This file is indexed.

/usr/share/hol88-2.02.19940316/contrib/rule-induction/algebra.ml is in hol88-contrib-source 2.02.19940316-31.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
% ===================================================================== %
% File		: algebra.ml						%
% DESCRIPTION   : Maximal trace semantics and transition semantics of a	%
%		  small process algebra.              			%
%									%
% AUTHORS	: Juanito Camilleri and Tom Melham		       	%
% DATE		: 91.05.13						%
% ===================================================================== %


% --------------------------------------------------------------------- %
% Open a new theory and load the inductive definitions library.		%
% --------------------------------------------------------------------- %

new_theory `algebra`;;

load_library `ind_defs`;;

% --------------------------------------------------------------------- %
% Load the string library.               				%
% --------------------------------------------------------------------- %

load_library `string`;;

% ===================================================================== %
% Syntax of a small process algebra		        		%
% ===================================================================== %

% --------------------------------------------------------------------- %
% We use the recursive types package to define the syntax of a small	%
% process algebra, with processes					%
%									%
%    agent  ::=   Nil                    [does nothing]			%
%               | Pre  label agent       [prefix agent with label]	%
%               | Sum  agent agent       [nondeterministic choice]	%
%	        | Prod agent agent       [composition]			%
%									%
% The different syntactic classes of processes are thus represented by 	%
% the constructors (constant functions):				%
%									%
%  Nil:agent, Pre:label->agent->agent, Sum and Prod:agent->agent->agent	%
%									%
% for the concrete data type :agent.  The type :label here is just an	%
% abbreviation for :string.						%
% --------------------------------------------------------------------- %

new_type_abbrev (`label`, ":string");;

let agent = 
    define_type `agent`
      `agent =  Nil 
              |  Pre   label  agent
              |  Sum   agent  agent
              |  Prod  agent  agent`;;

% ===================================================================== %
% Standard syntactic theory, derived by the recursive types package.	%
% ===================================================================== %

% --------------------------------------------------------------------- %
% prove structural induction theorem for agent.                         %
% --------------------------------------------------------------------- %
let induct = save_thm (`induct`,prove_induction_thm agent);;

% --------------------------------------------------------------------- %
% prove cases theorem for agent.                                        %
% --------------------------------------------------------------------- %
let cases = save_thm (`cases`, prove_cases_thm induct);;

% --------------------------------------------------------------------- %
% Prove that the constructors of the type :agent yield syntactically 	%
% distinct values. One typically needs all symmetric forms of the	%
% inequalities, so we package them all together here.			%
% --------------------------------------------------------------------- %
let distinct =
    let ths = CONJUNCTS (prove_constructors_distinct agent) in
    let rths = map (GEN_ALL o NOT_EQ_SYM o SPEC_ALL) ths in
        save_thm(`distinct`, LIST_CONJ (ths @ rths));;

% --------------------------------------------------------------------- %
% Prove that the constructors Pre, Sum and Prod are one-to-one.         %
% --------------------------------------------------------------------- %
let agent11 =
    let [Pre11;Sum11;Prod11] =
        (CONJUNCTS (prove_constructors_one_one agent)) in
        map save_thm
        [(`Pre11`,Pre11);
         (`Sum11`,Sum11);
         (`Prod11`,Prod11)];;

% ===================================================================== %
% Definition of a maximal trace semantics for the process algebra.	%
% ===================================================================== %

% --------------------------------------------------------------------- %
% Type abbreviation for traces.   These are just finite sequences of 	%
% labels, represented here by lists.					%
% --------------------------------------------------------------------- %
new_type_abbrev (`trace`, ":(label)list");;

% --------------------------------------------------------------------- %
% Inductive definition of a trace relation MTRACE.  This is defined so	%
% that MTRACE P A means A is the maximal trace of the process P. The 	%
% definition is done inductively by the rules given below.	     	%
% --------------------------------------------------------------------- %

let (trules,tind) =
    let MTRACE = "MTRACE:agent->trace->bool" in
    new_inductive_definition false `MTRACE_DEF` 

    ("^MTRACE P A", [])

    [ [                                             
      %-------------------------------------------- % ],
                     "^MTRACE Nil []"               ;   


      [               "^MTRACE P A"                 
      %-------------------------------------------- % ],
              "^MTRACE (Pre a P) (CONS a A)"        ;


      [                 "^MTRACE P A"                
      %-------------------------------------------- % ],
                    "^MTRACE (Sum P Q) A"           ;


      [                 "^MTRACE Q A"                
      %-------------------------------------------- % ],
                    "^MTRACE (Sum P Q) A"           ;


      [    "^MTRACE P A";          "^MTRACE Q A"    
      %-------------------------------------------- % ],
                  "^MTRACE (Prod P Q) A"            ];;


% --------------------------------------------------------------------- %
% Definition of a terminal process: one with [] as a maximal trace.	%
% --------------------------------------------------------------------- %

let TERMINAL_DEF =
    new_definition (`TERMINAL_DEF`, "TERMINAL P = MTRACE P []");;


% --------------------------------------------------------------------- %
% Stronger form of rule induction.					%
% --------------------------------------------------------------------- %

let tsind = derive_strong_induction (trules,tind);;

% --------------------------------------------------------------------- %
% Standard rule induction tactic for MTRACE. This uses the weaker form  %
% of the rule induction theorem, and both premisses and side conditions %
% are just assumed (in stripped form).  				%
% --------------------------------------------------------------------- %

let MTRACE_INDUCT_TAC =
    RULE_INDUCT_THEN tind STRIP_ASSUME_TAC STRIP_ASSUME_TAC;;

% --------------------------------------------------------------------- %
% Prove the case analysis theorem for the rules defining MTRACE.	%
% --------------------------------------------------------------------- %

let tcases = derive_cases_thm (trules,tind);;

% --------------------------------------------------------------------- %
% Tactics for each of the rules defining MTRACE.			%
% --------------------------------------------------------------------- %
let [Nil_TAC;Pre_TAC;SumL_TAC;SumR_TAC;Prod_TAC] = map RULE_TAC trules;;

% --------------------------------------------------------------------- %
% Given the tactics defined above for each rule, we now define a tactic %
% that searches for a proof that a process has some particular maximal  %
% trace, given some assumptions about maximal traces.  Note that there	%
% are two Sum rules, so our tactic may have to do some backtracking in  %
% the proof.  In addition to seaching using the MTRACE rules, the 	%
% looks for solutions among the assumptions as well as back-chaining 	%
% with any implications among the assumptions. The tactics fails unless %
% it completely solves the goal.					%
% --------------------------------------------------------------------- %

letrec MTRACE_TAC g =
   (REPEAT STRIP_TAC THEN
    FIRST [Nil_TAC;
           FIRST_ASSUM MATCH_ACCEPT_TAC;
           Pre_TAC THEN MTRACE_TAC;
           SumL_TAC THEN MTRACE_TAC;
           SumR_TAC THEN MTRACE_TAC;
           Prod_TAC  THEN MTRACE_TAC;
   	   FIRST_ASSUM MATCH_MP_TAC THEN MTRACE_TAC]) g ? 
   failwith `MTRACE_TAC`;;

% --------------------------------------------------------------------- %
% The following is a little rule for getting simplified instances of	%
% the tcases theorem.  All it does is to specialize tcases to the 	%
% supplied process, rewrite using the distinctness and injectivity of	%
% constrctors, and eliminate redundant equations using REDUCE. Examples %
% of using MTCASE are:							%
%									%
%   #MTCASE "Prod P Q";;						%
%   |- !P Q A. MTRACE(Prod P Q)A = MTRACE P A /\ MTRACE Q A		%
%									%
%   #MTCASE "Sum P Q";;							%
%   |- !P Q A. MTRACE(Sum P Q)A = MTRACE P A \/ MTRACE Q A		%
%									%
% --------------------------------------------------------------------- %

let MTCASE =
    let SIMPLIFY = REWRITE_RULE (distinct . agent11) in
    \tm. let th1 = SIMPLIFY (SPEC tm tcases) in
         GEN_ALL (CONV_RULE (ONCE_DEPTH_CONV REDUCE) th1);;

% ===================================================================== %
% Inductive definition of a labelled transition system.                	%
% ===================================================================== %

% --------------------------------------------------------------------- %
% We now define a labelled transition relation TRANS P l Q to mean	%
% there that process P can participate in action l and thereby evolve	%
% into process Q.  The definition is done inductively, as usual.        %
% --------------------------------------------------------------------- %

let (lrules,lind) =
    let TRANS = "TRANS: agent->label->agent->bool" in
    new_inductive_definition false `TRANS_DEF` 

    ("^TRANS G b E",[])

    [ [			                      
      % ------------------------------------- % ],
               "^TRANS (Pre a Q) a Q"         ;

 
      [	           "^TRANS P a P'"             
      % ------------------------------------- % ],
               "^TRANS (Sum P Q) a P'"        ;


      [	           "^TRANS Q a Q'"            
      % ------------------------------------- % ],
               "^TRANS (Sum P Q) a Q'"        ;


      [ "^TRANS P a P'";      "^TRANS Q a Q'"; 
      %-------------------------------------- % ],
          "^TRANS (Prod P Q) a (Prod P' Q')"  ];;

% --------------------------------------------------------------------- %
% Strong form of rule induction for TRANS.	      			%
% --------------------------------------------------------------------- %

let lsind = derive_strong_induction (lrules,lind);;

% --------------------------------------------------------------------- %
% Standard rule induction tactic for TRANS. This again just uses the	%
% weaker form of rule induction theorem.  Both premisses and side 	%
% conditions are assumed (in stripped form).  				%
% --------------------------------------------------------------------- %

let TRANS_INDUCT_TAC =
    RULE_INDUCT_THEN lind STRIP_ASSUME_TAC STRIP_ASSUME_TAC;;

% --------------------------------------------------------------------- %
% Cases theorem for TRANS. 						%
% --------------------------------------------------------------------- %

let lcases =  derive_cases_thm (lrules,lind);;

% --------------------------------------------------------------------- %
% Tactics for the TRANS rules.						%
% --------------------------------------------------------------------- %
let [TPre_TAC;TSumL_TAC;TSumR_TAC;TProd_TAC] = map RULE_TAC lrules;;

% --------------------------------------------------------------------- %
% Given the tactics defined above for each rule, we construct a tactic  %
% that searches for a proof of TRANS P a Q, with becktracking in the 	%
% Sum case.  The tactic also looks for the solution on the assumption	%
% list of the goal, with backchaining through implications. 		%
% --------------------------------------------------------------------- %
letrec TRANS_TAC g =
   (REPEAT STRIP_TAC THEN
    FIRST [FIRST_ASSUM MATCH_ACCEPT_TAC;
           TPre_TAC;
           TSumL_TAC THEN TRANS_TAC;
           TSumR_TAC THEN TRANS_TAC;
           TProd_TAC  THEN TRANS_TAC;
   	   FIRST_ASSUM MATCH_MP_TAC THEN TRANS_TAC]) g ? 
   failwith `TRANS_TAC`;;

% ===================================================================== %
% Inductive definition of a trace transition system                	%
% ===================================================================== %

% --------------------------------------------------------------------- %
% We now define a transition system that accumulates the trace of a	%
% process.  This is essentially the reflexive-transitive closure of	%
% TRANS, but with the label being a list of the labels from TRANS.	%
% --------------------------------------------------------------------- %

let (Lrules,Lind) =
    let TRANSIT = "TRANSIT: agent->(label)list->agent->bool" in
    new_inductive_definition false `TRANSIT_DEF`

    ("^TRANSIT X L Y",[])

    [ [                                       
         				        ],
      % --------------------------------------- %
              "^TRANSIT P [] P"             ;


      [  "TRANS (P:agent) (a:label) (Q:agent)";

                  "^TRANSIT Q B P'"             ],
      % --------------------------------------- %
               "^TRANSIT P (CONS a B) P'"       ];;


% --------------------------------------------------------------------- %
% Strong form of rule induction for labelled (trace) transitions.      	%
% --------------------------------------------------------------------- %

let Lsind = derive_strong_induction (Lrules,Lind);;

% --------------------------------------------------------------------- %
% Rule induction tactic for TRANSIT.					%
% --------------------------------------------------------------------- %

let TRANSIT_INDUCT_TAC = RULE_INDUCT_THEN Lind ASSUME_TAC ASSUME_TAC;;

% --------------------------------------------------------------------- %
% Cases theorem for the trace transition system.		      	%
% --------------------------------------------------------------------- %

let Lcases = derive_cases_thm (Lrules,Lind);;

% --------------------------------------------------------------------- %
% A tactic for each TRANSIT rule. If matching conclusions to goals,     %
% the two rules are mutually exclusive---so only the following single	%
% tactic is needed.							%
% --------------------------------------------------------------------- %

let TRANSIT_TAC = MAP_FIRST RULE_TAC Lrules;;

% ===================================================================== %
% Theorem 1: Maximal trace semantics `agrees' with transition semantics	%
% ===================================================================== %

% --------------------------------------------------------------------- %
% Lemma 1 is to prove the following theorem:				%
%									%
%    |- !P a Q. TRANS P a Q ==> !A. MTRACE Q A ==> MTRACE P (CONS a A)  %
%									%
% The proof is a straightforward rule induction on TRANS, followed by	%
% a case analysis on MTRACE Q A when Q is a product (Prod), and then	%
% completed by a simple search for the proof of the conclusion using 	%
% the tactic MTRACE_TAC.						%
% --------------------------------------------------------------------- %

let Lemma1 =
    PROVE
    ("!P a Q. TRANS P a Q ==> !A. MTRACE Q A ==> MTRACE P (CONS a A)",  
     TRANS_INDUCT_TAC THEN REPEAT GEN_TAC THEN
     let PCASES = PURE_ONCE_REWRITE_RULE [MTCASE "Prod P Q"] in
     DISCH_THEN (STRIP_ASSUME_TAC o PCASES) THEN MTRACE_TAC);;

% --------------------------------------------------------------------- %
% Theorem 1:  |- !P A Q. TRANSIT P A Q ==> TERMINAL Q ==> MTRACE P A    %
%									%
% This theorem shows that the trace semantics agrees with the 		%
% trace-transition semantics, in the sense that if we follow the	%
% transitions of a process P until we reach a terminal process Q, that	%
% is a process with an empty maximal trace, then we will have gone	%
% through a maximal trace of P.						%
% --------------------------------------------------------------------- %

let Theorem1 =
    prove_thm
    (`Theorem1`,
     "!P A Q. TRANSIT P A Q ==> TERMINAL Q ==> MTRACE P A",
     PURE_ONCE_REWRITE_TAC [TERMINAL_DEF] THEN 
     TRANSIT_INDUCT_TAC THEN REPEAT STRIP_TAC THEN
     RES_TAC THEN IMP_RES_TAC Lemma1);;

% --------------------------------------------------------------------- %
% Corollary 1: !P A Q. TRANSIT P A Nil ==> MTRACE P A                   %
%									%
% Note that the converse does not hold.					%
% --------------------------------------------------------------------- %

let Corollary1 = 
    prove_thm
    (`Corollary1`,
     "!P A. TRANSIT P A Nil ==> MTRACE P A",
     REPEAT STRIP_TAC THEN
     IMP_RES_THEN MATCH_MP_TAC Theorem1 THEN
     PURE_ONCE_REWRITE_TAC [TERMINAL_DEF] THEN
     MTRACE_TAC);;

% ===================================================================== %
% Theorem 2: Transition semantics `agrees' with maximal trace semantics %
% ===================================================================== %

% --------------------------------------------------------------------- %
% The following tactic is for solving existentially-quantified goals,	%
% the bodies of which are conjunctions of assertions of membership in	%
% one or more of the inductively-defined relations we're working with.  %
% All it does is to reduce the goal with the supplied witness, and then %
% apply the tactic for the relevant relation.				%
% --------------------------------------------------------------------- %

let EXISTS_SEARCH_TAC tm =
     EXISTS_TAC tm THEN REPEAT STRIP_TAC THEN
       TRY(FIRST [TRANS_TAC; MTRACE_TAC; TRANSIT_TAC]);;

% --------------------------------------------------------------------- %
% A little tactic for case analysis on the trace-transition system. 	%
% When supplied with a term "TRANSIT P A Q", which should be one of the %
% assumptions of the current goal, the tactic gets the corresponding	%
% instance of the TRANSIT case analysis theorem, simplifies out any	%
% false case, and enriches the goal with the remaining facts, either by	%
% assuming them or, in the case of equations, by substitution.		%
% --------------------------------------------------------------------- %

let TRANSIT_CASES_TAC = 
    let SUBST_ASSUME th g = SUBST_ALL_TAC th g ? STRIP_ASSUME_TAC th g in
    let TTAC = (REPEAT_TCL STRIP_THM_THEN SUBST_ASSUME) in
    \tm. let th1 = UNDISCH(fst(EQ_IMP_RULE(REWR_CONV Lcases tm))) in
         let th2 = REWRITE_RULE [NOT_CONS_NIL;NOT_NIL_CONS;CONS_11] th1 in
             REPEAT_TCL STRIP_THM_THEN SUBST_ASSUME th2;;

% --------------------------------------------------------------------- %
% Lemma 2 shows that the trace of a product is just the trace of its	%
% two components in the relation TRANSIT. The proof is a sraightfoward	%
% structural induction on the list A, with simplification using the     %
% case analysis theorem for TRANSIT.					%
% --------------------------------------------------------------------- %

let Lemma2 =
    PROVE
    ("!A P Q P' Q'.
       TRANSIT P A Q /\ TRANSIT P' A Q' ==> TRANSIT (Prod P P') A (Prod Q Q')",
     INDUCT_THEN list_INDUCT ASSUME_TAC THEN
     PURE_ONCE_REWRITE_TAC [Lcases] THEN
     REWRITE_TAC ([NOT_NIL_CONS;NOT_CONS_NIL;CONS_11] @ agent11) THEN
     CONV_TAC (ONCE_DEPTH_CONV REDUCE) THEN
     REPEAT STRIP_TAC THEN EXISTS_SEARCH_TAC "Prod Q'' Q'''");;

% --------------------------------------------------------------------- %
% Theorem 2:  |- !P A. MTRACE P A ==> ?Q. TRANSIT P A Q /\ TERMINAL Q	%
%									%
% This theorem shows that the transition semantics `agrees' with the	%
% trace semantics, in the sense that every maximal trace A leads in the %
% transition semantics to a terminal process.  The proof proceeds by	%
% rule induction on MTRACE P A, followed by semi-automatic search for 	%
% proofs of TRANSIT P A Q and TERMINAL Q.  The user supplies a witness 	%
% for any existential goals that arise.  There is also a case analysis  %
% on the TRANSIT assumption in the Sum cases, there being different 	%
% witnesses required for the two TRANSIT rules.				%
% --------------------------------------------------------------------- %

let Theorem2 =
    prove_thm
    (`Theorem2`,
     "!P A. MTRACE P A ==> ?Q. TRANSIT P A Q /\ TERMINAL Q",
     PURE_ONCE_REWRITE_TAC [TERMINAL_DEF] THEN
     MTRACE_INDUCT_TAC THEN REPEAT GEN_TAC THENL
     [EXISTS_SEARCH_TAC "Nil";
      MAP_EVERY EXISTS_SEARCH_TAC ["Q:agent";"P:agent"];
      TRANSIT_CASES_TAC "TRANSIT P A Q" THENL
      [EXISTS_SEARCH_TAC "Sum P Q'";
       MAP_EVERY EXISTS_SEARCH_TAC ["Q:agent"; "Q'':agent"]];
      TRANSIT_CASES_TAC "TRANSIT Q A Q'" THENL
      [EXISTS_SEARCH_TAC "Sum P Q";
       MAP_EVERY EXISTS_SEARCH_TAC ["Q':agent"; "Q'':agent"]]; 
      IMP_RES_TAC Lemma2 THEN EXISTS_SEARCH_TAC "Prod Q' Q''"]);;

% ===================================================================== %
% Theorem3: The transition and maximal trace semantics `agree'.		%
% ===================================================================== %

let Theorem3 =
    prove_thm
    (`Theorem3`,
     "!P A. MTRACE P A = (?Q. TRANSIT P A Q /\ TERMINAL Q)",
     REPEAT (EQ_TAC ORELSE STRIP_TAC) THENL
     [MATCH_MP_TAC Theorem2 THEN FIRST_ASSUM ACCEPT_TAC;
      IMP_RES_TAC Theorem1]);;


% ===================================================================== %
% Definitions of notions of equivalence                                 %
% ===================================================================== %

% --------------------------------------------------------------------- %
% Maximal trace equivalence. Two processes are maximal trace equivalent %
% if they have the same maximal traces.					%
% --------------------------------------------------------------------- %

let MEQUIV_DEF =
    new_infix_definition 
    (`MEQUIV_DEF`,    
     "MEQUIV P Q = (!A. MTRACE P A = MTRACE Q A)");;

% --------------------------------------------------------------------- %
% Bisimulation equivalence.  A binary relation s:agent->agent->bool is  %
% a simulation if s P Q implies that any transitions that P can do can  %
% also be done by Q such that the corresponding successive pairs of	%
% agents remain in the relation s.  Equivalence is then defined to be 	%
% the bisimulation (simulation whose inverse is also a simulation).	%
% --------------------------------------------------------------------- %

let SIM_DEF =
    new_definition 
    (`SIM_DEF`,
     "SIM s = 
      !P Q. s P Q ==>
            !a P'. TRANS P a P' ==> ?Q'. TRANS Q a Q' /\ s P' Q'");;

let BEQUIV_DEF =
    new_infix_definition 
    (`BEQUIV_DEF`,
     "BEQUIV P Q = ?s. SIM s /\ s P Q /\ SIM(\x y. s y x)");;


% --------------------------------------------------------------------- %
% End of example.							%
% --------------------------------------------------------------------- %

close_theory();;
quit();;