/usr/share/hol88-2.02.19940316/contrib/rule-induction/algebra.ml is in hol88-contrib-source 2.02.19940316-31.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 | % ===================================================================== %
% File : algebra.ml %
% DESCRIPTION : Maximal trace semantics and transition semantics of a %
% small process algebra. %
% %
% AUTHORS : Juanito Camilleri and Tom Melham %
% DATE : 91.05.13 %
% ===================================================================== %
% --------------------------------------------------------------------- %
% Open a new theory and load the inductive definitions library. %
% --------------------------------------------------------------------- %
new_theory `algebra`;;
load_library `ind_defs`;;
% --------------------------------------------------------------------- %
% Load the string library. %
% --------------------------------------------------------------------- %
load_library `string`;;
% ===================================================================== %
% Syntax of a small process algebra %
% ===================================================================== %
% --------------------------------------------------------------------- %
% We use the recursive types package to define the syntax of a small %
% process algebra, with processes %
% %
% agent ::= Nil [does nothing] %
% | Pre label agent [prefix agent with label] %
% | Sum agent agent [nondeterministic choice] %
% | Prod agent agent [composition] %
% %
% The different syntactic classes of processes are thus represented by %
% the constructors (constant functions): %
% %
% Nil:agent, Pre:label->agent->agent, Sum and Prod:agent->agent->agent %
% %
% for the concrete data type :agent. The type :label here is just an %
% abbreviation for :string. %
% --------------------------------------------------------------------- %
new_type_abbrev (`label`, ":string");;
let agent =
define_type `agent`
`agent = Nil
| Pre label agent
| Sum agent agent
| Prod agent agent`;;
% ===================================================================== %
% Standard syntactic theory, derived by the recursive types package. %
% ===================================================================== %
% --------------------------------------------------------------------- %
% prove structural induction theorem for agent. %
% --------------------------------------------------------------------- %
let induct = save_thm (`induct`,prove_induction_thm agent);;
% --------------------------------------------------------------------- %
% prove cases theorem for agent. %
% --------------------------------------------------------------------- %
let cases = save_thm (`cases`, prove_cases_thm induct);;
% --------------------------------------------------------------------- %
% Prove that the constructors of the type :agent yield syntactically %
% distinct values. One typically needs all symmetric forms of the %
% inequalities, so we package them all together here. %
% --------------------------------------------------------------------- %
let distinct =
let ths = CONJUNCTS (prove_constructors_distinct agent) in
let rths = map (GEN_ALL o NOT_EQ_SYM o SPEC_ALL) ths in
save_thm(`distinct`, LIST_CONJ (ths @ rths));;
% --------------------------------------------------------------------- %
% Prove that the constructors Pre, Sum and Prod are one-to-one. %
% --------------------------------------------------------------------- %
let agent11 =
let [Pre11;Sum11;Prod11] =
(CONJUNCTS (prove_constructors_one_one agent)) in
map save_thm
[(`Pre11`,Pre11);
(`Sum11`,Sum11);
(`Prod11`,Prod11)];;
% ===================================================================== %
% Definition of a maximal trace semantics for the process algebra. %
% ===================================================================== %
% --------------------------------------------------------------------- %
% Type abbreviation for traces. These are just finite sequences of %
% labels, represented here by lists. %
% --------------------------------------------------------------------- %
new_type_abbrev (`trace`, ":(label)list");;
% --------------------------------------------------------------------- %
% Inductive definition of a trace relation MTRACE. This is defined so %
% that MTRACE P A means A is the maximal trace of the process P. The %
% definition is done inductively by the rules given below. %
% --------------------------------------------------------------------- %
let (trules,tind) =
let MTRACE = "MTRACE:agent->trace->bool" in
new_inductive_definition false `MTRACE_DEF`
("^MTRACE P A", [])
[ [
%-------------------------------------------- % ],
"^MTRACE Nil []" ;
[ "^MTRACE P A"
%-------------------------------------------- % ],
"^MTRACE (Pre a P) (CONS a A)" ;
[ "^MTRACE P A"
%-------------------------------------------- % ],
"^MTRACE (Sum P Q) A" ;
[ "^MTRACE Q A"
%-------------------------------------------- % ],
"^MTRACE (Sum P Q) A" ;
[ "^MTRACE P A"; "^MTRACE Q A"
%-------------------------------------------- % ],
"^MTRACE (Prod P Q) A" ];;
% --------------------------------------------------------------------- %
% Definition of a terminal process: one with [] as a maximal trace. %
% --------------------------------------------------------------------- %
let TERMINAL_DEF =
new_definition (`TERMINAL_DEF`, "TERMINAL P = MTRACE P []");;
% --------------------------------------------------------------------- %
% Stronger form of rule induction. %
% --------------------------------------------------------------------- %
let tsind = derive_strong_induction (trules,tind);;
% --------------------------------------------------------------------- %
% Standard rule induction tactic for MTRACE. This uses the weaker form %
% of the rule induction theorem, and both premisses and side conditions %
% are just assumed (in stripped form). %
% --------------------------------------------------------------------- %
let MTRACE_INDUCT_TAC =
RULE_INDUCT_THEN tind STRIP_ASSUME_TAC STRIP_ASSUME_TAC;;
% --------------------------------------------------------------------- %
% Prove the case analysis theorem for the rules defining MTRACE. %
% --------------------------------------------------------------------- %
let tcases = derive_cases_thm (trules,tind);;
% --------------------------------------------------------------------- %
% Tactics for each of the rules defining MTRACE. %
% --------------------------------------------------------------------- %
let [Nil_TAC;Pre_TAC;SumL_TAC;SumR_TAC;Prod_TAC] = map RULE_TAC trules;;
% --------------------------------------------------------------------- %
% Given the tactics defined above for each rule, we now define a tactic %
% that searches for a proof that a process has some particular maximal %
% trace, given some assumptions about maximal traces. Note that there %
% are two Sum rules, so our tactic may have to do some backtracking in %
% the proof. In addition to seaching using the MTRACE rules, the %
% looks for solutions among the assumptions as well as back-chaining %
% with any implications among the assumptions. The tactics fails unless %
% it completely solves the goal. %
% --------------------------------------------------------------------- %
letrec MTRACE_TAC g =
(REPEAT STRIP_TAC THEN
FIRST [Nil_TAC;
FIRST_ASSUM MATCH_ACCEPT_TAC;
Pre_TAC THEN MTRACE_TAC;
SumL_TAC THEN MTRACE_TAC;
SumR_TAC THEN MTRACE_TAC;
Prod_TAC THEN MTRACE_TAC;
FIRST_ASSUM MATCH_MP_TAC THEN MTRACE_TAC]) g ?
failwith `MTRACE_TAC`;;
% --------------------------------------------------------------------- %
% The following is a little rule for getting simplified instances of %
% the tcases theorem. All it does is to specialize tcases to the %
% supplied process, rewrite using the distinctness and injectivity of %
% constrctors, and eliminate redundant equations using REDUCE. Examples %
% of using MTCASE are: %
% %
% #MTCASE "Prod P Q";; %
% |- !P Q A. MTRACE(Prod P Q)A = MTRACE P A /\ MTRACE Q A %
% %
% #MTCASE "Sum P Q";; %
% |- !P Q A. MTRACE(Sum P Q)A = MTRACE P A \/ MTRACE Q A %
% %
% --------------------------------------------------------------------- %
let MTCASE =
let SIMPLIFY = REWRITE_RULE (distinct . agent11) in
\tm. let th1 = SIMPLIFY (SPEC tm tcases) in
GEN_ALL (CONV_RULE (ONCE_DEPTH_CONV REDUCE) th1);;
% ===================================================================== %
% Inductive definition of a labelled transition system. %
% ===================================================================== %
% --------------------------------------------------------------------- %
% We now define a labelled transition relation TRANS P l Q to mean %
% there that process P can participate in action l and thereby evolve %
% into process Q. The definition is done inductively, as usual. %
% --------------------------------------------------------------------- %
let (lrules,lind) =
let TRANS = "TRANS: agent->label->agent->bool" in
new_inductive_definition false `TRANS_DEF`
("^TRANS G b E",[])
[ [
% ------------------------------------- % ],
"^TRANS (Pre a Q) a Q" ;
[ "^TRANS P a P'"
% ------------------------------------- % ],
"^TRANS (Sum P Q) a P'" ;
[ "^TRANS Q a Q'"
% ------------------------------------- % ],
"^TRANS (Sum P Q) a Q'" ;
[ "^TRANS P a P'"; "^TRANS Q a Q'";
%-------------------------------------- % ],
"^TRANS (Prod P Q) a (Prod P' Q')" ];;
% --------------------------------------------------------------------- %
% Strong form of rule induction for TRANS. %
% --------------------------------------------------------------------- %
let lsind = derive_strong_induction (lrules,lind);;
% --------------------------------------------------------------------- %
% Standard rule induction tactic for TRANS. This again just uses the %
% weaker form of rule induction theorem. Both premisses and side %
% conditions are assumed (in stripped form). %
% --------------------------------------------------------------------- %
let TRANS_INDUCT_TAC =
RULE_INDUCT_THEN lind STRIP_ASSUME_TAC STRIP_ASSUME_TAC;;
% --------------------------------------------------------------------- %
% Cases theorem for TRANS. %
% --------------------------------------------------------------------- %
let lcases = derive_cases_thm (lrules,lind);;
% --------------------------------------------------------------------- %
% Tactics for the TRANS rules. %
% --------------------------------------------------------------------- %
let [TPre_TAC;TSumL_TAC;TSumR_TAC;TProd_TAC] = map RULE_TAC lrules;;
% --------------------------------------------------------------------- %
% Given the tactics defined above for each rule, we construct a tactic %
% that searches for a proof of TRANS P a Q, with becktracking in the %
% Sum case. The tactic also looks for the solution on the assumption %
% list of the goal, with backchaining through implications. %
% --------------------------------------------------------------------- %
letrec TRANS_TAC g =
(REPEAT STRIP_TAC THEN
FIRST [FIRST_ASSUM MATCH_ACCEPT_TAC;
TPre_TAC;
TSumL_TAC THEN TRANS_TAC;
TSumR_TAC THEN TRANS_TAC;
TProd_TAC THEN TRANS_TAC;
FIRST_ASSUM MATCH_MP_TAC THEN TRANS_TAC]) g ?
failwith `TRANS_TAC`;;
% ===================================================================== %
% Inductive definition of a trace transition system %
% ===================================================================== %
% --------------------------------------------------------------------- %
% We now define a transition system that accumulates the trace of a %
% process. This is essentially the reflexive-transitive closure of %
% TRANS, but with the label being a list of the labels from TRANS. %
% --------------------------------------------------------------------- %
let (Lrules,Lind) =
let TRANSIT = "TRANSIT: agent->(label)list->agent->bool" in
new_inductive_definition false `TRANSIT_DEF`
("^TRANSIT X L Y",[])
[ [
],
% --------------------------------------- %
"^TRANSIT P [] P" ;
[ "TRANS (P:agent) (a:label) (Q:agent)";
"^TRANSIT Q B P'" ],
% --------------------------------------- %
"^TRANSIT P (CONS a B) P'" ];;
% --------------------------------------------------------------------- %
% Strong form of rule induction for labelled (trace) transitions. %
% --------------------------------------------------------------------- %
let Lsind = derive_strong_induction (Lrules,Lind);;
% --------------------------------------------------------------------- %
% Rule induction tactic for TRANSIT. %
% --------------------------------------------------------------------- %
let TRANSIT_INDUCT_TAC = RULE_INDUCT_THEN Lind ASSUME_TAC ASSUME_TAC;;
% --------------------------------------------------------------------- %
% Cases theorem for the trace transition system. %
% --------------------------------------------------------------------- %
let Lcases = derive_cases_thm (Lrules,Lind);;
% --------------------------------------------------------------------- %
% A tactic for each TRANSIT rule. If matching conclusions to goals, %
% the two rules are mutually exclusive---so only the following single %
% tactic is needed. %
% --------------------------------------------------------------------- %
let TRANSIT_TAC = MAP_FIRST RULE_TAC Lrules;;
% ===================================================================== %
% Theorem 1: Maximal trace semantics `agrees' with transition semantics %
% ===================================================================== %
% --------------------------------------------------------------------- %
% Lemma 1 is to prove the following theorem: %
% %
% |- !P a Q. TRANS P a Q ==> !A. MTRACE Q A ==> MTRACE P (CONS a A) %
% %
% The proof is a straightforward rule induction on TRANS, followed by %
% a case analysis on MTRACE Q A when Q is a product (Prod), and then %
% completed by a simple search for the proof of the conclusion using %
% the tactic MTRACE_TAC. %
% --------------------------------------------------------------------- %
let Lemma1 =
PROVE
("!P a Q. TRANS P a Q ==> !A. MTRACE Q A ==> MTRACE P (CONS a A)",
TRANS_INDUCT_TAC THEN REPEAT GEN_TAC THEN
let PCASES = PURE_ONCE_REWRITE_RULE [MTCASE "Prod P Q"] in
DISCH_THEN (STRIP_ASSUME_TAC o PCASES) THEN MTRACE_TAC);;
% --------------------------------------------------------------------- %
% Theorem 1: |- !P A Q. TRANSIT P A Q ==> TERMINAL Q ==> MTRACE P A %
% %
% This theorem shows that the trace semantics agrees with the %
% trace-transition semantics, in the sense that if we follow the %
% transitions of a process P until we reach a terminal process Q, that %
% is a process with an empty maximal trace, then we will have gone %
% through a maximal trace of P. %
% --------------------------------------------------------------------- %
let Theorem1 =
prove_thm
(`Theorem1`,
"!P A Q. TRANSIT P A Q ==> TERMINAL Q ==> MTRACE P A",
PURE_ONCE_REWRITE_TAC [TERMINAL_DEF] THEN
TRANSIT_INDUCT_TAC THEN REPEAT STRIP_TAC THEN
RES_TAC THEN IMP_RES_TAC Lemma1);;
% --------------------------------------------------------------------- %
% Corollary 1: !P A Q. TRANSIT P A Nil ==> MTRACE P A %
% %
% Note that the converse does not hold. %
% --------------------------------------------------------------------- %
let Corollary1 =
prove_thm
(`Corollary1`,
"!P A. TRANSIT P A Nil ==> MTRACE P A",
REPEAT STRIP_TAC THEN
IMP_RES_THEN MATCH_MP_TAC Theorem1 THEN
PURE_ONCE_REWRITE_TAC [TERMINAL_DEF] THEN
MTRACE_TAC);;
% ===================================================================== %
% Theorem 2: Transition semantics `agrees' with maximal trace semantics %
% ===================================================================== %
% --------------------------------------------------------------------- %
% The following tactic is for solving existentially-quantified goals, %
% the bodies of which are conjunctions of assertions of membership in %
% one or more of the inductively-defined relations we're working with. %
% All it does is to reduce the goal with the supplied witness, and then %
% apply the tactic for the relevant relation. %
% --------------------------------------------------------------------- %
let EXISTS_SEARCH_TAC tm =
EXISTS_TAC tm THEN REPEAT STRIP_TAC THEN
TRY(FIRST [TRANS_TAC; MTRACE_TAC; TRANSIT_TAC]);;
% --------------------------------------------------------------------- %
% A little tactic for case analysis on the trace-transition system. %
% When supplied with a term "TRANSIT P A Q", which should be one of the %
% assumptions of the current goal, the tactic gets the corresponding %
% instance of the TRANSIT case analysis theorem, simplifies out any %
% false case, and enriches the goal with the remaining facts, either by %
% assuming them or, in the case of equations, by substitution. %
% --------------------------------------------------------------------- %
let TRANSIT_CASES_TAC =
let SUBST_ASSUME th g = SUBST_ALL_TAC th g ? STRIP_ASSUME_TAC th g in
let TTAC = (REPEAT_TCL STRIP_THM_THEN SUBST_ASSUME) in
\tm. let th1 = UNDISCH(fst(EQ_IMP_RULE(REWR_CONV Lcases tm))) in
let th2 = REWRITE_RULE [NOT_CONS_NIL;NOT_NIL_CONS;CONS_11] th1 in
REPEAT_TCL STRIP_THM_THEN SUBST_ASSUME th2;;
% --------------------------------------------------------------------- %
% Lemma 2 shows that the trace of a product is just the trace of its %
% two components in the relation TRANSIT. The proof is a sraightfoward %
% structural induction on the list A, with simplification using the %
% case analysis theorem for TRANSIT. %
% --------------------------------------------------------------------- %
let Lemma2 =
PROVE
("!A P Q P' Q'.
TRANSIT P A Q /\ TRANSIT P' A Q' ==> TRANSIT (Prod P P') A (Prod Q Q')",
INDUCT_THEN list_INDUCT ASSUME_TAC THEN
PURE_ONCE_REWRITE_TAC [Lcases] THEN
REWRITE_TAC ([NOT_NIL_CONS;NOT_CONS_NIL;CONS_11] @ agent11) THEN
CONV_TAC (ONCE_DEPTH_CONV REDUCE) THEN
REPEAT STRIP_TAC THEN EXISTS_SEARCH_TAC "Prod Q'' Q'''");;
% --------------------------------------------------------------------- %
% Theorem 2: |- !P A. MTRACE P A ==> ?Q. TRANSIT P A Q /\ TERMINAL Q %
% %
% This theorem shows that the transition semantics `agrees' with the %
% trace semantics, in the sense that every maximal trace A leads in the %
% transition semantics to a terminal process. The proof proceeds by %
% rule induction on MTRACE P A, followed by semi-automatic search for %
% proofs of TRANSIT P A Q and TERMINAL Q. The user supplies a witness %
% for any existential goals that arise. There is also a case analysis %
% on the TRANSIT assumption in the Sum cases, there being different %
% witnesses required for the two TRANSIT rules. %
% --------------------------------------------------------------------- %
let Theorem2 =
prove_thm
(`Theorem2`,
"!P A. MTRACE P A ==> ?Q. TRANSIT P A Q /\ TERMINAL Q",
PURE_ONCE_REWRITE_TAC [TERMINAL_DEF] THEN
MTRACE_INDUCT_TAC THEN REPEAT GEN_TAC THENL
[EXISTS_SEARCH_TAC "Nil";
MAP_EVERY EXISTS_SEARCH_TAC ["Q:agent";"P:agent"];
TRANSIT_CASES_TAC "TRANSIT P A Q" THENL
[EXISTS_SEARCH_TAC "Sum P Q'";
MAP_EVERY EXISTS_SEARCH_TAC ["Q:agent"; "Q'':agent"]];
TRANSIT_CASES_TAC "TRANSIT Q A Q'" THENL
[EXISTS_SEARCH_TAC "Sum P Q";
MAP_EVERY EXISTS_SEARCH_TAC ["Q':agent"; "Q'':agent"]];
IMP_RES_TAC Lemma2 THEN EXISTS_SEARCH_TAC "Prod Q' Q''"]);;
% ===================================================================== %
% Theorem3: The transition and maximal trace semantics `agree'. %
% ===================================================================== %
let Theorem3 =
prove_thm
(`Theorem3`,
"!P A. MTRACE P A = (?Q. TRANSIT P A Q /\ TERMINAL Q)",
REPEAT (EQ_TAC ORELSE STRIP_TAC) THENL
[MATCH_MP_TAC Theorem2 THEN FIRST_ASSUM ACCEPT_TAC;
IMP_RES_TAC Theorem1]);;
% ===================================================================== %
% Definitions of notions of equivalence %
% ===================================================================== %
% --------------------------------------------------------------------- %
% Maximal trace equivalence. Two processes are maximal trace equivalent %
% if they have the same maximal traces. %
% --------------------------------------------------------------------- %
let MEQUIV_DEF =
new_infix_definition
(`MEQUIV_DEF`,
"MEQUIV P Q = (!A. MTRACE P A = MTRACE Q A)");;
% --------------------------------------------------------------------- %
% Bisimulation equivalence. A binary relation s:agent->agent->bool is %
% a simulation if s P Q implies that any transitions that P can do can %
% also be done by Q such that the corresponding successive pairs of %
% agents remain in the relation s. Equivalence is then defined to be %
% the bisimulation (simulation whose inverse is also a simulation). %
% --------------------------------------------------------------------- %
let SIM_DEF =
new_definition
(`SIM_DEF`,
"SIM s =
!P Q. s P Q ==>
!a P'. TRANS P a P' ==> ?Q'. TRANS Q a Q' /\ s P' Q'");;
let BEQUIV_DEF =
new_infix_definition
(`BEQUIV_DEF`,
"BEQUIV P Q = ?s. SIM s /\ s P Q /\ SIM(\x y. s y x)");;
% --------------------------------------------------------------------- %
% End of example. %
% --------------------------------------------------------------------- %
close_theory();;
quit();;
|