This file is indexed.

/usr/share/hol88-2.02.19940316/contrib/rule-induction/cl.ml is in hol88-contrib-source 2.02.19940316-31.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
% ===================================================================== %
% FILE		: cl.ml							%
% DESCRIPTION   : Creates the syntactic theory of combinatory logic and %
%		  defines reduction of terms in the logic. Proves the	%
%		  Church-Rosser theorem for this reduction relation.	%
%									%
% AUTHORS	: Tom Melham and Juanito Camilleri			%
% DATE		: 91.10.09						%
% ===================================================================== %

% --------------------------------------------------------------------- %
% Open a new theory and load the inductive definitions library.		%
% --------------------------------------------------------------------- %

new_theory `cl`;;

load_library `ind_defs`;;


% ===================================================================== %
% Syntax of the combinatory logic.					%
% ===================================================================== %

% --------------------------------------------------------------------- %
% The recursive types package is used to define the syntax of terms in 	%
% combnatory logic. The syntax is:					%
%									%
%    U ::=   s  |  k  |  U1 ' U2					%
%                                                                       %
% where U, U1, and U2 range over terms. In higher order logic, terms of	%
% combinatory logic are represented by the following constructors of a	%
% recursive type cl:							%
%						                        %
%    s:cl,  k:cl, and ap:cl -> cl -> cl					%
%									%
% We are unfortunately prevented from the using upper-case letter S, as %
% this is already a constant in the built-in HOL theory heirarchy. For  %
% notational clarity, we later introduce an infix constant ' for the	%
% application constructor shown above as `ap'.				%
% --------------------------------------------------------------------- %

let cl = define_type `cl` `cl = s | k | ap cl cl`;;


% --------------------------------------------------------------------- %
% Define an infix constructor for application.				%
% --------------------------------------------------------------------- %

new_letter `'`;;
let ap_def = new_infix_definition(`ap_def`, "' = ap");;


% --------------------------------------------------------------------- %
% Replace `ap' by the infix.						%
% --------------------------------------------------------------------- %

let cl = save_thm(`cl_thm`, SUBS [SYM ap_def] cl);;


% ===================================================================== %
% Standard syntactic theory, derived by the recursive types package.	%
% ===================================================================== %

% --------------------------------------------------------------------- %
% Structural induction theorem for terms of combinatory logic .		%
% --------------------------------------------------------------------- %

let induct = save_thm (`induct`,prove_induction_thm cl);;

% --------------------------------------------------------------------- %
% Exhaustive case analysis theorem for terms of combinatory logic.	%
% --------------------------------------------------------------------- %

let cases = save_thm (`cases`, prove_cases_thm induct);;

% --------------------------------------------------------------------- %
% Prove that the application constructor is one-to-one.			%
% --------------------------------------------------------------------- %

let ap11 = save_thm(`ap11`, prove_constructors_one_one cl);;

% --------------------------------------------------------------------- %
% Prove that the constructors yield syntactically distinct values. One	%
% typically needs all symmetric forms of the inequalities.		%
% --------------------------------------------------------------------- %

let distinct =
    let ths = CONJUNCTS (prove_constructors_distinct cl) in
    let rths = map (GEN_ALL o NOT_EQ_SYM o SPEC_ALL) ths in
        save_thm(`distinct`, LIST_CONJ (ths @ rths));;


% ===================================================================== %
% Inductive definition of reduction of CL terms.			%
% ===================================================================== %

% --------------------------------------------------------------------- %
% Definition of weak contraction.					%
%                                                                       %
% The one-step contraction relation -> is inductively defined by the 	%
% rules shown below.  This is the `weak contraction' relation of 	%
% Hindley and Seldin.  A weak redex is a term of the form Kxy or Sxyz.  %
% A term U weakly contracts to V (i.e. U -1-> V) if V can be obtained   %
% by replacing one occurrence of a redex in U, where a redex Kxy is	%
% replaced by x and a redex Sxyz is replaced by (xz)yz.  The first two  %
% rules in the inductive definition given below define the contraction  % 
% of redexes; the second two rules define the contraction of subterms.	%
% --------------------------------------------------------------------- %

new_special_symbol `-1->`;;

let (Crules,Cind) =
    let CTR = "-1->:cl->cl->bool" in
    new_inductive_definition true `contract` 

    ("^CTR U V", [])

    [ [                                                               
      % ------------------------------------------------------ % ],
                       "^CTR ((k ' x) ' y) x"                  ;

      [                                                              
      %------------------------------------------------------- % ],
           "^CTR (((s ' x) ' y) ' z)  ((x ' z) ' (y ' z))"     ;


      [                     "^CTR x y"                               
      %------------------------------------------------------- % ],
                      "^CTR (x ' z) (y ' z)"                   ;


      [                     "^CTR x y"                              
      %------------------------------------------------------- % ],
                      "^CTR (z ' x) (z ' y)"                     ];;



% --------------------------------------------------------------------- %
% Stronger form of rule induction.					%
% --------------------------------------------------------------------- %

let Csind = derive_strong_induction (Crules,Cind);;

% --------------------------------------------------------------------- %
% Standard rule induction tactic for -1->.  This uses the weaker form   %
% of the rule induction theorem; and both premisses and side conditions %
% are just assumed (in stripped form).  				%
% --------------------------------------------------------------------- %

let C_INDUCT_TAC =
    RULE_INDUCT_THEN Cind STRIP_ASSUME_TAC STRIP_ASSUME_TAC;;

% --------------------------------------------------------------------- %
% Prove the case analysis theorem for the contraction rules.		%
% --------------------------------------------------------------------- %

let Ccases = derive_cases_thm (Crules,Cind);;

% --------------------------------------------------------------------- %
% Tactics for each of the contraction rules.				%
% --------------------------------------------------------------------- %
let [Ck_TAC;Cs_TAC;LCap_TAC;RCap_TAC] = map RULE_TAC Crules;;


% --------------------------------------------------------------------- %
% The weak reduction relation on terms in combinatory logic is just the %
% reflexive-transitive closure of -1->.  We define reflexive-transitive %
% closure inductively as follows, and then define the weak reduction 	%
% relation ---> to be RTC -1->.						%
% --------------------------------------------------------------------- %

let (RTCrules,RTCind) =
    let RTC = "RTC:(*->*->bool)->*->*->bool" in
    new_inductive_definition false `RTC` 

    ("^RTC R x y", ["R:*->*->bool"])

    [ [				       
      % ------------------------------ % "R (x:*) (y:*):bool"],
                "^RTC R x y"	       ;

      [				       
      % ------------------------------ % ],
                "^RTC R x x"	       ;


      [  "^RTC R x z"; "^RTC R z y"    
      %------------------------------- % ],
                "^RTC R x y"	       ];;



% --------------------------------------------------------------------- %
% Standard rule induction tactic for RTC.				%
% --------------------------------------------------------------------- %

let RTC_INDUCT_TAC =
    RULE_INDUCT_THEN RTCind STRIP_ASSUME_TAC STRIP_ASSUME_TAC;;

% --------------------------------------------------------------------- %
% Tactics for the RTC rules.						%
% --------------------------------------------------------------------- %

let [RTC_IN_TAC;RTC_REFL_TAC;RTC_TRANS_TAC] = map RULE_TAC RTCrules;;


% --------------------------------------------------------------------- %
% Case analysis theorem for RTC.					%
% --------------------------------------------------------------------- %

let RTCcases = derive_cases_thm (RTCrules,RTCind);;


% --------------------------------------------------------------------- %
% Definition of weak reduction.						%
% --------------------------------------------------------------------- %

new_special_symbol `--->`;;
let reduce = new_infix_definition(`reduce`, "(--->) = RTC (-1->)");;


% ===================================================================== %
% Theorem : -1-> does not have the Church-Rosser property. 		%
%									%
% We wish to prove that weak reduction is Church-Rosser.  If we could 	%
% prove that the one-step contraction -1-> has this property, then we	%
% could also show that reduction does, since taking the reflexive-	%
% transitive closure of a relation preserves the Church-Rosser theorem. %
% Unfortunately, however, -1-> is not Church- Rosser, as the following	%
% counterexample shows.	  						%
%									%
% The counter example is ki(ii) where i = skk. We have that:		%
%									%
%             ki(ii)							%
%              /  \							%
%             /    \							%
%            /      \							%
%           i    ki(ki)(ki)						%
%                   /							%
%                  /							%
%                 /							%
%                i							%
%									%
% But i doesn't contract to i (or indeed to any other term).		%
% ===================================================================== %

% --------------------------------------------------------------------- %
% We first define i to be skk.						%
% --------------------------------------------------------------------- %

let iDEF = new_definition (`iDEF`, "i = (s ' k) ' k");;

% --------------------------------------------------------------------- %
% Given the tactics defined above for each rule, it is straightforward 	%
% to construct a tactic for automatically checking an assertion that	%
% one term contracts to another.  The tactic just does a search for a   %
% proof using the rules for -1->.					%
% --------------------------------------------------------------------- %

letrec CONT_TAC g =
   FIRST [Cs_TAC;
          Ck_TAC;
          LCap_TAC THEN CONT_TAC;
          RCap_TAC THEN CONT_TAC] g ? 
   failwith `CONT_TAC`;;


% --------------------------------------------------------------------- %
% We can now use this tactic to show the following lemmas:		%
%									%
%    1) ki(ii) -1-> i 							%
%    2) ki(ii) -1-> ki((ki)(ki))					%
%    3) ki((ki)(ki)) -1-> i						%
% --------------------------------------------------------------------- %

let lemma1 =
    PROVE
    ("((k ' i) ' (i ' i)) -1-> i",
     CONT_TAC);;

let lemma2 =
    PROVE
    ("((k ' i) ' (i ' i)) -1-> (k ' i) ' ((k ' i) ' (k ' i))",
     SUBST1_TAC iDEF THEN CONT_TAC);;

let lemma3 =
    PROVE
    ("((k ' i) ' ((k ' i) ' (k ' i))) -1-> i",
     SUBST1_TAC iDEF THEN CONT_TAC);;

% --------------------------------------------------------------------- %
% For the proof that ~?U. i -1-> U, we construct some infrastructure 	%
% for a general way of dealing with contractability assertions.  The    %
% core of this consists of a tactic that rewrites assertions of the     %
% form "U -1-> V" with the cases theorem for -1-> :			%
% 									%
%   |- !U V.								%
%       U -1-> V =							%
%       (?y. U = (k ' V) ' y) \/					%
%       (?x y z. (U = ((s ' x) ' y) ' z) /\ (V = (x ' z) ' (y ' z))) \/ %
%       (?x y z. (U = x ' z) /\ (V = y ' z) /\ x -1-> y) \/		%
%       (?x y z. (U = z ' x) /\ (V = z ' y) /\ x -1-> y)		%
%									%
% The full method is as follows:					%
%									%
%   1) rewrite just once using the cases theorem			%
%									%
%        PURE_ONCE_REWRITE_TAC [Ccases]					%
%									%
%   2) simplify any equations between cl-terms that arise from step	%
%      1 by using distinctness and injectivity of application.  Also 	%
%      normalize conjunctions and disjunctions.				%
%									%
%        REWRITE_TAC [distinct;ap11;GSYM CONJ_ASSOC; LEFT_AND_OVER_OR]  %
%									%
%   3) move any buried existential quantifiers outwards through 	%
%      conjunctions and inwards through disjunctions.			%
%									%
%        let outc = LEFT_AND_EXISTS_CONV ORELSEC RIGHT_AND_EXISTS_CONV  %
%        CONV_TAC (REDEPTH_CONV outc) THEN				%
%        CONV_TAC (REDEPTH_CONV EXISTS_OR_CONV) 			%
%									%
%   4) eliminate redundant equations using REDUCE from ind_defs		%
%									%
%        CONV_TAC (ONCE_DEPTH_CONV REDUCE)				%
%									%
% The overall effect is one step of expansion with the cases theorem,	%
% followed by a renormalization step.  Repeat as often as needed, but   %
% note that REPEAT may loop.  Could guard step 1 with a stopping	%
% condition if necessary.  Note that the normal form is a disjunction   %
% of existentially-quantified conjunctions.				%
% --------------------------------------------------------------------- %

let EXPAND_CASES_TAC =
    let outc = LEFT_AND_EXISTS_CONV ORELSEC RIGHT_AND_EXISTS_CONV in
    PURE_ONCE_REWRITE_TAC [Ccases] THEN
    REWRITE_TAC [distinct;ap11;GSYM CONJ_ASSOC; LEFT_AND_OVER_OR] THEN
    CONV_TAC (REDEPTH_CONV outc) THEN
    CONV_TAC (REDEPTH_CONV EXISTS_OR_CONV) THEN
    CONV_TAC (ONCE_DEPTH_CONV REDUCE);;

% --------------------------------------------------------------------- %
% We can now use this tactic to prove that i doesn't contract to any 	%
% term of combinatory logic.  Note that since the transition in fact	%
% does NOT hold, step 2 of EXPAND_CASES_TAC eventually solves the goal. %
% Hence we may use REPEAT here.						%
% --------------------------------------------------------------------- %

let lemma4 =
    PROVE
    ("~?U. i -1-> U",
     SUBST_TAC [iDEF] THEN REPEAT EXPAND_CASES_TAC);;


% --------------------------------------------------------------------- %
% We now have our counterexample to show that -1-> does not have the	%
% Church-Rosser property.  We first define an abbreviation for the 	%
% assertion that a relation R has this property.			%
% --------------------------------------------------------------------- %

let CR =
    new_definition
    (`CR`,
      "CR (R: * -> * -> bool) =
       !a b. R a b ==> !c. R a c ==> ?d. R b d /\ R c d");;

% --------------------------------------------------------------------- %
% Use the counterexample to show that -1-> is not Church-Rosser.	%
% The conversion NOT_CONV moves negations inwards through quantifiers,	%
% applies Demorgan's laws where ever possible, and simplifies ~~P to P.	%
% --------------------------------------------------------------------- %

let NOT_CONV =
    let ths = CONJUNCTS(SPEC_ALL DE_MORGAN_THM) in
    let rcnv = map REWR_CONV (CONJUNCT1 NOT_CLAUSES . ths) in
        REDEPTH_CONV (FIRST_CONV ([NOT_FORALL_CONV; NOT_EXISTS_CONV] @ rcnv));;

let NOT_C_CR =
    prove_thm
    (`NOT_C_CR`,
     "~CR($-1->)",
     PURE_REWRITE_TAC [CR;IMP_DISJ_THM] THEN
     CONV_TAC NOT_CONV THEN
     EXISTS_TAC "(k ' i) ' (i ' i)" THEN
     EXISTS_TAC "(k ' i) ' ((k ' i) ' (k ' i))" THEN
     REWRITE_TAC [lemma2] THEN
     EXISTS_TAC "i" THEN
     REWRITE_TAC [lemma1;CONV_RULE NOT_EXISTS_CONV lemma4]);;

% ===================================================================== %
% Inductive definition of parallel reduction of CL terms		%
% ===================================================================== %

% --------------------------------------------------------------------- %
% Definition of one-step parallel contraction.				%
% 									%
% This one-step contraction relation has the Church-Rosser property,    %
% and its transitive closure (parallel reduction) therefore also does.  %
% Moreover, parallel reduction and ---> are the same relation, so we can%
% prove the Church-Rosser theorem for ---> by proving it for parallel	%
% reduction.  The inductive definition of one-step parallel contraction %
% is given below.  The allow any number of redexes among the subterms   %
% of a term to be contracted in a single step.				%
% --------------------------------------------------------------------- %

new_special_symbol `=1=>`;;

let (PCrules,PCind) =
    let PCTR = "=1=>:cl->cl->bool" in
    new_inductive_definition true `pcontract` 

    ("^PCTR U V", [])

    [ [
      % ------------------------------------------------------ % ],
                             "^PCTR x x"                       ;

      [                                                               
      % ------------------------------------------------------ % ],
                       "^PCTR ((k ' x) ' y) x"                 ;

      [                                                               
      %------------------------------------------------------- % ],
           "^PCTR (((s ' x) ' y) ' z)  ((x ' z) ' (y ' z))"    ;


      [              "^PCTR w x";     "^PCTR y z"                       
      %------------------------------------------------------- % ],
                       "^PCTR (w ' y) (x ' z)"                   ];;



% --------------------------------------------------------------------- %
% Stronger form of rule induction.					%
% --------------------------------------------------------------------- %

let PCsind = derive_strong_induction (PCrules,PCind);;


% --------------------------------------------------------------------- %
% Standard rule induction tactic for =1=>.				%
% --------------------------------------------------------------------- %

let PC_INDUCT_TAC =
    RULE_INDUCT_THEN PCind STRIP_ASSUME_TAC STRIP_ASSUME_TAC;;

% --------------------------------------------------------------------- %
% Case analysis theorem for =1=>.					%
% --------------------------------------------------------------------- %

let PCcases = derive_cases_thm (PCrules,PCind);;


% --------------------------------------------------------------------- %
% Tactics for each of the parallel contraction rules.			%
% --------------------------------------------------------------------- %
let [PC_REFL_TAC;PCk_TAC;PCs_TAC;PCap_TAC] = map RULE_TAC PCrules;;

% --------------------------------------------------------------------- %
% Given the tactics defined above for each rule, it is straightforward 	%
% to construct a tactic for automatically checking an assertion that	%
% one term contracts to another.  The tactic just does a search for a   %
% proof using the rules for =1=>.					%
% --------------------------------------------------------------------- %

letrec PC_TAC g =
   FIRST [PC_REFL_TAC;
          PCk_TAC;
          PCs_TAC;
          PCap_TAC THEN PC_TAC] g ? ALL_TAC g;;


% --------------------------------------------------------------------- %
% The weak reduction relation on terms in combinatory logic is just the %
% transitive closure of =1=>.  Transitive is defined inductively as	%
% follows.  Note that the transitivity rule formulated as:		%
%									%
%            TC R x z 							%
%   R1:   -------------- R z y						%
%            TC R x y							%
%									%
% and not as								%
%									%
%          TC R x z   TC R z y						%
%   R2:  ------------------------					%
%              TC R x z							%
%									%
% This is because rule R1 gives a linear structure to rule inductions   %
% for transitive closure, which make the details of these proofs easier %
% to handle than the tree-shaped structure induced by rule R2.		%
%									%
% Once transitive closure has been defined, the parallel reduction 	%
% relation ===> can just be defined to be TC =1=>.			%
% --------------------------------------------------------------------- %

let (TCrules,TCind) =
    let TC = "TC:(*->*->bool)->*->*->bool" in
    new_inductive_definition false `TC` 

    ("^TC R x y", ["R:*->*->bool"])

    [ [				       
      % ------------------------------ %  "R (x:*) (y:*):bool"],
                "^TC R x y"	       ;

      [         "^TC R x z"	       
      %------------------------------- % ;  "R (z:*) (y:*):bool"],
                "^TC R x y"	       ];;


% --------------------------------------------------------------------- %
% Standard rule induction tactic for TC.				%
% --------------------------------------------------------------------- %

let TC_INDUCT_TAC =
    RULE_INDUCT_THEN TCind STRIP_ASSUME_TAC STRIP_ASSUME_TAC;;


% --------------------------------------------------------------------- %
% Tactics for the TC rules.						%
% --------------------------------------------------------------------- %

let [TC_IN_TAC;TC_TRANS_TAC] = map RULE_TAC TCrules;;


% --------------------------------------------------------------------- %
% Strong form of rule induction for TC.					%
% --------------------------------------------------------------------- %

let TCsind = derive_strong_induction (TCrules,TCind);;


% --------------------------------------------------------------------- %
% Now, define parallel reduction for terms of CL.			%
% --------------------------------------------------------------------- %

new_special_symbol `===>`;;
let preduce = new_infix_definition(`preduce`, "(===>) = TC (=1=>)");;

% ===================================================================== %
% Theorem: ===> and ---> are the same relation.				%
% ===================================================================== %

% --------------------------------------------------------------------- %
% The following sequence of lemmas show that the rules for the single	%
% step contraction -1-> also hold its reflexive-transitive closure, 	%
% namely the relation --->.  The proofs are trivial for the k and s	%
% axioms. For the two application rules, we need a simple induction	%
% on the rules defining RTC.  						%
% --------------------------------------------------------------------- %

let Rk_THM =
    PROVE
    ("!a b. ((k ' a) ' b) ---> a",
     SUBST1_TAC reduce THEN
     RTC_IN_TAC THEN Ck_TAC);;

let Rs_THM =
    PROVE
    ("!a b c. (((s ' a) ' b) ' c) ---> ((a ' c) ' (b ' c))",
     SUBST1_TAC reduce THEN
     RTC_IN_TAC THEN Cs_TAC);;

let LRap_THM =
    PROVE
    ("!a b. a ---> b ==> !c. (a ' c) ---> (b ' c)",
     SUBST1_TAC reduce THEN
     RTC_INDUCT_TAC THEN REPEAT GEN_TAC THENL
     [RTC_IN_TAC THEN LCap_TAC THEN FIRST_ASSUM ACCEPT_TAC;
      RTC_REFL_TAC;
      RTC_TRANS_TAC THEN EXISTS_TAC "z ' c" THEN ASM_REWRITE_TAC[]]);;

let RRap_THM =
    PROVE
    ("!a b. a ---> b ==> !c. (c ' a) ---> (c ' b)",
     SUBST1_TAC reduce THEN
     RTC_INDUCT_TAC THEN REPEAT GEN_TAC THENL
     [RTC_IN_TAC THEN RCap_TAC THEN FIRST_ASSUM ACCEPT_TAC;
      RTC_REFL_TAC;
      RTC_TRANS_TAC THEN EXISTS_TAC "c ' z" THEN ASM_REWRITE_TAC[]]);;

% --------------------------------------------------------------------- %
% To avoid having to expand ---> into RTC -1->, we also prove that the  %
% rules for reflexive-transitive closure hold of --->.  The proofs are  %
% completely trivial.							%
% --------------------------------------------------------------------- %

let CONT_IN_RED =
    PROVE
    ("!U V. U -1-> V ==> U ---> V",
     REWRITE_TAC (reduce . RTCrules));;


let RED_REFL =
    PROVE
    ("!U. U ---> U",
     REWRITE_TAC (reduce . RTCrules));;


let RED_TRANS =
    PROVE
    ("!U V. (?W. U ---> W /\ W ---> V) ==> (U ---> V)",
     REWRITE_TAC (reduce . RTCrules));;


% --------------------------------------------------------------------- %
% We can now use these lemmas to prove that the relation ===> is a 	%
% subset of --->. The proof has two parts. The first is to show that if %
% there is a one-step parallel reduction U =1=> V, then U ---> V. Given %
% the lemmas proved above, it is easy to show that ---> is closed under %
% the rules that define =1=>, and hence by rule induction that =1=> is	%
% a subset of --->.							%
% --------------------------------------------------------------------- %


let PCONT_SUB_RED =
    PROVE
    ("!U V. U =1=> V ==> U ---> V",
     PC_INDUCT_TAC THEN REPEAT GEN_TAC THENL
     [MATCH_ACCEPT_TAC RED_REFL;
      MATCH_ACCEPT_TAC Rk_THM;
      MATCH_ACCEPT_TAC Rs_THM;
      MATCH_MP_TAC RED_TRANS THEN
      EXISTS_TAC "(x ' y)" THEN CONJ_TAC THENL
      [IMP_RES_THEN (TRY o MATCH_ACCEPT_TAC) LRap_THM;
       IMP_RES_THEN (TRY o MATCH_ACCEPT_TAC) RRap_THM]]);;

% --------------------------------------------------------------------- %
% Given this result, one can then prove that ===> is a subset of ---> 	%
% by rule induction.  The previous lemma just states that the relation  %
% ---> is closed under the inclusion rule for TC =1=>. And one can also %
% prove that ---> is closed under the transitivity rule, since we have	%
% already above proved that ---> is transitive.  Hence, by rule 	%
% induction of transitive closure, TC =1=> is a subset of --->.		%
% --------------------------------------------------------------------- %

let PRED_SUB_RED =
    PROVE
    ("!U V. (U ===> V) ==> U ---> V",
     SUBST1_TAC preduce THEN
     TC_INDUCT_TAC THEN REPEAT GEN_TAC THEN
     IMP_RES_TAC PCONT_SUB_RED THEN
     IMP_RES_TAC RED_TRANS);;


% --------------------------------------------------------------------- %
% The proof of the converse inclusion, that ---> is a subset of ===>,	%
% is similar.  Again, we begin with a series of lemmas which establish	%
% that the rules defining =1=> hold for its transitive closure ===>.	%
% --------------------------------------------------------------------- %

let PRk_THM =
    PROVE
    ("!a b. ((k ' a) ' b) ===> a",
     SUBST1_TAC preduce THEN
     TC_IN_TAC THEN PC_TAC);;

let PRs_THM =
    PROVE
    ("!a b c. (((s ' a) ' b) ' c) ===> ((a ' c) ' (b ' c))",
     SUBST1_TAC preduce THEN
     TC_IN_TAC THEN PC_TAC);;

% --------------------------------------------------------------------- %
% The application case is slightly trickier than the two analogous 	%
% application theorems in the previous series of lemmas. Because of the %
% way the transitivity rule is formulated, a double rule induction is   %
% needed.								%
% --------------------------------------------------------------------- %

let PRap_THM =
    PROVE
    ("!a b. (a ===> b) ==> !c d. (c ===> d) ==> ((a ' c) ===> (b ' d))",
     SUBST1_TAC preduce THEN
     REPEAT TC_INDUCT_TAC THENL
     [TC_IN_TAC;
      TC_TRANS_TAC THEN EXISTS_TAC "y ' z" THEN CONJ_TAC;
      TC_TRANS_TAC THEN EXISTS_TAC "z ' x'" THEN CONJ_TAC THENL
      [FIRST_ASSUM MATCH_MP_TAC THEN TC_IN_TAC;ALL_TAC];
      TC_TRANS_TAC THEN EXISTS_TAC "y ' z'" THEN CONJ_TAC] THEN
     PC_TAC THEN FIRST_ASSUM MATCH_ACCEPT_TAC);;

% --------------------------------------------------------------------- %
% We also need to show that ===> is reflexive and transitive. Note that	%
% in the transitivity case we need a careful formulation of the 	%
% induction hypothesis, because of the way the transitivity rule for TC %
% is stated.  In particular, we induct on b ===> c, rather than on	%
% a ===> b.								%
% --------------------------------------------------------------------- %

let PR_REFL =
    PROVE
    ("!U. U ===> U",
     SUBST1_TAC preduce THEN
     TC_IN_TAC THEN PC_TAC);;

let PR_TRANS = 
    PROVE
    ("!b c. (b ===> c) ==> !a. (a ===> b) ==> (a ===> c)",
     SUBST1_TAC preduce THEN
     TC_INDUCT_TAC THEN REPEAT STRIP_TAC THENL
     [TC_TRANS_TAC THEN EXISTS_TAC "x:cl";
      TC_TRANS_TAC THEN EXISTS_TAC "z:cl" THEN RES_TAC] THEN
     ASM_REWRITE_TAC[]);;


% --------------------------------------------------------------------- %
% We now show by rule induction that -1-> is a subset of ===>. We have	%
% already proved that the s and k rules for -1-> also hold for ===>.    %
% Futhermore, the two application rules for -1-> follow easily for the 	%
% relation ===>, since the more general application rule holds for this %
% relation and since it is reflexive.					%
% --------------------------------------------------------------------- %

let CONT_SUB_PRED =
    PROVE
    ("!U V. U -1-> V ==> U ===> V",
     C_INDUCT_TAC THEN REPEAT GEN_TAC THENL
     [MATCH_ACCEPT_TAC PRk_THM;
      MATCH_ACCEPT_TAC PRs_THM;
      ASSUME_TAC (SPEC "z:cl" PR_REFL) THEN IMP_RES_TAC PRap_THM;
      ASSUME_TAC (SPEC "z:cl" PR_REFL) THEN IMP_RES_TAC PRap_THM]);;

% --------------------------------------------------------------------- %
% That ---> is a subset of ===> now follows by rule induction.  We have %
% shown that ===> contains -1-> and that it is reflexive and transitive.%
% So ===> is closed under the rules for RTC -1->, and hence ---> is a   %
% subset of ===>.							%
% --------------------------------------------------------------------- %

let RED_SUB_PRED =
    PROVE
    ("!U V. U ---> V ==> U ===> V",
     SUBST1_TAC reduce THEN
     RTC_INDUCT_TAC THEN REPEAT GEN_TAC THENL
     [IMP_RES_TAC CONT_SUB_PRED;
      MATCH_ACCEPT_TAC PR_REFL;
      IMP_RES_TAC PR_TRANS]);;

% --------------------------------------------------------------------- %
% The equality of ---> and ===> follows immediately.			%
% --------------------------------------------------------------------- %

let RED_EQ_PRED =
    prove_thm
    (`RED_EQ_PRED`,
     "!U V. U ---> V = U ===> V",
     REPEAT (STRIP_TAC ORELSE EQ_TAC) THENL
     [IMP_RES_TAC RED_SUB_PRED; IMP_RES_TAC PRED_SUB_RED]);;

% ===================================================================== %
% Theorem: taking the transitive closure preserves Church-Rosser.	%
% ===================================================================== %

% --------------------------------------------------------------------- %
% Lemma: we can fill in any `strip' one transition wide.  That is, if	%
% R has the Church-Rosser rpoperty, then we have that 			%
%									%
%             a                                        a		%
%            / \				      / \		%
%  if       b   \       then there exists d st:      b   \		%
%                \                                    \   \		%
%                 c                                    \   c		%
%							\ /		%
%							 d	        %
%									%
% The choice of formulation for the transitivity rule makes the proof a %
% straightforward rule indction down the a-to-c leg of the rectangle.   %
% --------------------------------------------------------------------- %

let CR_LEMMA =
    prove_thm
    (`CR_LEMMA`,
     "!R:*->*->bool.
       CR R ==> !a c. TC R a c ==> !b. R a b ==> ?d. TC R b d /\ R c d",
     GEN_TAC THEN PURE_ONCE_REWRITE_TAC [CR] THEN STRIP_TAC THEN
     TC_INDUCT_TAC THEN REPEAT STRIP_TAC THEN RES_TAC THENL
     [EXISTS_TAC "d':*" THEN CONJ_TAC THENL
      [TC_IN_TAC THEN FIRST_ASSUM ACCEPT_TAC; FIRST_ASSUM ACCEPT_TAC];
      EXISTS_TAC "d'':*" THEN CONJ_TAC THENL
      [TC_TRANS_TAC THEN EXISTS_TAC "d:*" THEN
       CONJ_TAC THEN FIRST_ASSUM ACCEPT_TAC;
       FIRST_ASSUM ACCEPT_TAC]]);;


% --------------------------------------------------------------------- %
% With a second rule induction, down the other `leg' of the diamond, we %
% can now prove that taking the transitive closure preserves the Church %
% Rosser property. The theorem is that if R is Church-Rosser, then:	%
%									%
%             a                                        a		%
%            / \				      / \		%
%  if       /   \       then there exists d st:      /   \		%
%          /     \                                  /     \		%
%         b       c                                b       c		%
%						    \     /		%
%						     \   /		%
%						      \ /		%
%						       d		%
%									%
% The proof is by rule induction on TC R a b.				%
% --------------------------------------------------------------------- %

let TC_PRESERVES_CR_THM = 
    PROVE
    ("!R:*->*->bool.
        CR R ==> 
           !a c. TC R a c ==> !b. TC R a b ==> ?d. TC R b d /\ TC R c d",
     GEN_TAC THEN STRIP_TAC THEN TC_INDUCT_TAC THEN
     REPEAT STRIP_TAC THENL
     [IMP_RES_TAC CR_LEMMA THEN
      IMP_RES_TAC (el 1 TCrules) THEN
      EXISTS_TAC "d:*" THEN 
      CONJ_TAC THEN FIRST_ASSUM ACCEPT_TAC;
      RES_THEN (\th. STRIP_ASSUME_TAC th THEN ASSUME_TAC th) THEN
      IMP_RES_TAC CR_LEMMA THEN
      EXISTS_TAC "d':*" THEN CONJ_TAC THENL
      [TC_TRANS_TAC THEN EXISTS_TAC "d:*" THEN
       CONJ_TAC THEN FIRST_ASSUM ACCEPT_TAC;
       FIRST_ASSUM ACCEPT_TAC]]);;

let TC_PRESERVES_CR =
    prove_thm
    (`TC_PRESERVES_CR`,
     "!R:*->*->bool. CR R ==> CR (TC R)",
     REPEAT STRIP_TAC THEN
     PURE_ONCE_REWRITE_TAC [CR] THEN
     PURE_ONCE_REWRITE_TAC [CONJ_SYM] THEN
     MATCH_MP_TAC TC_PRESERVES_CR_THM THEN
     FIRST_ASSUM ACCEPT_TAC);;

% ===================================================================== %
% Theorem: the parallel contraction relation =1=> is Church-Rosser.	%
% ===================================================================== %

% --------------------------------------------------------------------- %
% We define a conversion EXPAND_PC_CASES_CONV for expanding with the 	%
% cases theorem for =1=>.  This is analogous to EXPAND_CASES_TAC above, %
% except that it's a conversion, and it is designed to fail for terms   %
% that do not contain at least one subterm "U =1=> V" where U and V are %
% not both variables.  This condition means you can repeat (REPEATC) 	%
% this conversion, and the resulting conversion will always halt.	%
% --------------------------------------------------------------------- %

let EXPAND_PC_CASES_CONV =
    let guard tm = 
        let _,[x;y] = strip_comb tm in
        if (is_var x & is_var y) then fail else REWR_CONV PCcases tm in
    let outc = LEFT_AND_EXISTS_CONV ORELSEC RIGHT_AND_EXISTS_CONV in
    CHANGED_CONV (ONCE_DEPTH_CONV guard) THENC
    REWRITE_CONV [distinct;ap11;GSYM CONJ_ASSOC; 
                  LEFT_AND_OVER_OR;RIGHT_AND_OVER_OR] THENC
    REDEPTH_CONV outc THENC
    REDEPTH_CONV EXISTS_OR_CONV THENC
    ONCE_DEPTH_CONV REDUCE;;

% --------------------------------------------------------------------- %
% Now for the main theorem. The proof proceeds by strong rule induction %
% on the relation =1=>.  The four cases in the induction are:		%
%									%
%  1) "(w ' y) =1=> c ==> (?d. (x ' z) =1=> d /\ c =1=> d)"		%
%     [ "w =1=> x" ]							%
%     [ "!c. w =1=> c ==> (?d. x =1=> d /\ c =1=> d)" ]			%
%     [ "y =1=> z" ]							%
%     [ "!c. y =1=> c ==> (?d. z =1=> d /\ c =1=> d)" ]			%
%									%
%  2) "(((s ' x) ' y) ' z) =1=> c ==>					%
%      (?d. ((x ' z) ' (y ' z)) =1=> d /\ c =1=> d)"			%
%									%
%  3) "((k ' x) ' y) =1=> c ==> (?d. x =1=> d /\ c =1=> d)"		%
%									%
%  4) "x =1=> c ==> (?d. x =1=> d /\ c =1=> d)"				%
%                                                                       %
% Cases 2,3 and 4 are solved by case analysis (using PCcases) on the 	%
% antecedent, followed by straightforward search for the proof of the	%
% consequent using the tactics for =1=>.  Case 1 is solved also by	%
% first analysing the antecedent by PCcases followed by search for the  %
% proof.  In two sub-cases, however, one needs to do a case analysis	%
% on the strong induction assumption.  See the proof below for details.	%
% --------------------------------------------------------------------- %

let CR_THEOREM =
    TAC_PROOF(([], "CR $=1=>"),
    let ecnv = REPEATC EXPAND_PC_CASES_CONV in
    let ttac th g = SUBST_ALL_TAC th g ? ASSUME_TAC th g in
    let mkcases = REPEAT_TCL STRIP_THM_THEN ttac in
    let STRIP_PC_TAC =
        REPEAT STRIP_TAC THEN PC_TAC THEN
        TRY(FIRST_ASSUM MATCH_ACCEPT_TAC) in
    PURE_ONCE_REWRITE_TAC [CR] THEN
    RULE_INDUCT_THEN PCsind STRIP_ASSUME_TAC STRIP_ASSUME_TAC THEN
    REPEAT GEN_TAC THENL
    [DISCH_TAC THEN EXISTS_TAC "c:cl" THEN STRIP_PC_TAC;

     DISCH_THEN (mkcases o CONV_RULE ecnv) THENL
     map EXISTS_TAC ["x:cl";"c:cl";"x:cl";"z':cl"] THEN STRIP_PC_TAC;

     DISCH_THEN (mkcases o CONV_RULE ecnv) THENL     
     map EXISTS_TAC ["((x ' z) ' (y ' z))";
		     "((x ' z) ' (y ' z))";
		     "((x ' z') ' (y ' z'))";
		     "((x ' z') ' (z'' ' z'))";
		     "((z''' ' z') ' (z'' ' z'))"] THEN STRIP_PC_TAC;

     DISCH_THEN (mkcases o CONV_RULE ecnv) THENL
     [EXISTS_TAC "x ' z" THEN STRIP_PC_TAC;
      let cth = UNDISCH (fst(EQ_IMP_RULE (ecnv "(k ' c) =1=> x"))) in
      DISJ_CASES_THEN (REPEAT_TCL STRIP_THM_THEN ttac) cth THENL
      map EXISTS_TAC ["c:cl";"z':cl"] THEN STRIP_PC_TAC;
      let cth = UNDISCH (fst(EQ_IMP_RULE (ecnv "((s ' x') ' y') =1=> x"))) in
      DISJ_CASES_THEN (REPEAT_TCL STRIP_THM_THEN ttac) cth THENL
      map EXISTS_TAC ["((x' ' z) ' (y' ' z))";
                      "((x' ' z) ' (z' ' z))";
                      "((z'' ' z) ' (z' ' z))"] THEN STRIP_PC_TAC;
      RES_TAC THEN EXISTS_TAC "d'' ' d" THEN STRIP_PC_TAC]]);;

% --------------------------------------------------------------------- %
% We now do the following trivial proof.				%
% --------------------------------------------------------------------- %

let preduce_HAS_CR =
    prove_thm
    (`preduce_HAS_CR`,
     "CR(===>)",
     REWRITE_TAC [preduce] THEN
     MATCH_MP_TAC TC_PRESERVES_CR THEN
     ACCEPT_TAC CR_THEOREM);;

% --------------------------------------------------------------------- %
% Q.E.D. 								%
% --------------------------------------------------------------------- %

let CHURCH_ROSSER = 
    prove_thm
    (`CHURCH_ROSSER`,
     "CR $--->",
     let th = EXT (GEN "U:cl" (EXT (SPEC "U:cl" RED_EQ_PRED))) in
     REWRITE_TAC [th;preduce_HAS_CR]);;


% --------------------------------------------------------------------- %
% End of example.							%
% --------------------------------------------------------------------- %

close_theory();;
quit();;