/usr/share/hol88-2.02.19940316/contrib/rule-induction/cl.ml is in hol88-contrib-source 2.02.19940316-31.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 | % ===================================================================== %
% FILE : cl.ml %
% DESCRIPTION : Creates the syntactic theory of combinatory logic and %
% defines reduction of terms in the logic. Proves the %
% Church-Rosser theorem for this reduction relation. %
% %
% AUTHORS : Tom Melham and Juanito Camilleri %
% DATE : 91.10.09 %
% ===================================================================== %
% --------------------------------------------------------------------- %
% Open a new theory and load the inductive definitions library. %
% --------------------------------------------------------------------- %
new_theory `cl`;;
load_library `ind_defs`;;
% ===================================================================== %
% Syntax of the combinatory logic. %
% ===================================================================== %
% --------------------------------------------------------------------- %
% The recursive types package is used to define the syntax of terms in %
% combnatory logic. The syntax is: %
% %
% U ::= s | k | U1 ' U2 %
% %
% where U, U1, and U2 range over terms. In higher order logic, terms of %
% combinatory logic are represented by the following constructors of a %
% recursive type cl: %
% %
% s:cl, k:cl, and ap:cl -> cl -> cl %
% %
% We are unfortunately prevented from the using upper-case letter S, as %
% this is already a constant in the built-in HOL theory heirarchy. For %
% notational clarity, we later introduce an infix constant ' for the %
% application constructor shown above as `ap'. %
% --------------------------------------------------------------------- %
let cl = define_type `cl` `cl = s | k | ap cl cl`;;
% --------------------------------------------------------------------- %
% Define an infix constructor for application. %
% --------------------------------------------------------------------- %
new_letter `'`;;
let ap_def = new_infix_definition(`ap_def`, "' = ap");;
% --------------------------------------------------------------------- %
% Replace `ap' by the infix. %
% --------------------------------------------------------------------- %
let cl = save_thm(`cl_thm`, SUBS [SYM ap_def] cl);;
% ===================================================================== %
% Standard syntactic theory, derived by the recursive types package. %
% ===================================================================== %
% --------------------------------------------------------------------- %
% Structural induction theorem for terms of combinatory logic . %
% --------------------------------------------------------------------- %
let induct = save_thm (`induct`,prove_induction_thm cl);;
% --------------------------------------------------------------------- %
% Exhaustive case analysis theorem for terms of combinatory logic. %
% --------------------------------------------------------------------- %
let cases = save_thm (`cases`, prove_cases_thm induct);;
% --------------------------------------------------------------------- %
% Prove that the application constructor is one-to-one. %
% --------------------------------------------------------------------- %
let ap11 = save_thm(`ap11`, prove_constructors_one_one cl);;
% --------------------------------------------------------------------- %
% Prove that the constructors yield syntactically distinct values. One %
% typically needs all symmetric forms of the inequalities. %
% --------------------------------------------------------------------- %
let distinct =
let ths = CONJUNCTS (prove_constructors_distinct cl) in
let rths = map (GEN_ALL o NOT_EQ_SYM o SPEC_ALL) ths in
save_thm(`distinct`, LIST_CONJ (ths @ rths));;
% ===================================================================== %
% Inductive definition of reduction of CL terms. %
% ===================================================================== %
% --------------------------------------------------------------------- %
% Definition of weak contraction. %
% %
% The one-step contraction relation -> is inductively defined by the %
% rules shown below. This is the `weak contraction' relation of %
% Hindley and Seldin. A weak redex is a term of the form Kxy or Sxyz. %
% A term U weakly contracts to V (i.e. U -1-> V) if V can be obtained %
% by replacing one occurrence of a redex in U, where a redex Kxy is %
% replaced by x and a redex Sxyz is replaced by (xz)yz. The first two %
% rules in the inductive definition given below define the contraction %
% of redexes; the second two rules define the contraction of subterms. %
% --------------------------------------------------------------------- %
new_special_symbol `-1->`;;
let (Crules,Cind) =
let CTR = "-1->:cl->cl->bool" in
new_inductive_definition true `contract`
("^CTR U V", [])
[ [
% ------------------------------------------------------ % ],
"^CTR ((k ' x) ' y) x" ;
[
%------------------------------------------------------- % ],
"^CTR (((s ' x) ' y) ' z) ((x ' z) ' (y ' z))" ;
[ "^CTR x y"
%------------------------------------------------------- % ],
"^CTR (x ' z) (y ' z)" ;
[ "^CTR x y"
%------------------------------------------------------- % ],
"^CTR (z ' x) (z ' y)" ];;
% --------------------------------------------------------------------- %
% Stronger form of rule induction. %
% --------------------------------------------------------------------- %
let Csind = derive_strong_induction (Crules,Cind);;
% --------------------------------------------------------------------- %
% Standard rule induction tactic for -1->. This uses the weaker form %
% of the rule induction theorem; and both premisses and side conditions %
% are just assumed (in stripped form). %
% --------------------------------------------------------------------- %
let C_INDUCT_TAC =
RULE_INDUCT_THEN Cind STRIP_ASSUME_TAC STRIP_ASSUME_TAC;;
% --------------------------------------------------------------------- %
% Prove the case analysis theorem for the contraction rules. %
% --------------------------------------------------------------------- %
let Ccases = derive_cases_thm (Crules,Cind);;
% --------------------------------------------------------------------- %
% Tactics for each of the contraction rules. %
% --------------------------------------------------------------------- %
let [Ck_TAC;Cs_TAC;LCap_TAC;RCap_TAC] = map RULE_TAC Crules;;
% --------------------------------------------------------------------- %
% The weak reduction relation on terms in combinatory logic is just the %
% reflexive-transitive closure of -1->. We define reflexive-transitive %
% closure inductively as follows, and then define the weak reduction %
% relation ---> to be RTC -1->. %
% --------------------------------------------------------------------- %
let (RTCrules,RTCind) =
let RTC = "RTC:(*->*->bool)->*->*->bool" in
new_inductive_definition false `RTC`
("^RTC R x y", ["R:*->*->bool"])
[ [
% ------------------------------ % "R (x:*) (y:*):bool"],
"^RTC R x y" ;
[
% ------------------------------ % ],
"^RTC R x x" ;
[ "^RTC R x z"; "^RTC R z y"
%------------------------------- % ],
"^RTC R x y" ];;
% --------------------------------------------------------------------- %
% Standard rule induction tactic for RTC. %
% --------------------------------------------------------------------- %
let RTC_INDUCT_TAC =
RULE_INDUCT_THEN RTCind STRIP_ASSUME_TAC STRIP_ASSUME_TAC;;
% --------------------------------------------------------------------- %
% Tactics for the RTC rules. %
% --------------------------------------------------------------------- %
let [RTC_IN_TAC;RTC_REFL_TAC;RTC_TRANS_TAC] = map RULE_TAC RTCrules;;
% --------------------------------------------------------------------- %
% Case analysis theorem for RTC. %
% --------------------------------------------------------------------- %
let RTCcases = derive_cases_thm (RTCrules,RTCind);;
% --------------------------------------------------------------------- %
% Definition of weak reduction. %
% --------------------------------------------------------------------- %
new_special_symbol `--->`;;
let reduce = new_infix_definition(`reduce`, "(--->) = RTC (-1->)");;
% ===================================================================== %
% Theorem : -1-> does not have the Church-Rosser property. %
% %
% We wish to prove that weak reduction is Church-Rosser. If we could %
% prove that the one-step contraction -1-> has this property, then we %
% could also show that reduction does, since taking the reflexive- %
% transitive closure of a relation preserves the Church-Rosser theorem. %
% Unfortunately, however, -1-> is not Church- Rosser, as the following %
% counterexample shows. %
% %
% The counter example is ki(ii) where i = skk. We have that: %
% %
% ki(ii) %
% / \ %
% / \ %
% / \ %
% i ki(ki)(ki) %
% / %
% / %
% / %
% i %
% %
% But i doesn't contract to i (or indeed to any other term). %
% ===================================================================== %
% --------------------------------------------------------------------- %
% We first define i to be skk. %
% --------------------------------------------------------------------- %
let iDEF = new_definition (`iDEF`, "i = (s ' k) ' k");;
% --------------------------------------------------------------------- %
% Given the tactics defined above for each rule, it is straightforward %
% to construct a tactic for automatically checking an assertion that %
% one term contracts to another. The tactic just does a search for a %
% proof using the rules for -1->. %
% --------------------------------------------------------------------- %
letrec CONT_TAC g =
FIRST [Cs_TAC;
Ck_TAC;
LCap_TAC THEN CONT_TAC;
RCap_TAC THEN CONT_TAC] g ?
failwith `CONT_TAC`;;
% --------------------------------------------------------------------- %
% We can now use this tactic to show the following lemmas: %
% %
% 1) ki(ii) -1-> i %
% 2) ki(ii) -1-> ki((ki)(ki)) %
% 3) ki((ki)(ki)) -1-> i %
% --------------------------------------------------------------------- %
let lemma1 =
PROVE
("((k ' i) ' (i ' i)) -1-> i",
CONT_TAC);;
let lemma2 =
PROVE
("((k ' i) ' (i ' i)) -1-> (k ' i) ' ((k ' i) ' (k ' i))",
SUBST1_TAC iDEF THEN CONT_TAC);;
let lemma3 =
PROVE
("((k ' i) ' ((k ' i) ' (k ' i))) -1-> i",
SUBST1_TAC iDEF THEN CONT_TAC);;
% --------------------------------------------------------------------- %
% For the proof that ~?U. i -1-> U, we construct some infrastructure %
% for a general way of dealing with contractability assertions. The %
% core of this consists of a tactic that rewrites assertions of the %
% form "U -1-> V" with the cases theorem for -1-> : %
% %
% |- !U V. %
% U -1-> V = %
% (?y. U = (k ' V) ' y) \/ %
% (?x y z. (U = ((s ' x) ' y) ' z) /\ (V = (x ' z) ' (y ' z))) \/ %
% (?x y z. (U = x ' z) /\ (V = y ' z) /\ x -1-> y) \/ %
% (?x y z. (U = z ' x) /\ (V = z ' y) /\ x -1-> y) %
% %
% The full method is as follows: %
% %
% 1) rewrite just once using the cases theorem %
% %
% PURE_ONCE_REWRITE_TAC [Ccases] %
% %
% 2) simplify any equations between cl-terms that arise from step %
% 1 by using distinctness and injectivity of application. Also %
% normalize conjunctions and disjunctions. %
% %
% REWRITE_TAC [distinct;ap11;GSYM CONJ_ASSOC; LEFT_AND_OVER_OR] %
% %
% 3) move any buried existential quantifiers outwards through %
% conjunctions and inwards through disjunctions. %
% %
% let outc = LEFT_AND_EXISTS_CONV ORELSEC RIGHT_AND_EXISTS_CONV %
% CONV_TAC (REDEPTH_CONV outc) THEN %
% CONV_TAC (REDEPTH_CONV EXISTS_OR_CONV) %
% %
% 4) eliminate redundant equations using REDUCE from ind_defs %
% %
% CONV_TAC (ONCE_DEPTH_CONV REDUCE) %
% %
% The overall effect is one step of expansion with the cases theorem, %
% followed by a renormalization step. Repeat as often as needed, but %
% note that REPEAT may loop. Could guard step 1 with a stopping %
% condition if necessary. Note that the normal form is a disjunction %
% of existentially-quantified conjunctions. %
% --------------------------------------------------------------------- %
let EXPAND_CASES_TAC =
let outc = LEFT_AND_EXISTS_CONV ORELSEC RIGHT_AND_EXISTS_CONV in
PURE_ONCE_REWRITE_TAC [Ccases] THEN
REWRITE_TAC [distinct;ap11;GSYM CONJ_ASSOC; LEFT_AND_OVER_OR] THEN
CONV_TAC (REDEPTH_CONV outc) THEN
CONV_TAC (REDEPTH_CONV EXISTS_OR_CONV) THEN
CONV_TAC (ONCE_DEPTH_CONV REDUCE);;
% --------------------------------------------------------------------- %
% We can now use this tactic to prove that i doesn't contract to any %
% term of combinatory logic. Note that since the transition in fact %
% does NOT hold, step 2 of EXPAND_CASES_TAC eventually solves the goal. %
% Hence we may use REPEAT here. %
% --------------------------------------------------------------------- %
let lemma4 =
PROVE
("~?U. i -1-> U",
SUBST_TAC [iDEF] THEN REPEAT EXPAND_CASES_TAC);;
% --------------------------------------------------------------------- %
% We now have our counterexample to show that -1-> does not have the %
% Church-Rosser property. We first define an abbreviation for the %
% assertion that a relation R has this property. %
% --------------------------------------------------------------------- %
let CR =
new_definition
(`CR`,
"CR (R: * -> * -> bool) =
!a b. R a b ==> !c. R a c ==> ?d. R b d /\ R c d");;
% --------------------------------------------------------------------- %
% Use the counterexample to show that -1-> is not Church-Rosser. %
% The conversion NOT_CONV moves negations inwards through quantifiers, %
% applies Demorgan's laws where ever possible, and simplifies ~~P to P. %
% --------------------------------------------------------------------- %
let NOT_CONV =
let ths = CONJUNCTS(SPEC_ALL DE_MORGAN_THM) in
let rcnv = map REWR_CONV (CONJUNCT1 NOT_CLAUSES . ths) in
REDEPTH_CONV (FIRST_CONV ([NOT_FORALL_CONV; NOT_EXISTS_CONV] @ rcnv));;
let NOT_C_CR =
prove_thm
(`NOT_C_CR`,
"~CR($-1->)",
PURE_REWRITE_TAC [CR;IMP_DISJ_THM] THEN
CONV_TAC NOT_CONV THEN
EXISTS_TAC "(k ' i) ' (i ' i)" THEN
EXISTS_TAC "(k ' i) ' ((k ' i) ' (k ' i))" THEN
REWRITE_TAC [lemma2] THEN
EXISTS_TAC "i" THEN
REWRITE_TAC [lemma1;CONV_RULE NOT_EXISTS_CONV lemma4]);;
% ===================================================================== %
% Inductive definition of parallel reduction of CL terms %
% ===================================================================== %
% --------------------------------------------------------------------- %
% Definition of one-step parallel contraction. %
% %
% This one-step contraction relation has the Church-Rosser property, %
% and its transitive closure (parallel reduction) therefore also does. %
% Moreover, parallel reduction and ---> are the same relation, so we can%
% prove the Church-Rosser theorem for ---> by proving it for parallel %
% reduction. The inductive definition of one-step parallel contraction %
% is given below. The allow any number of redexes among the subterms %
% of a term to be contracted in a single step. %
% --------------------------------------------------------------------- %
new_special_symbol `=1=>`;;
let (PCrules,PCind) =
let PCTR = "=1=>:cl->cl->bool" in
new_inductive_definition true `pcontract`
("^PCTR U V", [])
[ [
% ------------------------------------------------------ % ],
"^PCTR x x" ;
[
% ------------------------------------------------------ % ],
"^PCTR ((k ' x) ' y) x" ;
[
%------------------------------------------------------- % ],
"^PCTR (((s ' x) ' y) ' z) ((x ' z) ' (y ' z))" ;
[ "^PCTR w x"; "^PCTR y z"
%------------------------------------------------------- % ],
"^PCTR (w ' y) (x ' z)" ];;
% --------------------------------------------------------------------- %
% Stronger form of rule induction. %
% --------------------------------------------------------------------- %
let PCsind = derive_strong_induction (PCrules,PCind);;
% --------------------------------------------------------------------- %
% Standard rule induction tactic for =1=>. %
% --------------------------------------------------------------------- %
let PC_INDUCT_TAC =
RULE_INDUCT_THEN PCind STRIP_ASSUME_TAC STRIP_ASSUME_TAC;;
% --------------------------------------------------------------------- %
% Case analysis theorem for =1=>. %
% --------------------------------------------------------------------- %
let PCcases = derive_cases_thm (PCrules,PCind);;
% --------------------------------------------------------------------- %
% Tactics for each of the parallel contraction rules. %
% --------------------------------------------------------------------- %
let [PC_REFL_TAC;PCk_TAC;PCs_TAC;PCap_TAC] = map RULE_TAC PCrules;;
% --------------------------------------------------------------------- %
% Given the tactics defined above for each rule, it is straightforward %
% to construct a tactic for automatically checking an assertion that %
% one term contracts to another. The tactic just does a search for a %
% proof using the rules for =1=>. %
% --------------------------------------------------------------------- %
letrec PC_TAC g =
FIRST [PC_REFL_TAC;
PCk_TAC;
PCs_TAC;
PCap_TAC THEN PC_TAC] g ? ALL_TAC g;;
% --------------------------------------------------------------------- %
% The weak reduction relation on terms in combinatory logic is just the %
% transitive closure of =1=>. Transitive is defined inductively as %
% follows. Note that the transitivity rule formulated as: %
% %
% TC R x z %
% R1: -------------- R z y %
% TC R x y %
% %
% and not as %
% %
% TC R x z TC R z y %
% R2: ------------------------ %
% TC R x z %
% %
% This is because rule R1 gives a linear structure to rule inductions %
% for transitive closure, which make the details of these proofs easier %
% to handle than the tree-shaped structure induced by rule R2. %
% %
% Once transitive closure has been defined, the parallel reduction %
% relation ===> can just be defined to be TC =1=>. %
% --------------------------------------------------------------------- %
let (TCrules,TCind) =
let TC = "TC:(*->*->bool)->*->*->bool" in
new_inductive_definition false `TC`
("^TC R x y", ["R:*->*->bool"])
[ [
% ------------------------------ % "R (x:*) (y:*):bool"],
"^TC R x y" ;
[ "^TC R x z"
%------------------------------- % ; "R (z:*) (y:*):bool"],
"^TC R x y" ];;
% --------------------------------------------------------------------- %
% Standard rule induction tactic for TC. %
% --------------------------------------------------------------------- %
let TC_INDUCT_TAC =
RULE_INDUCT_THEN TCind STRIP_ASSUME_TAC STRIP_ASSUME_TAC;;
% --------------------------------------------------------------------- %
% Tactics for the TC rules. %
% --------------------------------------------------------------------- %
let [TC_IN_TAC;TC_TRANS_TAC] = map RULE_TAC TCrules;;
% --------------------------------------------------------------------- %
% Strong form of rule induction for TC. %
% --------------------------------------------------------------------- %
let TCsind = derive_strong_induction (TCrules,TCind);;
% --------------------------------------------------------------------- %
% Now, define parallel reduction for terms of CL. %
% --------------------------------------------------------------------- %
new_special_symbol `===>`;;
let preduce = new_infix_definition(`preduce`, "(===>) = TC (=1=>)");;
% ===================================================================== %
% Theorem: ===> and ---> are the same relation. %
% ===================================================================== %
% --------------------------------------------------------------------- %
% The following sequence of lemmas show that the rules for the single %
% step contraction -1-> also hold its reflexive-transitive closure, %
% namely the relation --->. The proofs are trivial for the k and s %
% axioms. For the two application rules, we need a simple induction %
% on the rules defining RTC. %
% --------------------------------------------------------------------- %
let Rk_THM =
PROVE
("!a b. ((k ' a) ' b) ---> a",
SUBST1_TAC reduce THEN
RTC_IN_TAC THEN Ck_TAC);;
let Rs_THM =
PROVE
("!a b c. (((s ' a) ' b) ' c) ---> ((a ' c) ' (b ' c))",
SUBST1_TAC reduce THEN
RTC_IN_TAC THEN Cs_TAC);;
let LRap_THM =
PROVE
("!a b. a ---> b ==> !c. (a ' c) ---> (b ' c)",
SUBST1_TAC reduce THEN
RTC_INDUCT_TAC THEN REPEAT GEN_TAC THENL
[RTC_IN_TAC THEN LCap_TAC THEN FIRST_ASSUM ACCEPT_TAC;
RTC_REFL_TAC;
RTC_TRANS_TAC THEN EXISTS_TAC "z ' c" THEN ASM_REWRITE_TAC[]]);;
let RRap_THM =
PROVE
("!a b. a ---> b ==> !c. (c ' a) ---> (c ' b)",
SUBST1_TAC reduce THEN
RTC_INDUCT_TAC THEN REPEAT GEN_TAC THENL
[RTC_IN_TAC THEN RCap_TAC THEN FIRST_ASSUM ACCEPT_TAC;
RTC_REFL_TAC;
RTC_TRANS_TAC THEN EXISTS_TAC "c ' z" THEN ASM_REWRITE_TAC[]]);;
% --------------------------------------------------------------------- %
% To avoid having to expand ---> into RTC -1->, we also prove that the %
% rules for reflexive-transitive closure hold of --->. The proofs are %
% completely trivial. %
% --------------------------------------------------------------------- %
let CONT_IN_RED =
PROVE
("!U V. U -1-> V ==> U ---> V",
REWRITE_TAC (reduce . RTCrules));;
let RED_REFL =
PROVE
("!U. U ---> U",
REWRITE_TAC (reduce . RTCrules));;
let RED_TRANS =
PROVE
("!U V. (?W. U ---> W /\ W ---> V) ==> (U ---> V)",
REWRITE_TAC (reduce . RTCrules));;
% --------------------------------------------------------------------- %
% We can now use these lemmas to prove that the relation ===> is a %
% subset of --->. The proof has two parts. The first is to show that if %
% there is a one-step parallel reduction U =1=> V, then U ---> V. Given %
% the lemmas proved above, it is easy to show that ---> is closed under %
% the rules that define =1=>, and hence by rule induction that =1=> is %
% a subset of --->. %
% --------------------------------------------------------------------- %
let PCONT_SUB_RED =
PROVE
("!U V. U =1=> V ==> U ---> V",
PC_INDUCT_TAC THEN REPEAT GEN_TAC THENL
[MATCH_ACCEPT_TAC RED_REFL;
MATCH_ACCEPT_TAC Rk_THM;
MATCH_ACCEPT_TAC Rs_THM;
MATCH_MP_TAC RED_TRANS THEN
EXISTS_TAC "(x ' y)" THEN CONJ_TAC THENL
[IMP_RES_THEN (TRY o MATCH_ACCEPT_TAC) LRap_THM;
IMP_RES_THEN (TRY o MATCH_ACCEPT_TAC) RRap_THM]]);;
% --------------------------------------------------------------------- %
% Given this result, one can then prove that ===> is a subset of ---> %
% by rule induction. The previous lemma just states that the relation %
% ---> is closed under the inclusion rule for TC =1=>. And one can also %
% prove that ---> is closed under the transitivity rule, since we have %
% already above proved that ---> is transitive. Hence, by rule %
% induction of transitive closure, TC =1=> is a subset of --->. %
% --------------------------------------------------------------------- %
let PRED_SUB_RED =
PROVE
("!U V. (U ===> V) ==> U ---> V",
SUBST1_TAC preduce THEN
TC_INDUCT_TAC THEN REPEAT GEN_TAC THEN
IMP_RES_TAC PCONT_SUB_RED THEN
IMP_RES_TAC RED_TRANS);;
% --------------------------------------------------------------------- %
% The proof of the converse inclusion, that ---> is a subset of ===>, %
% is similar. Again, we begin with a series of lemmas which establish %
% that the rules defining =1=> hold for its transitive closure ===>. %
% --------------------------------------------------------------------- %
let PRk_THM =
PROVE
("!a b. ((k ' a) ' b) ===> a",
SUBST1_TAC preduce THEN
TC_IN_TAC THEN PC_TAC);;
let PRs_THM =
PROVE
("!a b c. (((s ' a) ' b) ' c) ===> ((a ' c) ' (b ' c))",
SUBST1_TAC preduce THEN
TC_IN_TAC THEN PC_TAC);;
% --------------------------------------------------------------------- %
% The application case is slightly trickier than the two analogous %
% application theorems in the previous series of lemmas. Because of the %
% way the transitivity rule is formulated, a double rule induction is %
% needed. %
% --------------------------------------------------------------------- %
let PRap_THM =
PROVE
("!a b. (a ===> b) ==> !c d. (c ===> d) ==> ((a ' c) ===> (b ' d))",
SUBST1_TAC preduce THEN
REPEAT TC_INDUCT_TAC THENL
[TC_IN_TAC;
TC_TRANS_TAC THEN EXISTS_TAC "y ' z" THEN CONJ_TAC;
TC_TRANS_TAC THEN EXISTS_TAC "z ' x'" THEN CONJ_TAC THENL
[FIRST_ASSUM MATCH_MP_TAC THEN TC_IN_TAC;ALL_TAC];
TC_TRANS_TAC THEN EXISTS_TAC "y ' z'" THEN CONJ_TAC] THEN
PC_TAC THEN FIRST_ASSUM MATCH_ACCEPT_TAC);;
% --------------------------------------------------------------------- %
% We also need to show that ===> is reflexive and transitive. Note that %
% in the transitivity case we need a careful formulation of the %
% induction hypothesis, because of the way the transitivity rule for TC %
% is stated. In particular, we induct on b ===> c, rather than on %
% a ===> b. %
% --------------------------------------------------------------------- %
let PR_REFL =
PROVE
("!U. U ===> U",
SUBST1_TAC preduce THEN
TC_IN_TAC THEN PC_TAC);;
let PR_TRANS =
PROVE
("!b c. (b ===> c) ==> !a. (a ===> b) ==> (a ===> c)",
SUBST1_TAC preduce THEN
TC_INDUCT_TAC THEN REPEAT STRIP_TAC THENL
[TC_TRANS_TAC THEN EXISTS_TAC "x:cl";
TC_TRANS_TAC THEN EXISTS_TAC "z:cl" THEN RES_TAC] THEN
ASM_REWRITE_TAC[]);;
% --------------------------------------------------------------------- %
% We now show by rule induction that -1-> is a subset of ===>. We have %
% already proved that the s and k rules for -1-> also hold for ===>. %
% Futhermore, the two application rules for -1-> follow easily for the %
% relation ===>, since the more general application rule holds for this %
% relation and since it is reflexive. %
% --------------------------------------------------------------------- %
let CONT_SUB_PRED =
PROVE
("!U V. U -1-> V ==> U ===> V",
C_INDUCT_TAC THEN REPEAT GEN_TAC THENL
[MATCH_ACCEPT_TAC PRk_THM;
MATCH_ACCEPT_TAC PRs_THM;
ASSUME_TAC (SPEC "z:cl" PR_REFL) THEN IMP_RES_TAC PRap_THM;
ASSUME_TAC (SPEC "z:cl" PR_REFL) THEN IMP_RES_TAC PRap_THM]);;
% --------------------------------------------------------------------- %
% That ---> is a subset of ===> now follows by rule induction. We have %
% shown that ===> contains -1-> and that it is reflexive and transitive.%
% So ===> is closed under the rules for RTC -1->, and hence ---> is a %
% subset of ===>. %
% --------------------------------------------------------------------- %
let RED_SUB_PRED =
PROVE
("!U V. U ---> V ==> U ===> V",
SUBST1_TAC reduce THEN
RTC_INDUCT_TAC THEN REPEAT GEN_TAC THENL
[IMP_RES_TAC CONT_SUB_PRED;
MATCH_ACCEPT_TAC PR_REFL;
IMP_RES_TAC PR_TRANS]);;
% --------------------------------------------------------------------- %
% The equality of ---> and ===> follows immediately. %
% --------------------------------------------------------------------- %
let RED_EQ_PRED =
prove_thm
(`RED_EQ_PRED`,
"!U V. U ---> V = U ===> V",
REPEAT (STRIP_TAC ORELSE EQ_TAC) THENL
[IMP_RES_TAC RED_SUB_PRED; IMP_RES_TAC PRED_SUB_RED]);;
% ===================================================================== %
% Theorem: taking the transitive closure preserves Church-Rosser. %
% ===================================================================== %
% --------------------------------------------------------------------- %
% Lemma: we can fill in any `strip' one transition wide. That is, if %
% R has the Church-Rosser rpoperty, then we have that %
% %
% a a %
% / \ / \ %
% if b \ then there exists d st: b \ %
% \ \ \ %
% c \ c %
% \ / %
% d %
% %
% The choice of formulation for the transitivity rule makes the proof a %
% straightforward rule indction down the a-to-c leg of the rectangle. %
% --------------------------------------------------------------------- %
let CR_LEMMA =
prove_thm
(`CR_LEMMA`,
"!R:*->*->bool.
CR R ==> !a c. TC R a c ==> !b. R a b ==> ?d. TC R b d /\ R c d",
GEN_TAC THEN PURE_ONCE_REWRITE_TAC [CR] THEN STRIP_TAC THEN
TC_INDUCT_TAC THEN REPEAT STRIP_TAC THEN RES_TAC THENL
[EXISTS_TAC "d':*" THEN CONJ_TAC THENL
[TC_IN_TAC THEN FIRST_ASSUM ACCEPT_TAC; FIRST_ASSUM ACCEPT_TAC];
EXISTS_TAC "d'':*" THEN CONJ_TAC THENL
[TC_TRANS_TAC THEN EXISTS_TAC "d:*" THEN
CONJ_TAC THEN FIRST_ASSUM ACCEPT_TAC;
FIRST_ASSUM ACCEPT_TAC]]);;
% --------------------------------------------------------------------- %
% With a second rule induction, down the other `leg' of the diamond, we %
% can now prove that taking the transitive closure preserves the Church %
% Rosser property. The theorem is that if R is Church-Rosser, then: %
% %
% a a %
% / \ / \ %
% if / \ then there exists d st: / \ %
% / \ / \ %
% b c b c %
% \ / %
% \ / %
% \ / %
% d %
% %
% The proof is by rule induction on TC R a b. %
% --------------------------------------------------------------------- %
let TC_PRESERVES_CR_THM =
PROVE
("!R:*->*->bool.
CR R ==>
!a c. TC R a c ==> !b. TC R a b ==> ?d. TC R b d /\ TC R c d",
GEN_TAC THEN STRIP_TAC THEN TC_INDUCT_TAC THEN
REPEAT STRIP_TAC THENL
[IMP_RES_TAC CR_LEMMA THEN
IMP_RES_TAC (el 1 TCrules) THEN
EXISTS_TAC "d:*" THEN
CONJ_TAC THEN FIRST_ASSUM ACCEPT_TAC;
RES_THEN (\th. STRIP_ASSUME_TAC th THEN ASSUME_TAC th) THEN
IMP_RES_TAC CR_LEMMA THEN
EXISTS_TAC "d':*" THEN CONJ_TAC THENL
[TC_TRANS_TAC THEN EXISTS_TAC "d:*" THEN
CONJ_TAC THEN FIRST_ASSUM ACCEPT_TAC;
FIRST_ASSUM ACCEPT_TAC]]);;
let TC_PRESERVES_CR =
prove_thm
(`TC_PRESERVES_CR`,
"!R:*->*->bool. CR R ==> CR (TC R)",
REPEAT STRIP_TAC THEN
PURE_ONCE_REWRITE_TAC [CR] THEN
PURE_ONCE_REWRITE_TAC [CONJ_SYM] THEN
MATCH_MP_TAC TC_PRESERVES_CR_THM THEN
FIRST_ASSUM ACCEPT_TAC);;
% ===================================================================== %
% Theorem: the parallel contraction relation =1=> is Church-Rosser. %
% ===================================================================== %
% --------------------------------------------------------------------- %
% We define a conversion EXPAND_PC_CASES_CONV for expanding with the %
% cases theorem for =1=>. This is analogous to EXPAND_CASES_TAC above, %
% except that it's a conversion, and it is designed to fail for terms %
% that do not contain at least one subterm "U =1=> V" where U and V are %
% not both variables. This condition means you can repeat (REPEATC) %
% this conversion, and the resulting conversion will always halt. %
% --------------------------------------------------------------------- %
let EXPAND_PC_CASES_CONV =
let guard tm =
let _,[x;y] = strip_comb tm in
if (is_var x & is_var y) then fail else REWR_CONV PCcases tm in
let outc = LEFT_AND_EXISTS_CONV ORELSEC RIGHT_AND_EXISTS_CONV in
CHANGED_CONV (ONCE_DEPTH_CONV guard) THENC
REWRITE_CONV [distinct;ap11;GSYM CONJ_ASSOC;
LEFT_AND_OVER_OR;RIGHT_AND_OVER_OR] THENC
REDEPTH_CONV outc THENC
REDEPTH_CONV EXISTS_OR_CONV THENC
ONCE_DEPTH_CONV REDUCE;;
% --------------------------------------------------------------------- %
% Now for the main theorem. The proof proceeds by strong rule induction %
% on the relation =1=>. The four cases in the induction are: %
% %
% 1) "(w ' y) =1=> c ==> (?d. (x ' z) =1=> d /\ c =1=> d)" %
% [ "w =1=> x" ] %
% [ "!c. w =1=> c ==> (?d. x =1=> d /\ c =1=> d)" ] %
% [ "y =1=> z" ] %
% [ "!c. y =1=> c ==> (?d. z =1=> d /\ c =1=> d)" ] %
% %
% 2) "(((s ' x) ' y) ' z) =1=> c ==> %
% (?d. ((x ' z) ' (y ' z)) =1=> d /\ c =1=> d)" %
% %
% 3) "((k ' x) ' y) =1=> c ==> (?d. x =1=> d /\ c =1=> d)" %
% %
% 4) "x =1=> c ==> (?d. x =1=> d /\ c =1=> d)" %
% %
% Cases 2,3 and 4 are solved by case analysis (using PCcases) on the %
% antecedent, followed by straightforward search for the proof of the %
% consequent using the tactics for =1=>. Case 1 is solved also by %
% first analysing the antecedent by PCcases followed by search for the %
% proof. In two sub-cases, however, one needs to do a case analysis %
% on the strong induction assumption. See the proof below for details. %
% --------------------------------------------------------------------- %
let CR_THEOREM =
TAC_PROOF(([], "CR $=1=>"),
let ecnv = REPEATC EXPAND_PC_CASES_CONV in
let ttac th g = SUBST_ALL_TAC th g ? ASSUME_TAC th g in
let mkcases = REPEAT_TCL STRIP_THM_THEN ttac in
let STRIP_PC_TAC =
REPEAT STRIP_TAC THEN PC_TAC THEN
TRY(FIRST_ASSUM MATCH_ACCEPT_TAC) in
PURE_ONCE_REWRITE_TAC [CR] THEN
RULE_INDUCT_THEN PCsind STRIP_ASSUME_TAC STRIP_ASSUME_TAC THEN
REPEAT GEN_TAC THENL
[DISCH_TAC THEN EXISTS_TAC "c:cl" THEN STRIP_PC_TAC;
DISCH_THEN (mkcases o CONV_RULE ecnv) THENL
map EXISTS_TAC ["x:cl";"c:cl";"x:cl";"z':cl"] THEN STRIP_PC_TAC;
DISCH_THEN (mkcases o CONV_RULE ecnv) THENL
map EXISTS_TAC ["((x ' z) ' (y ' z))";
"((x ' z) ' (y ' z))";
"((x ' z') ' (y ' z'))";
"((x ' z') ' (z'' ' z'))";
"((z''' ' z') ' (z'' ' z'))"] THEN STRIP_PC_TAC;
DISCH_THEN (mkcases o CONV_RULE ecnv) THENL
[EXISTS_TAC "x ' z" THEN STRIP_PC_TAC;
let cth = UNDISCH (fst(EQ_IMP_RULE (ecnv "(k ' c) =1=> x"))) in
DISJ_CASES_THEN (REPEAT_TCL STRIP_THM_THEN ttac) cth THENL
map EXISTS_TAC ["c:cl";"z':cl"] THEN STRIP_PC_TAC;
let cth = UNDISCH (fst(EQ_IMP_RULE (ecnv "((s ' x') ' y') =1=> x"))) in
DISJ_CASES_THEN (REPEAT_TCL STRIP_THM_THEN ttac) cth THENL
map EXISTS_TAC ["((x' ' z) ' (y' ' z))";
"((x' ' z) ' (z' ' z))";
"((z'' ' z) ' (z' ' z))"] THEN STRIP_PC_TAC;
RES_TAC THEN EXISTS_TAC "d'' ' d" THEN STRIP_PC_TAC]]);;
% --------------------------------------------------------------------- %
% We now do the following trivial proof. %
% --------------------------------------------------------------------- %
let preduce_HAS_CR =
prove_thm
(`preduce_HAS_CR`,
"CR(===>)",
REWRITE_TAC [preduce] THEN
MATCH_MP_TAC TC_PRESERVES_CR THEN
ACCEPT_TAC CR_THEOREM);;
% --------------------------------------------------------------------- %
% Q.E.D. %
% --------------------------------------------------------------------- %
let CHURCH_ROSSER =
prove_thm
(`CHURCH_ROSSER`,
"CR $--->",
let th = EXT (GEN "U:cl" (EXT (SPEC "U:cl" RED_EQ_PRED))) in
REWRITE_TAC [th;preduce_HAS_CR]);;
% --------------------------------------------------------------------- %
% End of example. %
% --------------------------------------------------------------------- %
close_theory();;
quit();;
|