ ss) ==> %
% !ys. REL ps <args> %
% %
% The supplied functions ab and as embody the definition: %
% %
% !ps xs. REL ps xs = !P. RULES(ps)[P] ==> P xs %
% --------------------------------------------------------------------- %
let derive_rule =
let check v = assert ($not o (free_in v)) # assert (free_in v) in
\rel (ab,as).
let mfn tm = (free_in rel tm => as tm | DISCH tm (ASSUME tm)) in
\th. let ([R],xs,body) = (I # strip_forall) (dest_thm th) in
let thm1 = SPECL xs th in
(let ante,cvs,con = (I # strip_forall) (dest_imp body) in
let evs,asms = (I # conjuncts) (strip_exists ante) in
let ths = map mfn asms in
let A1,th1 = eximp evs (end_itlist IMP_CONJ ths) in
let th3 = ab (GEN rel (DISCH R (SPECL cvs (MP thm1 th1)))) in
GENL xs (DISCH A1 (GENL cvs th3))) ?
GENL xs (ab (GEN rel (DISCH R thm1)));;
% --------------------------------------------------------------------- %
% INTERNAL FUNCTION : derive_rules. %
% %
% This just constructs the arguments for derive_rule and then derives %
% a list of all the rules. %
% --------------------------------------------------------------------- %
let derive_rules def =
let vs,(left,right) = (I # dest_eq) (strip_forall def) in
let rel,(a,c) = (I # dest_imp) (dest_forall right) in
let rvs = subtract vs (snd(strip_comb c)) in
let ab,as = usedef (snd(strip_comb c),SPECL vs (ASSUME def)) in
let ths = CONJUNCTS (ASSUME a) in
let rules = map (GENL rvs o derive_rule rel (ab,as)) ths in
LIST_CONJ rules;;
% --------------------------------------------------------------------- %
% prove_inductive_relation_exists %
% %
% This is the main function for inductively-defined relations in HOL. %
% The first argument is expected to be a pattern: %
% %
% ("REL x1 ... xn", ["p1",...,"pn"]) %
% %
% where the set of variables {p1,...,pn} is a subset of {x1,...,xn} and %
% REL is a variable standing for the relation to be defined. The second %
% argument is a list of rules of the form: %
% %
% ([<premisses and side conditions>], <conclusion>) %
% %
% Side conditions may be abitrary boolean terms, provided they do not %
% mention the variable REL. The premisses and conclusion of a rule must %
% be assertions of the form: %
% %
% REL t1 ... tn %
% %
% where each ti for which the corresponding xi in the pattern appears %
% as an element pi in the list of global parameters is just the %
% parameter variable pi itself. The terms ti at other positions may be %
% arbitrary terms. %
% %
% The result is a theorem stating the existence of the least relation %
% REL closed under the rules. This consists of a conjunction which %
% states (1) that REL is closed under the rules, and (2) that any other %
% relation P which is closed under the rules contains REL. %
% --------------------------------------------------------------------- %
let prove_inductive_relation_exists (pat,ps) rules =
let def = make_definition (pat,ps) rules in
let vs,(left,right) = (I # dest_eq) (strip_forall def) in
let R,args = strip_comb left in
let thm1 = CONJ (derive_rules def) (derive_induction def) in
let eth = EXISTS(mk_exists(R,concl thm1),R) thm1 in
let lam = list_mk_abs(vs,right) in
let bth = GENL vs (LIST_BETA_CONV (list_mk_comb(lam,vs))) in
let deth = EXISTS (mk_exists(R,def),lam) bth in
CHOOSE (R, deth) eth;;
% --------------------------------------------------------------------- %
% Bind this value to "it". %
% --------------------------------------------------------------------- %
prove_inductive_relation_exists;;
% --------------------------------------------------------------------- %
% end the section. %
% --------------------------------------------------------------------- %
end_section prove_inductive_relation_exists;;
% --------------------------------------------------------------------- %
% save the function. %
% --------------------------------------------------------------------- %
let prove_inductive_relation_exists = it;;
% --------------------------------------------------------------------- %
% new_inductive_definition %
% %
% Make a new inductive definition by first proving the existence of the %
% least relation closed under the supplied rules and then introducing %
% a constant to denote this relation. %
% --------------------------------------------------------------------- %
let new_inductive_definition infix st (pat,ps) rules =
let eth = prove_inductive_relation_exists (pat,ps) rules in
let name = fst(dest_var(fst(dest_exists(concl eth)))) in
let fl = (infix => `infix` | `constant`) in
let rules,ind = CONJ_PAIR (new_specification st [fl,name] eth) in
CONJUNCTS rules, ind;;
% ===================================================================== %
% STRONGER FORM OF INDUCTION. %
% ===================================================================== %
begin_section strong_induction;;
% --------------------------------------------------------------------- %
% INTERNAL FUNCTION : simp_axiom %
% %
% This function takes an axiom of the form %
% %
% |- !xs. REL ps <args> %
% %
% and a term of the form %
% %
% !xs. (\vs. REL ps vs /\ P vs) <args> %
% %
% and proves that %
% %
% |- (!xs. P <args>) ==> !xs. (\vs. REL ps vs /\ P vs) <args> %
% %
% That is, simp_axiom essentially beta-reduces the input term, and %
% drops the redundant conjunct "REL ps xs", this holding merely by %
% virtue of the axiom being true. %
% --------------------------------------------------------------------- %
let simp_axiom (ax,tm) =
let vs,red = strip_forall tm in
let bth = LIST_BETA_CONV red in
let asm = list_mk_forall(vs,rand(rand(concl bth))) in
let th1 = SPECL vs (ASSUME asm) in
let th2 = EQ_MP (SYM bth) (CONJ (SPECL vs ax) th1) in
DISCH asm (GENL vs th2);;
% --------------------------------------------------------------------- %
% INTERNAL FUNCION : reduce_asm %
% %
% The term asm is expected to be the antecedent of a rule in the form: %
% %
% "?zs. ... /\ (\vs. REL ps vs /\ P vs) <args> /\ ..." %
% %
% in which applications of the supplied parameter fn: %
% %
% "(\vs. REL ps vs /\ P vs)" %
% %
% appear as conjuncts (possibly among some side conditions). The %
% function reduce_asm beta-reduces these conjuncts and flattens the %
% resulting conjunction of terms. The result is the theorem: %
% %
% |- asm ==> ?zs. ... /\ REL ps <args> /\ P <args> /\ ... %
% %
% --------------------------------------------------------------------- %
let reduce_asm =
letrec reduce fn tm =
(let c1,imp = (I # reduce fn) (dest_conj tm) in
if (fst(strip_comb c1) = fn) then
let t1,t2 = CONJ_PAIR(EQ_MP (LIST_BETA_CONV c1) (ASSUME c1)) in
let thm1 = CONJ t1 (CONJ t2 (UNDISCH imp)) in
let asm = mk_conj(c1,rand(rator(concl imp))) in
let h1,h2 = CONJ_PAIR(ASSUME asm) in
DISCH asm (PROVE_HYP h1 (PROVE_HYP h2 thm1)) else
IMP_CONJ (DISCH c1 (ASSUME c1)) imp) ?
if (fst(strip_comb tm) = fn) then
fst(EQ_IMP_RULE(LIST_BETA_CONV tm)) else
DISCH tm (ASSUME tm) in
\fn asm. let vs,body = strip_exists asm in
itlist EXISTS_IMP vs (reduce fn body);;
% --------------------------------------------------------------------- %
% INTERNAL FUNCTION : prove_asm %
% %
% Given the term "P" and an existentially-quantified term of the form: %
% %
% "?zs. C1 /\ ... /\ P <args> /\ ... /\ Cn" %
% %
% prove_asm filters out those conjuncts of the form "P <args>". The %
% theorem returned is: %
% %
% |- (?zs. C1 /\ ... /\ P <args> /\ ... /\ Cn) ==> %
% (?zs. C1 /\ ... /\ Cn) %
% %
% --------------------------------------------------------------------- %
let prove_asm P tm =
let test t = not(fst(strip_comb(concl t)) = P) in
let vs,body = strip_exists tm in
let newc = LIST_CONJ(filter test (CONJUNCTS(ASSUME body))) in
itlist EXISTS_IMP vs (DISCH body newc);;
% --------------------------------------------------------------------- %
% INTERNAL FUNCTION : simp_concl %
% %
% The argument rul is a rule of the form: %
% %
% |- !xs. (?zs. REL ps <args> /\ SS) ==> REL ps <args> %
% %
% and the term tm will be an unsimplified term of the form: %
% %
% "!xs. (?zs. REL ps <args> /\ P <args> /\ SS) ==> %
% (REL ps <args> /\ P <args>) %
% %
% The function simp_concl proves that the first conjunct of the %
% antecedent of tm (i.e. REL ps <args>) is unnecessary. The result is: %
% %
% |- (!xs.(?zs. REL ps <args> /\ P <args> /\ SS) ==> P <args>) ==> tm %
% --------------------------------------------------------------------- %
let simp_concl rul tm =
let vs,(ante,cncl) = (I # dest_imp) (strip_forall tm) in
let srul = SPECL vs rul in
let (cvs,a,c) = (I # dest_conj) (strip_forall cncl) in
let simpl = prove_asm (fst(strip_comb c)) ante in
let thm1 = SPECL cvs (UNDISCH (IMP_TRANS simpl srul)) in
let newasm = list_mk_forall (vs, mk_imp(ante,list_mk_forall (cvs,c))) in
let thm2 = CONJ thm1 (SPECL cvs (UNDISCH (SPECL vs (ASSUME newasm)))) in
DISCH newasm (GENL vs (DISCH ante (GENL cvs thm2)));;
% --------------------------------------------------------------------- %
% INTERNAL FUNCTION : simp_rule %
% %
% This function takes a rule of the form %
% %
% |- !xs. (?zs. REL ps <args> /\ SS) ==> REL ps <args> %
% %
% and a term of the form %
% %
% "!xs (?zs. (\vs. REL ps vs /\ P vs) <args> /\ SS) ==> %
% (!ys. (\vs. REL ps vs /\ P vs) <args>) %
% %
% and proves that %
% %
% |- (!xs. (?zs. REL ps <args> /\ P <args> /\ SS) ==> !ys. P <args>) %
% ==> %
% (!xs (?zs. (\vs. REL ps vs /\ P vs) <args> /\ SS) ==> %
% (!ys. (\vs. REL ps vs /\ P vs) <args>) %
% %
% That is, simp_rule essentially beta-reduces the input term and %
% drops the redundant conjunct "REL ps <args>" in the conclusion, as %
% this holds by virtue of the rule itself. %
% --------------------------------------------------------------------- %
let simp_rule (rul,tm) =
let vs,a,c = (I # dest_imp) (strip_forall tm) in
let cvs,red = strip_forall c in
let basm = reduce_asm (fst(strip_comb red)) a in
let bth = itlist FORALL_EQ cvs (LIST_BETA_CONV red) in
let asm = list_mk_forall(vs,mk_imp (rand(concl basm),rand(concl bth))) in
let thm1 = UNDISCH (IMP_TRANS basm (SPECL vs (ASSUME asm))) in
let thm2 = DISCH asm (GENL vs (DISCH a (EQ_MP (SYM bth) thm1))) in
let thm3 = simp_concl rul (rand(rator(concl thm2))) in
IMP_TRANS thm3 thm2;;
% --------------------------------------------------------------------- %
% INTERNAL FUNCTION : simp. %
% %
% Simplify a rule or an axiom using simp_rule or simp_axiom. %
% --------------------------------------------------------------------- %
let simp p = simp_rule p ? simp_axiom p;;
% --------------------------------------------------------------------- %
% derive_strong_induction %
% %
% The induction theorem for an inductively-defined relation REL has the %
% general form: %
% %
% |- !ps. !P. RULES(ps)[P] ==> !xs. P xs ==> REL ps xs %
% %
% where the closure of P under a rule is typically expressed as: %
% %
% !xs. (?zs. P <args1> /\ ... /\ P <argsn> /\ ss) ==> !ys. P <args> %
% %
% The function derive_strong_induction strengthens the hypotheses of %
% such a rule to include the assumptions that the values <argsi> are %
% also in the relation REL: %
% %
% !xs. (?zs. REL ps <args1> /\ P <args1> /\ ... /\ %
% REL ps <argsn> /\ P <argsn> /\ ss) %
% ==> !ys. P <args> %
% %
% ===================================================================== %
let derive_strong_induction (rules,ind) =
(let ps,(hy,c) = (I # dest_imp) (strip_forall (concl ind)) in
let srules = map (SPECL (butlast ps)) rules in
let cvs,rel,pred = (I # dest_imp) (strip_forall c) in
let newp = list_mk_abs(cvs,mk_conj(rel,pred)) in
let pvar,args = strip_comb pred in
let ith = INST [newp,pvar] (SPECL ps ind) in
let as,co = dest_imp (concl ith) in
let bth = LIST_BETA_CONV (list_mk_comb(newp,args)) in
let sth = CONJUNCT2 (EQ_MP bth (UNDISCH (SPECL args (ASSUME co)))) in
let thm1 = IMP_TRANS ith (DISCH co (GENL args (DISCH rel sth))) in
let ths = map simp (combine (srules,conjuncts as)) in
GENL ps (IMP_TRANS (end_itlist IMP_CONJ ths) thm1)) ?
failwith `derive_strong_induction`;;
% --------------------------------------------------------------------- %
% Bind derive_strong_induction to "it". %
% --------------------------------------------------------------------- %
derive_strong_induction;;
% --------------------------------------------------------------------- %
% end of section. %
% --------------------------------------------------------------------- %
end_section strong_induction;;
% --------------------------------------------------------------------- %
% Save the exported value. %
% --------------------------------------------------------------------- %
let derive_strong_induction = it;;
% ===================================================================== %
% RULE INDUCTION %
% ===================================================================== %
begin_section RULE_INDUCT_THEN;;
% --------------------------------------------------------------------- %
% INTERNAL FUNCTION : TACF %
% %
% TACF is used to generate the subgoals for each case in an inductive %
% proof. The argument tm is formula which states one case in the %
% the induction. In general, this will take one of the forms: %
% %
% (1) no side condition, no assumptions: %
% %
% tm = !xs. P <args> %
% %
% (2) side condition and/or assumptions: %
% %
% tm = !xs. (?zs. P <args> /\ SS) ==> !ys. P <args> %
% %
% When TACF is applied to tm, a parameterized tactic is returned which %
% will later be applied to the corresponding subgoal in an induction. %
% The resulting tactic takes two theorem continuations as arguments. %
% For a base case, like case 1 above, the resulting tactic just throws %
% these parameters away and passes the goal on unchanged: %
% %
% \ttac1 ttac2. ALL_TAC %
% %
% For a step case, like case 2, the tactic applies GEN_TAC to strip off %
% the xs. It then strips off and breaks into conjuncts the induction %
% hypotheses. The theorem continuation ttac1 is then applied to the %
% premisses and the theorem continuation ttac2 applied to the side %
% conditions. %
% %
% The implementation of TTAC uses three auxiliary functions, namely %
% MK_CONJ_THEN, MK_CHOOSE_THEN and MK_THEN for stripping down the %
% existentially-quantified conjunction of induction hypotheses. %
% --------------------------------------------------------------------- %
letrec MK_CONJ_THEN fn tm =
(let c1,c2 = dest_conj tm in
let tcl1 = (fst(strip_comb c1) = fn) => \t1 t2. t1 | \t1 t2. t2 in
let tcl2 = MK_CONJ_THEN fn c2 in
\ttac1 ttac2. CONJUNCTS_THEN2 (tcl1 ttac1 ttac2) (tcl2 ttac1 ttac2)) ?
if (fst(strip_comb tm) = fn) then K else C K;;
letrec MK_CHOOSE_THEN fn vs body =
if (null vs) then MK_CONJ_THEN fn body else
let tcl = MK_CHOOSE_THEN fn (tl vs) body in
\ttac1 ttac2. CHOOSE_THEN (tcl ttac1 ttac2);;
let MK_THEN fn tm =
let vs,body = strip_exists tm in
if (free_in fn body) then
MK_CHOOSE_THEN fn vs body else
\ttac1 ttac2. ttac2;;
let TACF fn tm =
let vs,body = strip_forall tm in
if (is_imp body) then
let TTAC = MK_THEN fn (fst(dest_imp body)) in
\ttac1 ttac2. REPEAT GEN_TAC THEN DISCH_THEN (TTAC ttac1 ttac2) else
\ttac1 ttac2. ALL_TAC;;
% --------------------------------------------------------------------- %
% INTERNAL FUNCTION : TACS %
% %
% TACS uses TACF to generate a parameterized list of tactics, one for %
% each conjunct in the hypothesis of an induction theorem. If tm is the %
% conjunction of cases for an induction theorem: %
% %
% "RULE1 /\ ... /\ RULEn" %
% %
% then TACS tm yields the paremterized list of tactics: %
% %
% \ttac1 ttac2. %
% [TACF "RULE1" ttac1 ttac2; ...; TACF "RULEn" ttac1 ttac2] %
% %
% Where the applications TACF "RULEi" have been pre-evaluated. %
% --------------------------------------------------------------------- %
letrec TACS fn tm =
let cf,csf = ((TACF fn # TACS fn) (dest_conj tm) ? TACF fn tm,(\x y.[])) in
\ttac1 ttac2. (cf ttac1 ttac2) . (csf ttac1 ttac2);;
% --------------------------------------------------------------------- %
% INTERNAL FUNCTION : mkred %
% %
% This produces a conversion that selectively beta-reduces the terms in %
% a conjunction. Evaluating: %
% %
% mkred "f" ["c1";...;"cn"] %
% %
% produces a conversion that applies LIST_BETA_CONV to the conjuncts %
% Ci in a term of the form: %
% %
% "C1 /\ ... /\ Cn" %
% %
% for which the corresponding "ci" is of the form "f x1 ... xn". %
% --------------------------------------------------------------------- %
letrec mkred fn (c.cs) =
(let cfn = (fst(strip_comb c) = fn) => LIST_BETA_CONV | REFL in
if (null cs) then cfn else
let rest = mkred fn cs in
\tm. let c1,c2 = dest_conj tm in
MK_COMB(AP_TERM cnj (cfn c1),rest c2))
where cnj = "/\";;
% --------------------------------------------------------------------- %
% INTERNAL FUNCTION : RED_CASE. %
% %
% Given the argument "fn" and a term corresponding to one of the rules %
% %
% !xs. (?zs. fn <args> /\ ... /\ SS) ==> !ys. fn <args> %
% %
% RED_CASE produces a conversion that will apply LIST_BETA_CONV to %
% instances of this term at the positions which correspond to %
% applications of fn to <args>. %
% --------------------------------------------------------------------- %
let RED_CASE =
let imp = "==>" in
\fn pat. let bdy = snd(strip_forall pat) in
if (is_imp bdy) then
let ante = fst(dest_imp bdy) in
let hyps = conjuncts(snd(strip_exists(ante))) in
let redf = mkred fn hyps in
\tm. let vs,ant,con = (I # dest_imp) (strip_forall tm) in
let cvs,red = strip_forall con in
let th1 = itlist FORALL_EQ cvs (LIST_BETA_CONV red) in
let evs,hyp = strip_exists ant in
let th2 = itlist EXISTS_EQ evs (redf hyp) in
itlist FORALL_EQ vs (MK_COMB(AP_TERM imp th2,th1)) else
\tm. let vs,con = strip_forall tm in
itlist FORALL_EQ vs (LIST_BETA_CONV con);;
% --------------------------------------------------------------------- %
% INTERNAL FUNCTION : APPLY_CASE %
% %
% Given a list of conversions [f1;...;fn], APPLY_CASE produces a %
% conversion that applies fi to conjunct Ci in a term of the form: %
% %
% "C1 /\ ... /\ Cn" %
% %
% The result is |- (C1 /\ ... /\ Cn) = (^(f C1) /\ ... /\ ^(f Cn)) %
% --------------------------------------------------------------------- %
letrec APPLY_CASE (f.fs) tm =
(if (null fs) then f tm else
let c1,c2 = dest_conj tm in
MK_COMB (AP_TERM cnj (f c1),APPLY_CASE fs c2))
where cnj = "/\";;
% --------------------------------------------------------------------- %
% INTERNAL FUNCTION : RED_WHERE %
% %
% Given the argument "P" and a term corresponding to the statement of %
% rule induction: %
% %
% RULES(ps)[P] ==> R ps vs ==> P vs %
% %
% RED_WHERE produces a conversion that will apply LIST_BETA_CONV to %
% instances of this term at the positions which correspond to %
% applications of P. %
% --------------------------------------------------------------------- %
let RED_WHERE fn body =
let cs,con = (conjuncts # I) (dest_imp body) in
let rfns = map (RED_CASE fn) cs in
\stm. let a,c = dest_imp stm in
let hthm = APPLY_CASE rfns a in
let cthm = RAND_CONV LIST_BETA_CONV c in
MK_COMB(AP_TERM "==>" hthm,cthm);;
% --------------------------------------------------------------------- %
% RULE_INDUCT_THEN : general rule induction tactic. %
% %
% The first theorem continuation is for premisses and the second is for %
% side conditions. %
% --------------------------------------------------------------------- %
let is_param icvs slis arg =
let val = snd (assoc arg slis) ? arg in mem val icvs;;
let RULE_INDUCT_THEN th : (thm->tactic) -> (thm->tactic) -> tactic =
(let vs,(hy,con) = (I # dest_imp) (strip_forall (concl th)) in
let cvs,cncl = strip_forall con in
let thm = DISCH hy (SPECL cvs(UNDISCH(SPECL vs th))) in
let pvar = genvar (type_of (last vs)) in
let sthm = INST [pvar,last vs] thm in
let RED = RED_WHERE (last vs) (mk_imp(hy,cncl)) in
let tacs = TACS (last vs) hy in
(\ttac1 ttac2 (A,g).
(let gvs,body = strip_forall g in
let slis,ilis = match (rator cncl) (rator body) in
let sith = INST_TY_TERM (slis,ilis) sthm in
let largs = snd(strip_comb (rand(rator body))) in
let icvs = map (inst [] ilis) cvs in
let params = filter (is_param icvs slis) largs in
let lam = list_mk_abs(params,rand body) in
let spth = INST [lam,inst [] ilis pvar] sith in
let spec = GENL gvs (UNDISCH (CONV_RULE RED spth)) in
let subgls = map (pair A) (conjuncts (hd(hyp spec))) in
let tactic g = subgls,\ths. PROVE_HYP (LIST_CONJ ths) spec in
(tactic THENL (tacs ttac1 ttac2)) (A,g)) ?
failwith `RULE_INDUCT_THEN: inappropriate goal`)) ?
failwith `RULE_INDUCT_THEN: ill-formed rule induction theorem`;;
% --------------------------------------------------------------------- %
% Bind RULE_INDUCT_THEN to "it". %
% --------------------------------------------------------------------- %
RULE_INDUCT_THEN;;
% --------------------------------------------------------------------- %
% end of section. %
% --------------------------------------------------------------------- %
end_section RULE_INDUCT_THEN;;
% --------------------------------------------------------------------- %
% Save the exported value. %
% --------------------------------------------------------------------- %
let RULE_INDUCT_THEN = it;;
% ===================================================================== %
% TACTICS FROM THEOREMS THAT STATE RULES. %
% ===================================================================== %
begin_section RULE_TAC;;
% --------------------------------------------------------------------- %
% INTERNAL FUNCTION : axiom_tac %
% %
% This function maps an axiom of the form: %
% %
% |- R ps <args> %
% %
% to a tactic: %
% %
% --- %
% =========================== %
% A ?- !xs. R <ps> <args'> %
% %
% where <ps> is an instance of ps, and <args'> an instance of <args>. %
% --------------------------------------------------------------------- %
let axiom_tac th : tactic (A,g) =
(let vs,body = strip_forall g in
let instl = match (concl th) body in
[], K (itlist ADD_ASSUM A (GENL vs (INST_TY_TERM instl th)))) ?
failwith `RULE_TAC : axiom does not match goal`;;
% --------------------------------------------------------------------- %
% INTERNAL FUNCTION : prove_conj %
% %
% Given a list of theorems [|- C1; ...; |- Cn] and a conjunction %
% %
% "c1 /\ ... /\ cm" %
% %
% this function proves |- (c1 /\ ... /\ cm) provided each ci is equal %
% to some Ci. %
% --------------------------------------------------------------------- %
letrec prove_conj ths tm =
uncurry CONJ ((prove_conj ths # prove_conj ths) (dest_conj tm)) ?
find (curry $= tm o concl) ths;;
% --------------------------------------------------------------------- %
% RULE_TAC : maps a theorem stating a rule to a tactic. %
% --------------------------------------------------------------------- %
let RULE_TAC : thm -> tactic =
let mkg A vs c = A,list_mk_forall(vs,c) in
\th. (let vs,rule = strip_forall(concl th) in
(let asm,cvs,cncl = (I # strip_forall) (dest_imp rule) in
let ith = DISCH asm (SPECL cvs (UNDISCH (SPECL vs th))) in
\(A,g).
(let gvs,body = strip_forall g in
let slis,ilis = match cncl body in
let th1 = INST_TY_TERM (slis,ilis) ith in
let svs = freesl (map (subst slis o inst [] ilis) vs) in
let nvs = intersect gvs svs in
let ante = fst(dest_imp(concl th1)) in
let newgs = map (mkg A nvs) (conjuncts ante) in
newgs,
\thl. let ths = map (SPECL nvs o ASSUME o snd) newgs in
let th2 = GENL gvs (MP th1 (prove_conj ths ante)) in
itlist PROVE_HYP thl th2) ?
failwith `RULE_TAC : rule does not match goal`) ?
axiom_tac (SPECL vs th)) ?
failwith `RULE_TAC: ill-formed input theorem`;;
% --------------------------------------------------------------------- %
% Bind this value to "it". %
% --------------------------------------------------------------------- %
RULE_TAC;;
% --------------------------------------------------------------------- %
% end the section. %
% --------------------------------------------------------------------- %
end_section RULE_TAC;;
% --------------------------------------------------------------------- %
% save the function. %
% --------------------------------------------------------------------- %
let RULE_TAC = it;;
% ===================================================================== %
% REDUCTION OF A CONJUNCTION OF EQUATIONS. %
% ===================================================================== %
begin_section REDUCE;;
% --------------------------------------------------------------------- %
% INTERNAL FUNCTION : reduce %
% %
% A call to %
% %
% reduce [v1;...;vn] ths [] [] %
% %
% reduces the list of theorems ths to an equivalent list by removing %
% theorems of the form |- vi = ti where vi does not occur free in ti, %
% first using this equation to substitute ti for vi in all the other %
% theorems. The theorems in ths are processed sequentially, so for %
% example: %
% %
% reduce [a;b] [|- a=1; |- b=a+2; |- c=a+b] [] [] %
% %
% is reduced in the following stages: %
% %
% [|- a=1; |- b=a+2; |- c=a+b] %
% %
% ===> [|- b=1+2; |- c=1+b] (by the substitution [1/a]) %
% ===> [|- c=1+(1+2)] (by the substitution [1+2/b]) %
% %
% The function returns the reduced list of theorems, paired with a list %
% of the substitutions that were made, in reverse order. The result %
% for the above example would be [|- c = 1+(1+2)],[("1+2",b);("1",a)]. %
% --------------------------------------------------------------------- %
letrec reduce vs ths res sub =
if (null ths) then (rev res, sub) else
(let l,r = dest_eq(concl(hd ths)) in
let sth,pai = mem l vs => hd ths,(r,l) |
mem r vs => SYM(hd ths),(l,r) | fail in
if free_in (snd pai) (fst pai) then fail else
let sfn = map (SUBS [sth]) in
let ssfn = map \(x,y). (subst [pai] x),y in
reduce vs (sfn (tl ths)) (sfn res) (pai . ssfn sub)) ?
(reduce vs (tl ths) (hd ths . res) sub);;
% --------------------------------------------------------------------- %
% REDUCE : simplify an existentially quantified conjuction by %
% eliminating conjuncts of the form |- v=t, where v is among the %
% quantified variables and v does not appear free in t. For example %
% suppose: %
% %
% tm = "?vi. ?vs. C1 /\ ... /\ v = t /\ ... /\ Cn" %
% %
% then the result is: %
% %
% |- (?vi. ?vs. C1 /\ ... /\ vi = ti /\ ... /\ Cn) %
% = %
% (?vs. C1[ti/vi] /\ ... /\ Cn[ti/vi]) %
% %
% The equations vi = ti can appear as ti = vi, and all eliminable %
% equations are eliminated. Fails unless there is at least one %
% eliminable equation. Also flattens conjuncts. Reduces term to "T" if %
% all variables eliminable. %
% --------------------------------------------------------------------- %
let REDUCE =
let chfn v (a,th) =
let tm = mk_exists(v,a) in
let th' =
if (free_in v (concl th))
then EXISTS (mk_exists(v,concl th),v) th else th in
(tm,CHOOSE (v,ASSUME tm) th') in
let efn ss v (pat,th) =
let wit = fst(rev_assoc v ss) ? v in
let epat = subst ss (mk_exists(v,pat)) in
(mk_exists(v,pat),EXISTS(epat,wit) th) in
letrec prove ths cs =
(uncurry CONJ ((prove ths # prove ths) (dest_conj cs))) ?
(find (\t. concl t = cs) ths) ?
(REFL (rand cs)) in
\tm. let vs,cs = strip_exists tm in
let rem,ss = reduce vs (CONJUNCTS (ASSUME cs)) [] [] in
if (null ss) then failwith `REDUCE` else
let th1 = LIST_CONJ rem ? TRUTH in
let th2 = (uncurry DISCH) (itlist chfn vs (cs,th1)) in
let rvs,rcs = strip_exists(rand(concl th2)) in
let eqt = subst ss cs in
let th3 = prove (CONJUNCTS (ASSUME rcs)) eqt in
let _,th4 = itlist (efn ss) vs (cs,th3) in
let th5 = (uncurry DISCH) (itlist chfn rvs (rcs,th4)) in
IMP_ANTISYM_RULE th2 th5;;
% --------------------------------------------------------------------- %
% Bind this value to "it". %
% --------------------------------------------------------------------- %
REDUCE;;
% --------------------------------------------------------------------- %
% end the section. %
% --------------------------------------------------------------------- %
end_section REDUCE;;
% --------------------------------------------------------------------- %
% save the function. %
% --------------------------------------------------------------------- %
let REDUCE = it;;
% ===================================================================== %
% CASES THEOREM %
% ===================================================================== %
begin_section derive_cases_thm;;
% --------------------------------------------------------------------- %
% INTERNAL FUNCTION : LIST_NOT_FORALL %
% %
% If: %
% |- ~P %
% --------------- f : thm->thm %
% |- Q |- R %
% %
% Then: %
% %
% |- ~!x1 ... xi. P %
% ---------------------------- %
% |- ?x1 ... xi. Q |- R %
% --------------------------------------------------------------------- %
let LIST_NOT_FORALL =
let efn v th = EXISTS(mk_exists(v,concl th),v) th in
\f th. let vs,body = strip_forall (dest_neg (concl th)) in
if (null vs) then f th else
let Q,R = f (ASSUME(mk_neg body)) in
let nott = itlist efn vs Q in
let thm = CCONTR body (MP (ASSUME (mk_neg (concl nott))) nott) in
CCONTR (concl nott) (MP th (GENL vs thm)), R;;
% --------------------------------------------------------------------- %
% simp_axiom: simplify the body of an axiom. %
% --------------------------------------------------------------------- %
let simp_axiom sfn vs ax th =
(let rbody = LIST_BETA_CONV (dest_neg(concl th)) in
let fth = MP th (EQ_MP (SYM rbody) (ASSUME (rand (concl rbody)))) in
let imp = PROVE_HYP th (CCONTR (dest_neg(rand(concl rbody))) fth) in
let ante,eqs = (I # conjuncts) (dest_imp(concl imp)) in
let avs,res = strip_forall (concl ax) in
let inst = INST (fst(match res ante)) (SPECL avs ax) in
let ths = MP imp inst in
let thm = sfn (ASSUME(concl ths)) inst in
let rth = (uncurry DISCH) (itlist chfn vs ((concl ths),thm)) in
(ths,rth)) where
chfn v (a,th) = let tm = mk_exists(v,a) in (tm,CHOOSE (v,ASSUME tm) th);;
% --------------------------------------------------------------------- %
% crul rel th : beta-reduce and simplify if rel is free in th %
% %
% |- (\xs. ~(P ==> Q)) ts %
% -------------------------- crul rel th %
% |- P[ts/xs] %
% --------------------------------------------------------------------- %
let crul rel th =
if (free_in rel (concl th)) then
let th1 = CONV_RULE LIST_BETA_CONV th in
CONJUNCT1 (CONV_RULE (REWR_CONV NOT_IMP) th1) else th;;
% --------------------------------------------------------------------- %
% CONJ_RUL : chain through conjunction. %
% %
% If: %
% %
% |- Pi %
% -------------- (crul rel) %
% |- Qi %
% %
% then: %
% %
% |- P1 /\ ... /\ Pj %
% --------------------- CONJ_RUL rel %
% |- P1 /\ ... /\ Qj %
% --------------------------------------------------------------------- %
letrec CONJ_RUL rel th =
(uncurry CONJ ((crul rel # CONJ_RUL rel) (CONJ_PAIR th))) ? crul rel th;;
% --------------------------------------------------------------------- %
% LIST_EXIST_THEN : chain through exists. %
% %
% If: %
% %
% |- P %
% ------------- f %
% |- Q %
% %
% then: %
% %
% |- ?x1...xi. P %
% --------------------- LIST_EXISTS_THEN f %
% |- ?x1...xi. Q %
% --------------------------------------------------------------------- %
let LIST_EXISTS_THEN f th =
let vs,body = strip_exists(concl th) in
let th1 = DISCH body (f (ASSUME body)) in
MP (itlist EXISTS_IMP vs th1) th;;
% --------------------------------------------------------------------- %
% RULE %
% %
% |- !xs. p xs %
% --------------------------------- RULE |- ?xs. p xs => q xs %
% |- ?xs. q xs %
% --------------------------------------------------------------------- %
let RULE thm1 thm2 =
let xs,imp = strip_exists (concl thm1) in
let thm = SPECL xs thm2 in
let impth = MP (ASSUME imp) thm in
let iimp = DISCH imp impth in
MATCH_MP (itlist EXISTS_IMP xs iimp) thm1;;
% --------------------------------------------------------------------- %
% EXISTS_IMP : existentially quantify the antecedent and conclusion %
% of an implication. %
% %
% A |- P ==> Q %
% -------------------------- EXISTS_IMP "x" %
% A |- (?x.P) ==> (?x.Q) %
% %
% LIKE built-in, but doesn't quantify in Q if not free there. %
% Actually, used only in context where x not free in Q. %
% --------------------------------------------------------------------- %
let EXISTS_IMP2 x th =
let ante,cncl = dest_imp(concl th) in
if (free_in x cncl) then
let th1 = EXISTS (mk_exists(x,cncl),x) (UNDISCH th) in
let asm = mk_exists(x,ante) in
DISCH asm (CHOOSE (x,ASSUME asm) th1) else
let asm = mk_exists(x,ante) in
DISCH asm (CHOOSE (x,ASSUME asm) (UNDISCH th));;
% --------------------------------------------------------------------- %
% |- ?xs. P |- ?ys. Q ===> ?xs ys. P /\ Q %
% [Primes the ys if necessary.] %
% --------------------------------------------------------------------- %
let efn v th =
if free_in v (concl th)
then EXISTS(mk_exists(v,concl th),v) th
else th;;
let RULE2 vs thm1 thm2 =
let xs,P = strip_exists(concl thm1) in
let ys,Q = strip_exists(concl thm2) in
let itfn = \v vs. let v' = variant (vs @ xs) v in (v'.vs) in
let ys' = itlist itfn ys [] in
let Q' = subst(combine(ys',ys)) Q in
let asm = CONJ (ASSUME P) (ASSUME Q') in
let ths = CONJUNCTS asm in
let realths = ths in
let cs = LIST_CONJ realths in
let vs = filter (C free_in (concl cs)) (xs @ ys') in
let eth = MP (itlist EXISTS_IMP2 xs (DISCH P (itlist efn vs cs))) thm1 in
let eth' = MP (itlist EXISTS_IMP2 ys' (DISCH Q' eth)) thm2 in eth';;
% --------------------------------------------------------------------- %
% |- ~~P %
% -------- NOT_NOT %
% |- P %
% --------------------------------------------------------------------- %
let NOT_NOT th =
CCONTR (dest_neg(dest_neg (concl th))) (UNDISCH th);;
% --------------------------------------------------------------------- %
% simp_rule: simplify the body of a non-axiom rule. %
% --------------------------------------------------------------------- %
let simp_rule =
let rule = NOT_NOT o CONV_RULE(RAND_CONV LIST_BETA_CONV) in
\sfn set vs rul th.
(let c1,c2 = CONJ_PAIR (CONV_RULE (REWR_CONV NOT_IMP) th) in
let th1,_ = LIST_NOT_FORALL (\th. rule th,TRUTH) c2 in
let th2 = LIST_EXISTS_THEN (CONJ_RUL set) c1 in
let evs,imp = strip_exists (concl th1) in
let gvs,cnc = (I # rand) (strip_forall(concl rul)) in
let th3 = UNDISCH (SPECL gvs rul) in
let pat = list_mk_forall(evs,fst(dest_imp imp)) in
let inst = fst(match (concl th3) pat) in
let tha = INST inst (DISCH_ALL th3) in
let rins = MATCH_MP tha th2 in
let erins = MATCH_MP tha (ASSUME (concl th2)) in
let eqns = RULE th1 rins in
let evs,eths = (I # conjuncts) (strip_exists(concl eqns)) in
let thm = sfn (LIST_CONJ (map ASSUME eths)) (SPECL evs erins) in
let vv,cs = (I # conjuncts) (strip_exists(concl th2)) in
let itfn = \v vs. let v' = variant (vs @ evs) v in (v'.vs) in
let vv' = itlist itfn vv [] in
let cs' = map (subst(combine(vv',vv))) cs in
let thx = PROVE_HYP (itlist efn vv' (LIST_CONJ (map ASSUME cs'))) thm in
let simp = RULE2 vs eqns th2 in
let nevs,cn = strip_exists(concl simp) in
let hys = CONJUNCTS (ASSUME cn) in
let hh,nthm = itlist chfn nevs (cn,itlist PROVE_HYP hys thx) in
let res = (uncurry DISCH) (itlist chfn vs (hh,nthm)) in
(PROVE_HYP th simp, res))
where
chfn v (a,th) = let tm = mk_exists(v,a) in (tm,CHOOSE (v,ASSUME tm) th)
and efn v th = EXISTS(mk_exists(v,concl th),v) th;;
% --------------------------------------------------------------------- %
% simp : simplify a case in the case analysis theorem %
% %
% Each case has the form ~(!x1...xn.P). The inference rule is: %
% %
% If: %
% %
% |- ~ P %
% ------------- simp_axiom [x1;...;xn] rul %
% |- Q %
% %
% or: %
% %
% |- ~ P %
% ------------- simp_rule [x1;...;xn] set rul %
% |- Q %
% %
% then: %
% %
% |- ~(!x1...xi. P) %
% --------------------- simp set rul %
% |- ?y1...yj. Q %
% --------------------------------------------------------------------- %
let simp set sfn rul th =
let vs = fst(strip_forall (dest_neg (concl th))) in
LIST_NOT_FORALL (simp_axiom sfn vs rul) th ?
LIST_NOT_FORALL (simp_rule sfn set vs rul) th ? failwith `simp`;;
% --------------------------------------------------------------------- %
% LIST_DE_MORGAN: iterated inference rule. %
% %
% If: %
% %
% ~Pi |- ~Pi %
% --------------------------- f (|- thi) %
% R |- Qi |- Qi ==> R %
% %
% Then %
% %
% R |- ~(P1 /\ ... /\ Pn) %
% ------------------------ LIST_DE_MORGAN f [|- th1;...;|- thn] %
% R |- Q1 \/ ... \/ Qn %
% |- Q1 \/ ... \/ Qn ==> R %
% --------------------------------------------------------------------- %
let LIST_DE_MORGAN =
let v1 = genvar ":bool" and v2 = genvar ":bool" in
let thm = fst(EQ_IMP_RULE(CONJUNCT1 (SPECL [v1;v2] DE_MORGAN_THM))) in
let IDISJ th1 th2 =
let di = mk_disj(rand(rator(concl th1)),rand(rator(concl th2))) in
DISCH di (DISJ_CASES (ASSUME di) (UNDISCH th1) (UNDISCH th2)) in
let ITDISJ th1 th2 =
let [hy1],cl1 = dest_thm th1 and [hy2],cl2 = dest_thm th2 in
let dth = UNDISCH (INST [rand hy1,v1;rand hy2,v2] thm) in
DISJ_CASES_UNION dth th1 th2 in
\f ths th.
let cs = conjuncts(dest_neg (concl th)) in
let ts1,ts2 = split (map2 (\r,t. f r (ASSUME(mk_neg t))) (ths,cs)) in
(PROVE_HYP th (end_itlist ITDISJ ts1)),end_itlist IDISJ ts2;;
% --------------------------------------------------------------------- %
% derive_cases_thm : prove exhaustive case analysis theorem for an %
% inductively defined relation. %
% --------------------------------------------------------------------- %
let derive_cases_thm (rules,ind) =
let vs,(hy,c) = (I # dest_imp) (strip_forall (concl ind)) in
let ps,P = (butlast vs, last vs) in
let sind = SPECL ps ind and srules = map (SPECL ps) rules in
let cvs,con = strip_forall c in
let thm1 = DISCH hy (SPECL cvs (UNDISCH (SPEC P sind))) in
let avs = map (genvar o type_of) cvs in
let eqns = list_mk_conj(map2 mk_eq (cvs,avs)) in
let asmp = subst (combine(avs,cvs)) (rator con) in
let pred = list_mk_abs (avs,mk_neg(mk_comb(asmp,eqns))) in
let thm2 = UNDISCH (UNDISCH (INST [pred,P] thm1)) in
let thm3 = CONV_RULE LIST_BETA_CONV thm2 in
let HY = rand(rator con) in
let contr = DISCH HY (ADD_ASSUM HY (LIST_CONJ (map REFL cvs))) in
let fthm = NOT_INTRO (DISCH (subst [pred,P] hy) (MP thm3 contr)) in
let sfn eqs = SUBST (combine(map SYM (CONJUNCTS eqs),cvs)) HY in
let set = fst(strip_comb HY) in
let a,b = LIST_DE_MORGAN (simp set sfn) srules fthm in
let th = IMP_ANTISYM_RULE (DISCH HY a) b in
let ds = map (TRY_CONV REDUCE) (disjuncts(rand(concl th))) in
let red = end_itlist (\t1 t2. MK_COMB (AP_TERM "\/" t1,t2)) ds in
GENL ps (GENL cvs (TRANS th red));;
% --------------------------------------------------------------------- %
% Bind this value to "it". %
% --------------------------------------------------------------------- %
derive_cases_thm;;
% --------------------------------------------------------------------- %
% end the section. %
% --------------------------------------------------------------------- %
end_section derive_cases_thm;;
% --------------------------------------------------------------------- %
% save the function. %
% --------------------------------------------------------------------- %
let derive_cases_thm = it;;
%< =====================================================================
TEST CASES
loadf `ind_defs`;;
timer true;;
let rules1,ind1 =
let N = "N (R:num->num->bool) : num->num->bool" in
new_inductive_definition false `def1`
("^N n m", ["R:num->num->bool"])
[ [],"^N 0 m" ;
["^N n m"; "R (m:num) (n:num):bool"], "^N (n+2) k"];;
derive_strong_induction (rules1,ind1);;
derive_cases_thm (rules1,ind1);;
let rules2,ind2 =
let RTC = "RTC1:(*->*->bool)->*->*->bool" in
new_inductive_definition false `def2`
("^RTC R x y", ["R:*->*->bool"]),
[ [
% ------------------------------ % "R (x:*) (y:*):bool"],
"^RTC R x y" ;
[ ],
%------------------------------- %
"^RTC R x x" ;
[ "^RTC R z y" ; "(R:*->*->bool) x z"
%------------------------------- %],
"^RTC R x y" ];;
derive_strong_induction (rules2,ind2);;
derive_cases_thm (rules2,ind2);;
let rules3,ind3 =
let RTC = "RTC2:(*->*->bool)->*->*->bool" in
new_inductive_definition false `def3`
("^RTC R x y", ["R:*->*->bool"]),
[ [
% ------------------------------ % "R (x:*) (y:*):bool"],
"^RTC R x y" ;
[ ],
%------------------------------- %
"^RTC R x x" ;
[ "^RTC R z y" ; "(R:*->*->bool) x z"
%------------------------------- %],
"^RTC R x y" ];;
derive_strong_induction (rules3,ind3);;
derive_cases_thm (rules3,ind3);;
let rules4,ind4 =
let RTC = "RTC4:(*->*->bool)->*->*->bool" in
new_inductive_definition false `def4`
("^RTC R x y", ["R:*->*->bool"]),
[ [
% ------------------------------ % "R (x:*) (y:*):bool"],
"^RTC R x y" ;
[
%------------------------------- % ],
"^RTC R x x" ;
[ "^RTC R x z"; "^RTC R z y" ],
%------------------------------- % [],
"^RTC R x y" ];;
derive_strong_induction (rules4,ind4);;
derive_cases_thm (rules4,ind4);;
let rules5,ind5 =
let ODD = "ODD:num->num->bool" in
new_inductive_definition false `def5`
("^ODD n m", []),
[ [
% ------------------------------ % ],
"^ODD 2 3" ;
[ "^ODD n m"; "(1=2) /\ (3=4)"; "^ODD 2 3"
%------------------------------- % ],
"^ODD (n+m) m" ];;
derive_strong_induction (rules5,ind5);;
derive_cases_thm (rules5,ind5);;
let rules6,ind6 =
let EVEN = "EVEN:num->bool" in
new_inductive_definition false `def6`
("^EVEN n", []),
[ [
% ------------------------------ % ],
"^EVEN 0" ;
[ "^EVEN n"
%------------------------------- % ],
"^EVEN (n+2)" ];;
derive_strong_induction (rules6,ind6);;
derive_cases_thm (rules6,ind6);;
===================================================================== >%
|