/usr/share/hol88-2.02.19940316/contrib/fpf/fpf.ml is in hol88-contrib-source 2.02.19940316-31.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 | %-----------------------------------------------------------------------%
% PLEASE FORGIVE THE USE OF AN EDITOR WITH WIDTH > 80 CHARACTERS... %
%-----------------------------------------------------------------------%
set_flag (`sticky`, true);;
system `rm fpf.th`;;
new_theory `fpf`;;
load_library `sets`;;
loadf `RENAME_TAC`;;
loadf `set_ind`;;
loadf `SSMART_EXISTS_TAC`;;
loadf `ELIMINATE_TACS`;;
%-----------------------------------------------------------------------%
% a few aux. tactics %
%-----------------------------------------------------------------------%
let DEEP_SYM_CONV = (ONCE_DEPTH_CONV SYM_CONV);;
let DEEP_SYM = (CONV_RULE DEEP_SYM_CONV);;
let DEEP_SYM_ASM_REWRITE_TAC l (asl,g) =
REWRITE_TAC (l @
(map (\t. DEEP_SYM (ASSUME t) ? (ASSUME t)) asl))
(asl,g);;
let UNDISCH_ALL_TAC = POP_ASSUM_LIST (EVERY o (map MP_TAC));;
let DEEP_SYM_ASM_THEN tac =
POP_ASSUM_LIST (\asms.
EVERY (map ((ASSUME_TAC o DEEP_SYM) ? ASSUME_TAC) asms)
THEN tac
);;
%-----------------------------------------------------------------------%
% theory of finite partial functions %
%-----------------------------------------------------------------------%
%-----------------------------------------------------------------------%
%
< Some notes on finite partial functions (or finite maps):
<
<
< Besides their finite domain, the important
< property of finite maps is what happens when we apply
< things to them. This is done using the APPLY function defined below.
< Two results are possible - a failure (the result then being FAILURE),
< or a result (RESULT x). The actual type returned by APPLY is (**+one), where
< ** is the type of the range of the map. Thus FAILURE = INR one, and
< RESULT x = INL x. The user of the finite partial functions can in general
< avoid using the somewhat cryptic INL, INR, OUTL etc. constructors, for
< RESULT, FAILURE, RESULTOF and SUCCEEDS are far more inuitive.
<
< The constants defined:
< ZIP = The empty map
< EXT = extends a map by adding on new mapping
< APPLY = applies a value to the map to see what it maps to if anything
< DOM = domain of the map (i.e. the things that are mapped to something)
< EXTBY = adds one map to another, the first taking precedence
< SUCCEEDS = true if an application succeeds, as in SUCCEEDS(APPLY x fpf)
< FAILURE = the result of APPLY when what we are applying doesn't map to anything
< RESULT x = the result of APPLY when what we are applying maps to x
< RESULTOF = access the result of a successful application
< PORTION = predicate to see if one map is a subset of another
< TRANSFORM = transforms elements of the range of a map by a given function
< RANGE = range of a map
< UNEXT = deletes a mapping from a map (Un-Extension)
< LIST_TO_FPF = converts a list of pairs to a map - useful to allow the use
< of list nottation to specify maps.
< EVERYF = applies a predicate test to every mapping in the map.
<
< Some examples of things that are easily provable by rewriting:
<
< APPLY x ZIP = FAILURE
< APPLY 1 (EXT (1,10) ZIP) = RESULT 10
< DOM ZIP = {}
< DOM (EXT (1,10) ZIP) = {1}
<
< Finite maps are created using the EXT operator. All maps have their basis in
< the empty map ZIP. Inuitively EXT is a cross between CONS and INSERT.
< The argument to EXT is a pair indicating a maplet
< x |-> y. The ordering of EXT's is unimportant if all the domain elements are
< distinct. However:
< EXT (1, 100) (EXT (1, 0) ZIP) = EXT (1,100)
< can be proven - i.e. extensions override original mappings.
<
< The finiteness of the maps is captured by the induction principles that are
< proved. The first induction principle is often not useful, for it does
< not ensure that previous mappings are not overridden. Often we want to induct
< over the cardinality of the domain of the map, or to use the additional
< assumption that the new extension being added to the map in the step case
< does not already have a value in the map. These induction principles are
< proved below (see fpf_INDUCT_2).
< %
%-----------------------------------------------------------------------%
let INL_INR_11 = prove_constructors_one_one sum_Axiom;;
let INL_11 = save_thm(`INL_11`, CONJUNCT1 INL_INR_11);;
let INR_11 = save_thm(`INR_11`, CONJUNCT2 INL_INR_11);;
let FAILURE_DEF = new_definition(`FAILURE_DEF`, "(FAILURE:(**+one)) = INR one");;
let RESULT_DEF = new_definition(`RESULT_DEF`, "(RESULT:(**)->(**+one)) = INL");;
let SUCCEEDS_DEF = new_definition(`SUCCEEDS_DEF`, "(SUCCEEDS:(**+one)->bool) = ISL");;
let FAILS_DEF = new_definition(`FAILS_DEF`, "(FAILS:(**+one)->bool) = ISR");;
let RESULTOF_DEF = new_definition(`RESULTOF_DEF`, "(RESULTOF:(**+one)->**) = OUTL");;
let RESULT_11 = prove_thm(`RESULT_11`, "!(x:**) x'. (RESULT x = RESULT x') = (x = x')",
REWRITE_TAC [RESULT_DEF; INL_11]);;
let SUCCEEDS_RESULT = prove_thm(`SUCCEEDS_RESULT`, "!x:*. SUCCEEDS (RESULT x)",
REWRITE_TAC [RESULT_DEF;ISL;SUCCEEDS_DEF]);;
let NOT_SUCCEEDS_FAILURE = prove_thm(`NOT_SUCCEEDS_FAILURE`, "~(SUCCEEDS:(*+one)->bool) FAILURE",
REWRITE_TAC [SUCCEEDS_DEF; FAILURE_DEF; ISL]);;
let RESULTOF_RESULT = prove_thm(`RESULTOF_RESULT`, "!x:*. RESULTOF (RESULT x) = x",
REWRITE_TAC [OUTL;RESULTOF_DEF;RESULT_DEF]);;
let FAILS_FAILURE = prove_thm(`FAILS_FAILURE`, "FAILS (FAILURE:(**+one))", REWRITE_TAC [FAILS_DEF;FAILURE_DEF;ISR]);;
let NOT_FAILS_RESULT = prove_thm(`NOT_FAILS_RESULT`, "!x. ~(FAILS:(**+one)->bool) (RESULT x)",
REWRITE_TAC [FAILS_DEF;RESULT_DEF;ISR]);;
%-----------------------------------------------------------------------%
%-----------------------------------------------------------------------%
let ZIP_REP_DEF = new_definition
(`ZIP_REP_DEF`,
"(ZIP_REP:*->(**+one)) = \x.FAILURE"
);;
let EXT_REP_DEF = new_definition
(`EXT_REP_DEF`,
"EXT_REP (x:*,y:**) (map:*->(**+one)) = (\x'.(x=x')=>RESULT y|map x')");;
let IS_fpf_REP = new_definition
(`IS_fpf_REP`,
"IS_fpf_REP (fpf:*->(**+one)) =
(!P:((*->(**+one))->bool) . P ZIP_REP /\
(!fpf' x y. P fpf' ==> P(EXT_REP (x,y) fpf')) ==> P fpf)"
);;
let fpf_REP_EXISTS = PROVE("?fpf. IS_fpf_REP (fpf:*->(**+one))",
REWRITE_TAC [IS_fpf_REP]
THEN EXISTS_TAC "ZIP_REP:*->(**+one)"
THEN REPEAT STRIP_TAC);;
let fpf_TY_DEF =
new_type_definition
(`fpf`,
"IS_fpf_REP:(*->(**+one))->bool",
fpf_REP_EXISTS);;
let fpf_ISO_DEF =
define_new_type_bijections
`fpf_ISO_DEF` `ABS_fpf` `REP_fpf` fpf_TY_DEF;;
let R_11 = prove_rep_fn_one_one fpf_ISO_DEF and
R_ONTO = prove_rep_fn_onto fpf_ISO_DEF and
A_11 = prove_abs_fn_one_one fpf_ISO_DEF and
A_ONTO = prove_abs_fn_onto fpf_ISO_DEF and
A_R = CONJUNCT1 fpf_ISO_DEF and
R_A = CONJUNCT2 fpf_ISO_DEF;;
let ZIP_DEF = new_definition
(`ZIP_DEF`,
"(ZIP:(*,**)fpf) = ABS_fpf (\x.FAILURE)"
);;
let ZIP_DEF_LEMMA = PROVE("(ZIP:(*,**)fpf) = ABS_fpf ZIP_REP", REWRITE_TAC [ZIP_DEF; ZIP_REP_DEF]);;
let IS_fpf_REP_ZIP = PROVE("IS_fpf_REP (ZIP_REP:*->(**+one))",
REWRITE_TAC [IS_fpf_REP; ZIP_REP_DEF; ]
THEN REPEAT STRIP_TAC
);;
let EXT_DEF = new_definition
(`EXT_DEF`,
"EXT (x:*,y:**) map = ABS_fpf (\x'.(x=x')=>RESULT y|(REP_fpf map) x')");;
let EXT_DEF_LEMMA = PROVE("!x y map. EXT (x:*,y:**) map = ABS_fpf (EXT_REP (x,y) (REP_fpf map))",
REWRITE_TAC [EXT_DEF; EXT_REP_DEF]);;
let IS_fpf_EXT_REP = PROVE(
"!x y (fpf:*->(**+one)). (IS_fpf_REP fpf) ==> IS_fpf_REP (EXT_REP (x,y) fpf)",
PURE_REWRITE_TAC [IS_fpf_REP; ZIP_REP_DEF; EXT_REP_DEF]
THEN REPEAT STRIP_TAC
THEN FIRST_ASSUM MATCH_MP_TAC
THEN FIRST_ASSUM MATCH_MP_TAC
THEN ASM_REWRITE_TAC []
);;
let IS_fpf_REP_EXT_REP = PROVE(
"!x y fpf. IS_fpf_REP (EXT_REP (x,y) (REP_fpf fpf))",
REPEAT GEN_TAC
THEN MATCH_MP_TAC IS_fpf_EXT_REP
THEN REWRITE_TAC[R_ONTO]
THEN EXISTS_TAC "fpf"
THEN REFL_TAC
);;
let R_A_lemma_1 = PROVE(
"REP_fpf ((ABS_fpf (\x:*.FAILURE)):(*,**)fpf) = (\x:*.FAILURE)",
REWRITE_TAC [DEEP_SYM R_A; IS_fpf_REP; ZIP_REP_DEF]
THEN REPEAT STRIP_TAC
);;
let R_A_lemma_2 = PROVE(
"!(fpf:(*,**)fpf) x y. REP_fpf (ABS_fpf (\x'. ((x = x') => RESULT y | (REP_fpf fpf) x'))) =
(\x'. ((x = x') => RESULT y | (REP_fpf fpf) x'))",
REWRITE_TAC [DEEP_SYM EXT_REP_DEF; DEEP_SYM R_A; IS_fpf_REP_EXT_REP]
);;
let R_A_lemma = CONJ R_A_lemma_1 R_A_lemma_2;;
let REP_LEMMA = PROVE(
"IS_fpf_REP (REP_fpf (fpf:(*,**)fpf))",
REWRITE_TAC [R_ONTO]
THEN EXISTS_TAC "fpf:(*,**)fpf"
THEN REFL_TAC
);;
%----------------------------------------------------------------
induction -- this parallels the derivation of induction by
T. Melham for natural numbers.
----------------------------------------------------------------%
let ind_lemma_1 = PROVE(
"!P. P ZIP_REP /\
(!(fpf:*->(**+one)) x y. (P fpf ==> P (EXT_REP (x,y) fpf))) ==>
(!(fpf:*->(**+one)). IS_fpf_REP fpf ==> P fpf)",
PURE_ONCE_REWRITE_TAC [IS_fpf_REP]
THEN REPEAT STRIP_TAC
THEN RES_TAC
);;
let lemma = TAC_PROOF
(([], "(A ==> A /\ B) = (A ==> B)"),
ASM_CASES_TAC "A:bool"
THEN ASM_REWRITE_TAC []
);;
let ind_lemma_2 = TAC_PROOF
(([],"!P. P ZIP_REP /\
(!(fpf:*->(**+one)) x y.
(IS_fpf_REP fpf /\ P fpf ==> P (EXT_REP (x,y) fpf))) ==>
(!(fpf:*->(**+one)). IS_fpf_REP fpf ==> P fpf)"),
GEN_TAC THEN STRIP_TAC THEN
MP_TAC (SPEC "\fpf:*->(**+one). IS_fpf_REP fpf /\ P fpf" ind_lemma_1) THEN
CONV_TAC (ONCE_DEPTH_CONV BETA_CONV) THEN
ASM_REWRITE_TAC [lemma;IS_fpf_REP_ZIP] THEN
DISCH_THEN MATCH_MP_TAC THEN
REPEAT STRIP_TAC THENL
[IMP_RES_THEN MATCH_ACCEPT_TAC IS_fpf_EXT_REP;
RES_TAC THEN FIRST_ASSUM MATCH_ACCEPT_TAC]);;
let lemma1 = PROVE(
"(! fpf:*->(**+one). IS_fpf_REP fpf ==> P(ABS_fpf fpf)) = (! fpf. P fpf)",
EQ_TAC
THEN REPEAT STRIP_TAC
THEN STRIP_ASSUME_TAC (SPEC "fpf:(*,**)fpf" A_ONTO)
THEN RES_TAC
THEN ASM_REWRITE_TAC []
);;
let SYM_RULE =
(CONV_RULE (ONCE_DEPTH_CONV SYM_CONV))
? failwith `SYM_RULE`;;
let fpf_INDUCT = prove_thm
(`fpf_INDUCT`,
"!P. (P ZIP /\ (!fpf. P fpf ==> !(x:*) (y:**). P(EXT (x,y) fpf))) ==> !fpf. P fpf",
GEN_TAC
THEN STRIP_TAC
THEN MP_TAC (SPEC "\fpf:*->(**+one). P(ABS_fpf fpf):bool" ind_lemma_2)
THEN BETA_TAC
THEN ASM_REWRITE_TAC [(SYM_RULE ZIP_DEF_LEMMA); lemma1]
THEN DISCH_THEN MATCH_MP_TAC
THEN REWRITE_TAC [R_ONTO]
THEN REPEAT GEN_TAC
THEN CONV_TAC ANTE_CONJ_CONV
THEN DISCH_THEN (STRIP_THM_THEN SUBST1_TAC)
THEN ASM_REWRITE_TAC [A_R; (SYM_RULE (SPEC_ALL EXT_DEF_LEMMA))]
THEN STRIP_TAC THEN RES_TAC THEN FIRST_ASSUM MATCH_ACCEPT_TAC
);;
let fpf_INDUCT_TAC = INDUCT_THEN fpf_INDUCT ASSUME_TAC;;
%----------------------------------------------------------------
Primitive theorems
----------------------------------------------------------------%
%----------------------------------------------------------------
APPLY (derived from finite set IN code, though more of my own stuff here)
----------------------------------------------------------------%
let APPLY_DEF = new_definition
(`APPLY_DEF`,
"APPLY x (map:(*,**)fpf) = (REP_fpf map) x");;
let APPLY_ZIP = prove_thm(`APPLY_ZIP`,
"!x. APPLY x (ZIP:(*,**)fpf) = FAILURE",
REWRITE_TAC [APPLY_DEF; ZIP_DEF; R_A_lemma]);;
let NOT_SUCCEEDS_APPLY_ZIP = prove_thm(`NOT_SUCCEEDS_APPLY_ZIP`,
"!x. SUCCEEDS(APPLY x (ZIP:(*,**)fpf)) = F",
REWRITE_TAC [APPLY_DEF; ZIP_DEF; R_A_lemma] THEN REWRITE_TAC [SUCCEEDS_DEF; FAILURE_DEF; ISL]);;
let APPLY_EXT = prove_thm(`APPLY_EXT`,
"!x y v (f:(*,**)fpf). APPLY x (EXT (y,v) f) = ((y=x)=>RESULT v|APPLY x f)",
REPEAT STRIP_TAC
THEN REWRITE_TAC [APPLY_DEF; EXT_DEF; R_A_lemma]
THEN BETA_TAC
THEN COND_CASES_TAC
THEN REWRITE_TAC []
);;
let APPLY = save_thm(`APPLY`,CONJ APPLY_ZIP APPLY_EXT);;
let EQ_IMP_APPLY_EXT = prove_thm(`EQ_IMP_APPLY_EXT`,
"!x y v (f:(*,**)fpf). (y=x) ==> (APPLY x (EXT (y,v) f) = RESULT v)",
REPEAT STRIP_TAC
THEN REWRITE_TAC [APPLY_DEF; EXT_DEF; R_A_lemma]
THEN BETA_TAC
THEN ASM_REWRITE_TAC []
);;
let NE_IMP_APPLY_EXT = prove_thm(`NE_IMP_APPLY_EXT`,
"!x y v (f:(*,**)fpf). ~(y=x) ==> (APPLY x (EXT (y,v) f) = APPLY x f)",
REPEAT STRIP_TAC
THEN REWRITE_TAC [APPLY_DEF; EXT_DEF; R_A_lemma]
THEN BETA_TAC
THEN ASM_REWRITE_TAC []
);;
%----------------------------------------------------------------
fpf EQUALITY
----------------------------------------------------------------%
let fpf_EQ = prove_thm
(`fpf_EQ`,
"! (f1:(*,**)fpf) f2 . (f1 = f2) = !x.(APPLY x f1) = (APPLY x f2)",
REPEAT STRIP_TAC
THEN EQ_TAC
THENL [
REPEAT STRIP_TAC
THEN ASM_REWRITE_TAC []
; REWRITE_TAC [APPLY_DEF]
THEN REPEAT STRIP_TAC
THEN POP_ASSUM (\th . ACCEPT_TAC (REWRITE_RULE [R_11] (EXT th)))
]
);;
let NOT_INL_EQ_INR = prove_thm(`NOT_INL_EQ_INR`, "!(x:*) (y:**). ~(INL x = INR y)",
REPEAT STRIP_TAC THEN (DISJ_CASES_THEN MP_TAC (SPEC "(INL x):(*+**)" ISL_OR_ISR))
THENL [PURE_ONCE_ASM_REWRITE_TAC []; ALL_TAC] THEN REWRITE_TAC [ISL;ISR]
);;
let NOT_RESULT_EQ_FAILURE = save_thm(`NOT_RESULT_EQ_FAILURE`,
REWRITE_RULE [DEEP_SYM FAILURE_DEF; DEEP_SYM RESULT_DEF] (ISPECL ["x:*";"one"] NOT_INL_EQ_INR));;
let NOT_FAILURE_EQ_RESULT = save_thm(`NOT_FAILURE_EQ_RESULT`,
DEEP_SYM NOT_RESULT_EQ_FAILURE);;
let NOT_EXT_ZIP = prove_thm(`NOT_EXT_ZIP`,
"!(x:*) (y:**) f. (EXT(x,y)f = ZIP) = F",
REWRITE_TAC [fpf_EQ; PAIR_EQ;APPLY]
THEN REPEAT GEN_TAC THEN CONV_TAC NOT_FORALL_CONV THEN EXISTS_TAC "x:*"
THEN REWRITE_TAC [NOT_FAILURE_EQ_RESULT;NOT_RESULT_EQ_FAILURE]
);;
let NOT_ZIP_EXT = prove_thm(`NOT_ZIP_EXT`,
"!(x:*) (y:**) f. (ZIP = EXT(x,y)f) = F",
REWRITE_TAC [fpf_EQ; PAIR_EQ;APPLY]
THEN REPEAT GEN_TAC THEN CONV_TAC NOT_FORALL_CONV THEN EXISTS_TAC "x:*"
THEN REWRITE_TAC [NOT_FAILURE_EQ_RESULT;NOT_RESULT_EQ_FAILURE]
);;
let EXT_EXT = prove_thm(`EXT_EXT`,
"!x u v (f:(*,**)fpf). (EXT(x,u) (EXT (x,v) f) = EXT(x,u) f)",
REPEAT STRIP_TAC
THEN REWRITE_TAC [fpf_EQ; APPLY; NOT_EXT_ZIP; NOT_ZIP_EXT]
THEN GEN_TAC THEN COND_CASES_TAC THEN ASM_REWRITE_TAC []
);;
let EXT_COMM = prove_thm(`EXT_COMM`,
"!x y u v (f:(*,**)fpf). ~(x = y) ==> (EXT(x,u) (EXT (y,v) f) = EXT(y,v) (EXT(x,u) f))",
REPEAT STRIP_TAC
THEN REWRITE_TAC [fpf_EQ; APPLY; NOT_EXT_ZIP; NOT_ZIP_EXT]
THEN GEN_TAC THEN COND_CASES_TAC
THEN ASM_REWRITE_TAC [] THEN DEEP_SYM_ASM_REWRITE_TAC []
);;
let fpf_SING_EQ = prove_thm(`fpf_SING_EQ`,
"!(x:*) (y:**) x' y'.
(EXT (x,y) ZIP = EXT (x',y') ZIP) ==> (x = x') /\ (y = y')",
REWRITE_TAC [fpf_EQ;APPLY] THEN REPEAT GEN_TAC
THEN DISCH_THEN (MP_TAC o REWRITE_RULE [] o SPEC "x:*")
THEN COND_CASES_TAC
THEN ASM_REWRITE_TAC [NOT_RESULT_EQ_FAILURE; NOT_FAILURE_EQ_RESULT; RESULT_11]
);;
let fpf_PAIR_EQ = prove_thm(`fpf_PAIR_EQ`,
"!(x:*) x' (y:**) y' y'' y'''.
~(x = x') ==>
(EXT (x,y) (EXT (x',y'')ZIP) = EXT (x,y') (EXT (x',y''')ZIP)) ==>
(y = y') /\ (y'' = y''')",
REPEAT GEN_TAC THEN REWRITE_TAC [fpf_EQ; APPLY]
THEN DISCH_TAC
THEN DISCH_THEN (\t. MP_TAC (REWRITE_RULE [] (SPEC "x:*" t)) THEN MP_TAC (REWRITE_RULE [] (SPEC "x':*" t)))
THEN ASM_REWRITE_TAC [RESULT_11]
THEN REPEAT STRIP_TAC THEN ASM_REWRITE_TAC []
);;
%< This is a REALLY bad proof, but it worked, so I left it >%
let fpf_SND_ABSORPTION = prove_thm(`fpf_SND_ABSORPTION`,
"!fpf (d:*) (y:**). (SUCCEEDS(APPLY d fpf)) = ?!y. (EXT (d,y) fpf = fpf)",
REWRITE_TAC [EXISTS_UNIQUE_DEF]
THEN BETA_TAC THEN BETA_TAC
THEN INDUCT_THEN fpf_INDUCT STRIP_ASSUME_TAC
THEN ASM_REWRITE_TAC [NOT_EXT_ZIP; APPLY; NOT_SUCCEEDS_FAILURE]
THEN REPEAT STRIP_TAC THEN COND_CASES_TAC THEN TRY SMART_ELIMINATE_TAC THEN ASM_REWRITE_TAC [SUCCEEDS_RESULT]
THENL [
CONJ_TAC
THENL [
EXISTS_TAC "y:**" THEN REWRITE_TAC [EXT_EXT]
; REPEAT GEN_TAC THEN REWRITE_TAC [EXT_EXT; fpf_EQ; APPLY]
THEN STRIP_TAC
THEN POP_ASSUM (ASSUME_TAC o (REWRITE_RULE [RESULT_11]) o (SPEC "d:*"))
THEN SMART_ELIMINATE_TAC
THEN POP_ASSUM (ASSUME_TAC o (REWRITE_RULE [RESULT_11]) o (SPEC "d:*"))
THEN ASM_REWRITE_TAC []
]
; EQ_TAC THEN REPEAT STRIP_TAC
THENL [
RES_TAC THEN EXISTS_TAC "y':**"
THEN DEEP_SYM_ASM_THEN
(ONCE_REWRITE_TAC [UNDISCH_ALL (SPECL ["d:*";"x:*";"y':**";"y:**";"fpf"] EXT_COMM)] )
THEN SMART_ELIMINATE_TAC THEN REWRITE_TAC [EXT_EXT]
; UNDISCH_ALL_TAC
THEN REPEAT GEN_TAC THEN REWRITE_TAC [EXT_EXT; fpf_EQ; APPLY]
THEN REPEAT STRIP_TAC
THEN POP_ASSUM (MP_TAC o (REWRITE_RULE [RESULT_11]) o (SPEC "d:*"))
THEN POP_ASSUM (MP_TAC o (REWRITE_RULE [RESULT_11]) o (SPEC "d:*"))
THEN ASM_REWRITE_TAC []
THEN REPEAT STRIP_TAC
THEN SMART_TERM_ELIMINATE_TAC
THEN POP_ASSUM (ACCEPT_TAC o (REWRITE_RULE [RESULT_11]))
; EXISTS_TAC "y':**"
THEN POP_ASSUM (\t. ALL_TAC)
THEN POP_ASSUM MP_TAC
THEN ASM_REWRITE_TAC [fpf_EQ; APPLY]
THEN REPEAT STRIP_TAC
THEN POP_ASSUM (ASSUME_TAC o SPEC_ALL)
THEN UNDISCH_ALL_TAC
THEN COND_CASES_TAC
THEN ASM_REWRITE_TAC []
THEN STRIP_TAC THEN STRIP_TAC THEN ASM_REWRITE_TAC []
; POP_ASSUM MP_TAC THEN POP_ASSUM MP_TAC
THEN REWRITE_TAC [fpf_EQ; APPLY]
THEN DISCH_THEN (ASSUME_TAC o (REWRITE_RULE [RESULT_11]) o (SPEC "d:*"))
THEN DISCH_THEN (ASSUME_TAC o (REWRITE_RULE [RESULT_11]) o (SPEC "d:*"))
THEN SMART_TERM_ELIMINATE_TAC
THEN POP_ASSUM (ACCEPT_TAC o (REWRITE_RULE [RESULT_11]))
]
]
);;
%----------------------------------------------------------------
PORTION - equivalent to subset. Not very useful.
Was one day hoping to prove the following induction property:
"!P. P ZIP /\
(!(fpf:(*,**)fpf) x. (!f. ~(SND (APPLY x f)) /\ PORTION f fpf ==> P f)
==> !y. P(EXT (x,y) fpf))
==> (!fpf. !f. PORTION f fpf ==> P f)";;
----------------------------------------------------------------%
let PORTION_DEF = new_definition(`PORTION_DEF`,
"PORTION (f:(*,**)fpf) f' = !x y. (APPLY x f = RESULT y) ==> (APPLY x f' = RESULT y)");;
let PORTION_SELF = prove_thm(`PORTION_SELF`, "!(f:(*,**)fpf). PORTION f f", REWRITE_TAC [PORTION_DEF]);;
let PORTION_ZIP = prove_thm(`PORTION_ZIP`, "!(f:(*,**)fpf). PORTION f ZIP = (f = ZIP)",
REWRITE_TAC [PORTION_DEF;APPLY;PAIR_EQ] THEN fpf_INDUCT_TAC THEN
REPEAT STRIP_TAC THEN ASM_REWRITE_TAC [APPLY;PAIR_EQ;NOT_EXT_ZIP]
THEN CONV_TAC (DEPTH_CONV NOT_FORALL_CONV)
THEN CONV_TAC (DEPTH_CONV NOT_FORALL_CONV)
THEN EXISTS_TAC "x" THEN EXISTS_TAC "y" THEN REWRITE_TAC [NOT_FAILURE_EQ_RESULT; NOT_RESULT_EQ_FAILURE]
);;
%----------------------------------------------------------------
EXTBY (derived from finite set UNION code)
----------------------------------------------------------------%
let EXTBY_P = new_definition
(`EXTBY_P`,
"EXTBY_P f (map:(*,**)fpf) map' =
!x. APPLY x f = (SUCCEEDS(APPLY x map))=>(APPLY x map)|(APPLY x map')");;
let EXTBY_DEF = new_definition
(`EXTBY_DEF`,
"EXTBY (map:(*,**)fpf) map' = @f. EXTBY_P f map map'");;
let EXTBY_MEMBER_LEMMA = PROVE(
"!(f1:(*,**)fpf) f2. EXTBY_P (EXTBY f1 f2) f1 f2",
REWRITE_TAC [EXTBY_DEF]
THEN REWRITE_TAC [SYM_RULE EXTBY_P]
THEN CONV_TAC (TOP_DEPTH_CONV SELECT_CONV)
THEN REPEAT GEN_TAC
THEN REWRITE_TAC [EXTBY_P]
THEN SPEC_TAC ("f1","f1")
THEN INDUCT_THEN fpf_INDUCT MP_TAC
THENL [ % 1 %
EXISTS_TAC "f2"
THEN REWRITE_TAC [NOT_SUCCEEDS_APPLY_ZIP]
; % 2 %
REPEAT STRIP_TAC
THEN EXISTS_TAC "(EXT (x,y) (f:(*,**)fpf))"
THEN GEN_TAC
THEN REWRITE_TAC [APPLY]
THEN ASM_CASES_TAC "(x:*) = x'"
THEN ASM_REWRITE_TAC [SUCCEEDS_RESULT]
]
);;
let APPLY_EXTBY = save_thm (`APPLY_EXTBY`, REWRITE_RULE [EXTBY_P] EXTBY_MEMBER_LEMMA);;
let EXTBY_ZIP_LEMMA = PROVE(
"! f:(*,**)fpf . EXTBY ZIP f = f",
REWRITE_TAC [fpf_EQ; APPLY_EXTBY;NOT_SUCCEEDS_APPLY_ZIP]
);;
let EXTBY_EXT_1 = PROVE(
"! x y (f1:(*,**)fpf) f2 .
EXTBY f1 (EXT (x,y) f2) =
(SUCCEEDS(APPLY x f1)) => EXTBY f1 f2 | (EXT (x,y) (EXTBY f1 f2))",
REPEAT GEN_TAC
THEN COND_CASES_TAC
THEN REWRITE_TAC [fpf_EQ; APPLY_EXTBY;APPLY]
THEN GEN_TAC
THEN ASM_CASES_TAC "x = x'"
THEN TRY SMART_ELIMINATE_TAC
THEN ASM_REWRITE_TAC []
);;
let EXTBY_EXT_2 = PROVE(
"!x y (f1:(*,**)fpf) f2. EXTBY (EXT (x,y) f1) f2 = EXT (x,y) (EXTBY f1 f2)",
REPEAT GEN_TAC
THEN REWRITE_TAC [fpf_EQ; APPLY_EXTBY;APPLY]
THEN GEN_TAC
THEN ASM_CASES_TAC "x = x'"
THEN TRY SMART_ELIMINATE_TAC
THEN ASM_REWRITE_TAC [SUCCEEDS_RESULT]
);;
let EXTBY = save_thm (`EXTBY`, (CONJ EXTBY_ZIP_LEMMA (CONJ EXTBY_EXT_1 EXTBY_EXT_2)));;
%----------------------------------------------------------------
TRANSFORM - sort of like compose really
(but can't compose two partial functions)
----------------------------------------------------------------%
let TRANSFORM_P = new_definition
(`TRANSFORM_P`,
"TRANSFORM_P map' (fn:**->***) (map:(*,**)fpf) =
!x. APPLY x map' = (SUCCEEDS(APPLY x map))=>RESULT(fn (RESULTOF(APPLY x map))) |FAILURE");;
let TRANSFORM_DEF = new_definition
(`TRANSFORM_DEF`,
"TRANSFORM (fn:**->***) (map:(*,**)fpf) = @map'. TRANSFORM_P map' fn map");;
let TRANSFORM_MEMBER_LEMMA = PROVE(
"!(fn:**->***) (map:(*,**)fpf). TRANSFORM_P (TRANSFORM fn map) fn map",
REWRITE_TAC [TRANSFORM_DEF]
THEN REWRITE_TAC [SYM_RULE TRANSFORM_P]
THEN CONV_TAC (TOP_DEPTH_CONV SELECT_CONV)
THEN REPEAT GEN_TAC
THEN REWRITE_TAC [TRANSFORM_P]
THEN SPEC_TAC ("map","map")
THEN INDUCT_THEN fpf_INDUCT MP_TAC
THENL [ % 1 %
EXISTS_TAC "ZIP:(*,***)fpf"
THEN PURE_ONCE_REWRITE_TAC [NOT_SUCCEEDS_APPLY_ZIP] THEN REWRITE_TAC [APPLY]
; % 2 %
REPEAT STRIP_TAC
THEN EXISTS_TAC "(EXT (x,(fn (y:**))) (map':(*,***)fpf))"
THEN GEN_TAC
THEN REWRITE_TAC [APPLY]
THEN ASM_CASES_TAC "(x:*) = x'"
THEN ASM_REWRITE_TAC [SUCCEEDS_RESULT; RESULTOF_RESULT]
]
);;
let APPLY_TRANSFORM = save_thm (`APPLY_TRANSFORM`, REWRITE_RULE [TRANSFORM_P] TRANSFORM_MEMBER_LEMMA);;
let TRANSFORM_ZIP = PROVE(
"! fn:(**->***). TRANSFORM fn (ZIP:(*,**)fpf) = ZIP",
REWRITE_TAC [fpf_EQ; APPLY_TRANSFORM;APPLY; NOT_SUCCEEDS_FAILURE]
);;
let TRANSFORM_EXT = PROVE(
"! fn:(**->***) (fpf:(*,**)fpf) x y.
TRANSFORM fn (EXT (x,y) fpf) =
(EXT (x,fn y) (TRANSFORM fn fpf))",
REPEAT GEN_TAC
THEN REWRITE_TAC [fpf_EQ; APPLY_TRANSFORM;APPLY]
THEN GEN_TAC
THEN ASM_CASES_TAC "x = x'"
THEN TRY SMART_ELIMINATE_TAC
THEN ASM_REWRITE_TAC [SUCCEEDS_RESULT; RESULTOF_RESULT]
);;
let TRANSFORM = save_thm (`TRANSFORM`, (CONJ TRANSFORM_ZIP TRANSFORM_EXT));;
%----------------------------------------------------------------
DOM
----------------------------------------------------------------%
let DOM_P = new_definition
(`DOM_P`,
"DOM_P dom (map:(*,**)fpf) =
!x. x IN dom = (SUCCEEDS(APPLY x map))");;
let DOM_DEF = new_definition
(`DOM_DEF`,
"DOM (map:(*,**)fpf) = @dom'. DOM_P dom' map");;
let DOM_MEMBER_LEMMA = PROVE(
"!(map:(*,**)fpf). DOM_P (DOM map) map",
REWRITE_TAC [DOM_DEF]
THEN REWRITE_TAC [SYM_RULE DOM_P]
THEN CONV_TAC (TOP_DEPTH_CONV SELECT_CONV)
THEN REPEAT GEN_TAC
THEN REWRITE_TAC [DOM_P]
THEN SPEC_TAC ("map","map")
THEN INDUCT_THEN fpf_INDUCT MP_TAC
THENL [ % 1 %
EXISTS_TAC "EMPTY:(*)set"
THEN REWRITE_TAC [NOT_IN_EMPTY;NOT_SUCCEEDS_APPLY_ZIP]
; % 2 %
REPEAT STRIP_TAC
THEN RENAME_TAC
THEN EXISTS_TAC "x INSERT (dom':(*)set)"
THEN GEN_TAC
THEN REWRITE_TAC [APPLY;IN_INSERT]
THEN ASM_CASES_TAC "(x:*) = x'"
THEN ASM_REWRITE_TAC [SUCCEEDS_RESULT]
THEN EQ_TAC
THEN REPEAT STRIP_TAC
THEN TRY SMART_ELIMINATE_TAC
THEN ASM_REWRITE_TAC []
THEN UNDISCH_ALL_TAC
THEN REWRITE_TAC []
]
);;
let IN_DOM = save_thm (`IN_DOM`, REWRITE_RULE [DOM_P] DOM_MEMBER_LEMMA);;
let DOM_ZIP = PROVE(
"DOM (ZIP:(*,**)fpf) = EMPTY",
REWRITE_TAC [EXTENSION; NOT_IN_EMPTY; IN_DOM;APPLY; NOT_SUCCEEDS_FAILURE]
);;
let DOM_EXT = PROVE(
"! (fpf:(*,**)fpf) x y.
DOM (EXT (x,y) fpf) =
(x INSERT (DOM fpf))",
REPEAT GEN_TAC
THEN REWRITE_TAC [EXTENSION; IN_DOM;APPLY]
THEN GEN_TAC
THEN ASM_CASES_TAC "x = x'"
THEN TRY SMART_ELIMINATE_TAC
THEN ASM_REWRITE_TAC [IN_INSERT; IN_DOM; SUCCEEDS_RESULT]
THEN EQ_TAC
THEN REPEAT STRIP_TAC
THEN TRY SMART_ELIMINATE_TAC
THEN ASM_REWRITE_TAC []
THEN UNDISCH_ALL_TAC
THEN REWRITE_TAC []
);;
let DOM = save_thm (`DOM`, (CONJ DOM_ZIP DOM_EXT));;
let EMPTY_DOM = prove_thm(`EMPTY_DOM`,
"!(f:(*,**)fpf). (DOM f = {}) = (f = ZIP)",
GEN_TAC THEN EQ_TAC THENL [ALL_TAC; STRIP_TAC THEN ASM_REWRITE_TAC [DOM]]
THEN SPEC_TAC ("f","f") THEN fpf_INDUCT_TAC THEN ASM_REWRITE_TAC [DOM;NOT_EXT_ZIP;NOT_INSERT_EMPTY]
);;
let IN_DOM_IMP_APPLY = prove_thm (`IN_DOM_IMP_APPLY`,
"!(fpf:(*,**)fpf) x. x IN (DOM fpf) ==> (?y. (APPLY x fpf) = RESULT y)",
fpf_INDUCT_TAC THENL [
REWRITE_TAC [DOM_ZIP; NOT_IN_EMPTY; APPLY]
; REPEAT GEN_TAC THEN REWRITE_TAC [DOM_EXT; IN_INSERT; APPLY]
THEN COND_CASES_TAC THEN ASM_REWRITE_TAC [] THENL [
EXISTS_TAC "y:**" THEN REWRITE_TAC []
; REPEAT STRIP_TAC THEN FIRST_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC [] THEN SMART_ELIMINATE_TAC
THEN POP_ASSUM (STRIP_ASSUME_TAC o REWRITE_RULE [])
]
]);;
let IN_DOM_EQ_APPLY = prove_thm (`IN_DOM_EQ_APPLY`,
"!(fpf:(*,**)fpf) x. x IN (DOM fpf) = (?y. (APPLY x fpf) = RESULT y)",
REPEAT GEN_TAC THEN EQ_TAC THEN REWRITE_TAC [IN_DOM_IMP_APPLY]
THEN SPEC_TAC ("fpf","fpf") THEN fpf_INDUCT_TAC
THENL [
REWRITE_TAC [APPLY;NOT_FAILURE_EQ_RESULT;DOM;NOT_IN_EMPTY]
; REWRITE_TAC [APPLY;DOM;IN_INSERT]
THEN REPEAT GEN_TAC THEN COND_CASES_TAC THEN DEEP_SYM_ASM_REWRITE_TAC []
THEN FIRST_ASSUM ACCEPT_TAC
]
);;
let NOT_IN_DOM_IMP_APPLY = prove_thm (`NOT_IN_DOM_IMP_APPLY`,
"!(fpf:(*,**)fpf) x. ~(x IN (DOM fpf)) ==> (APPLY x fpf = FAILURE)",
fpf_INDUCT_TAC THENL [
REWRITE_TAC [DOM_ZIP; NOT_IN_EMPTY; APPLY]
; REPEAT GEN_TAC THEN REWRITE_TAC [DOM_EXT; IN_INSERT; APPLY]
THEN PURE_ONCE_REWRITE_TAC [DE_MORGAN_THM]
THEN REPEAT STRIP_TAC THEN DEEP_SYM_ASM_REWRITE_TAC [] THEN RES_TAC
]);;
%----------------------------------------------------------------
ABSORPTION cont.
I think the following is the most powerful of the absorption/decomposition results.
It is needed to get the induction results that follow. Effectively
we are proving that for (EXT(x,y)f) there is a partial function f'
for which (EXT(x,y)f') is the same as (EXT(x,y)f) and x is not in the
domain of f'. Essentially a decomposition theorem really, but the
name has stuck...
Nb. All of this is probably superseded by the derivation of UNEXT below.
----------------------------------------------------------------%
let EXT_ABSORPTION = prove_thm(`EXT_ABSORPTION`,
"!f (x:*). ?f'. !(y:**).
(EXT(x,y) f = EXT(x,y) f') /\
(!x'. (APPLY x' f' = ((x' = x) => FAILURE | APPLY x' f))) /\
(DOM f' = (DOM f) DELETE x)",
fpf_INDUCT_TAC
THENL [
REPEAT GEN_TAC
THEN EXISTS_TAC "ZIP:(*,**)fpf"
THEN ASM_REWRITE_TAC [APPLY;DOM;EMPTY_DELETE]
THEN REPEAT STRIP_TAC THEN COND_CASES_TAC THEN ASM_REWRITE_TAC []
; REPEAT GEN_TAC
THEN POP_ASSUM (STRIP_ASSUME_TAC o (SPECL ["x'':*"]))
THEN ASM_CASES_TAC "(x'':*) = x"
THENL [
SMART_ELIMINATE_TAC
THEN EXISTS_TAC "f':(*,**)fpf"
THEN ASM_REWRITE_TAC [EXT_EXT;APPLY;EXTENSION;IN_DOM;IN_DELETE;PAIR_EQ]
THEN CONJ_TAC
THEN REPEAT STRIP_TAC
THEN COND_CASES_TAC THEN ASM_REWRITE_TAC []
THEN POP_ASSUM (ASSUME_TAC o DEEP_SYM) THEN ASM_REWRITE_TAC [NOT_SUCCEEDS_FAILURE]
; EXISTS_TAC "EXT((x:*),(y:**))f'"
THEN ONCE_ASM_REWRITE_TAC [UNDISCH_ALL (SPEC_ALL (SPECL ["x'':*";"x:*"] EXT_COMM))]
THEN ASM_REWRITE_TAC [EXT_EXT;APPLY;EXTENSION;IN_DOM;IN_DELETE;PAIR_EQ]
THEN CONJ_TAC THEN GEN_TAC THEN COND_CASES_TAC THEN ASM_REWRITE_TAC []
THEN POP_ASSUM (\t1. POP_ASSUM (\t2. ASSUME_TAC (DEEP_SYM t2) THEN
ASSUME_TAC (DEEP_SYM t1)))
THEN TRY COND_CASES_TAC THEN ASM_REWRITE_TAC []
THEN REPEAT SMART_ELIMINATE_TAC THEN UNDISCH_ALL_TAC THEN REWRITE_TAC [NOT_SUCCEEDS_FAILURE]
]
]
);;
%----------------------------------------------------------------
CARDINALITY OF THE DOMAIN
----------------------------------------------------------------%
let DOM_FINITE = prove_thm(`DOM_FINITE`,
"!f:(*,**)fpf. FINITE(DOM f)",
fpf_INDUCT_TAC
THEN REWRITE_TAC [FINITE_EMPTY; DOM]
THEN IMP_RES_TAC FINITE_INSERT
);;
let CARD_DOM_INSERT = prove_thm(`CARD_DOM_INSERT`,
"!x (f:(*,**)fpf). CARD(x INSERT (DOM f)) = (x IN (DOM f) => CARD (DOM f) | SUC(CARD (DOM f)))",
REPEAT GEN_TAC THEN ASSUME_TAC (SPEC "f" DOM_FINITE) THEN IMP_RES_TAC CARD_INSERT
THEN ASM_REWRITE_TAC []
);;
let CARD_DOM_EQ_0 = prove_thm(`CARD_DOM_EQ_0`,
"!x (f:(*,**)fpf). (CARD(DOM f) = 0) = (f = ZIP)",
REPEAT GEN_TAC THEN ASSUME_TAC (SPEC "f" DOM_FINITE) THEN IMP_RES_TAC CARD_EQ_0
THEN ASM_REWRITE_TAC [EMPTY_DOM]
);;
%----------------------------------------------------------------
CARD_EQ_SUC - This really should have been proven in sets.ml
----------------------------------------------------------------%
let FINITE_RULE t = UNDISCH o (SPEC t);;
let CARD_EQ_SUC = prove_thm(`CARD_EQ_SUC`,
"!i (s:(*)set).
FINITE s ==> (CARD s = SUC i) ==>
?s' x. ~x IN s' /\ (CARD s' = i) /\ (s = x INSERT s')",
GEN_TAC THEN SET_INDUCT_TAC
THEN ASM_REWRITE_TAC [CARD_EMPTY; SUC_NOT; FINITE_RULE "s" CARD_INSERT; INV_SUC_EQ]
THEN STRIP_TAC THEN RES_TAC THEN REPEAT (SSMART_EXISTS_TAC)
THEN ASM_REWRITE_TAC []
);;
%----------------------------------------------------------------
CARD_DOM_SUC - This really should have been proven in sets.ml
----------------------------------------------------------------%
let CARD_DOM_SUC = prove_thm(`CARD_DOM_SUC`,
"!(f:(*,**)fpf) i. (CARD(DOM f) = SUC i) ==>
?f' x y. ~(SUCCEEDS(APPLY x f')) /\ (CARD(DOM f') = i) /\ (f = EXT(x,y)f')",
fpf_INDUCT_TAC THEN REWRITE_TAC [CARD_EMPTY; DOM_ZIP;SUC_NOT]
THEN REPEAT STRIP_TAC THEN ASSUME_TAC (SPEC "f" DOM_FINITE)
THEN STRIP_ASSUME_TAC (SPEC_ALL EXT_ABSORPTION)
THEN EXISTS_TAC "f'"
THEN EXISTS_TAC "x"
THEN EXISTS_TAC "y"
THEN ASM_REWRITE_TAC [fpf_EQ;APPLY;NOT_SUCCEEDS_FAILURE]
THEN REPEAT STRIP_TAC
THENL [
REWRITE_TAC [FINITE_RULE "DOM (f:(*,**)fpf)" CARD_DELETE]
THEN UNDISCH_TAC "CARD(DOM(EXT(x,y)(f:(*,**)fpf))) = SUC i"
THEN REWRITE_TAC [DOM;FINITE_RULE "(DOM (f:(*,**)fpf))" CARD_INSERT]
THEN COND_CASES_TAC THEN ASM_REWRITE_TAC []
THEN STRIP_TAC THEN IMP_RES_TAC INV_SUC THEN ASM_REWRITE_TAC [SUC_SUB1]
;
COND_CASES_TAC THEN ASM_REWRITE_TAC [PAIR_EQ]
THEN POP_ASSUM (ASSUME_TAC o DEEP_SYM)
THEN ASM_REWRITE_TAC [PAIR_EQ]
]
);;
%----------------------------------------------------------------
STRONG INDUCTION RESULTS
STRONG_INDUCTION
Strong Induction over the natural numbers
fpf_CARD_INDUCT
Induction over the cardinality of the domain of the finite map
fpf_INDUCT_2 - similar to SET_INDUCT_TAC_2 where the elemenat added can be assumed to
not be already in the domain of the function. Not a trivial exercise to prove!
Proved by induction over the cardinality of the domain.
fpf_STRONG_INDUCT - similar to SET_INDUCT_TAC_2 where the elemenat added can be assumed to
----------------------------------------------------------------%
let STRONG_INDUCTION_lemma = prove_thm(`STRONG_INDUCTION_lemma`,
"!P. P 0 /\ (!j. (!i. i <= j ==> P i) ==> P (SUC j)) ==>
!n. (!i. i <= n ==> P i)",
GEN_TAC THEN STRIP_TAC THEN INDUCT_THEN INDUCTION MP_TAC
THEN UNDISCH_ALL_TAC THEN REWRITE_TAC [GREATER; LESS_OR_EQ; NOT_LESS_0]
THEN REPEAT STRIP_TAC THEN ASM_REWRITE_TAC []
THENL [
FIRST_ASSUM MATCH_MP_TAC
THEN IMP_RES_TAC LESS_SUC_IMP
THEN ASM_CASES_TAC "i = n"
THEN RES_TAC
THEN ASM_REWRITE_TAC []
; RES_TAC
]
);;
let STRONG_INDUCTION = save_thm(`STRONG_INDUCTION`,
(GEN_ALL (DISCH_ALL (GEN_ALL
(REWRITE_RULE [LESS_OR_EQ] (SPECL ["n";"n"] (UNDISCH_ALL (SPEC_ALL STRONG_INDUCTION_lemma))))
))));;
let fpf_CARD_INDUCT =
let P = "\n. !(f:(*,**)fpf).
CARD(DOM f) <= n ==> P f" in
let t1 = REWRITE_RULE [LESS_OR_EQ; NOT_LESS_0;CARD_DOM_EQ_0] (BETA_RULE (SPEC P STRONG_INDUCTION)) in
let t2 = REWRITE_RULE [] (SPECL ["CARD(DOM (f':(*,**)fpf))";"f':(*,**)fpf"] (UNDISCH_ALL t1)) in
save_thm(`fpf_CARD_INDUCT`,
GEN_ALL (REWRITE_RULE [DEEP_SYM LESS_OR_EQ] (DISCH_ALL (GEN "f'" t2))));;
let fpf_INDUCT_2 = prove_thm(`fpf_INDUCT_2`,
"!P. P ZIP /\
(!(fpf:(*,**)fpf) x y. P fpf ==> ~SUCCEEDS(APPLY x fpf) ==> P(EXT (x,y) fpf))
==> (!fpf. P fpf)",
REPEAT STRIP_TAC
THEN SPEC_TAC ("fpf","fpf")
THEN MATCH_MP_TAC fpf_CARD_INDUCT
THEN REPEAT STRIP_TAC THEN ASM_REWRITE_TAC []
THEN UNDISCH_ALL_TAC
THEN REWRITE_TAC [LESS_OR_EQ]
THEN REPEAT STRIP_TAC
THENL [
POP_ASSUM (ASSUME_TAC o (REWRITE_RULE [LESS_EQ_MONO;LESS_OR_EQ]) o (MATCH_MP LESS_OR))
THEN POP_ASSUM (\t1. POP_ASSUM (\t2. ASSUME_TAC (MATCH_MP t2 t1)))
THEN POP_ASSUM (ASSUME_TAC o (REWRITE_RULE []) o (SPEC "f"))
THEN ASM_REWRITE_TAC []
; IMP_RES_TAC CARD_DOM_SUC
THEN FIRST_ASSUM (IMP_RES_TAC o REWRITE_RULE [] o SPEC "j:num")
THEN SMART_ELIMINATE_TAC THEN RES_TAC THEN RES_TAC THEN ASM_REWRITE_TAC []
]);;
let fpf_INDUCT_TAC_2 (asm,gl) =
(MATCH_MP_TAC (BETA_RULE (SPEC (snd (dest_comb gl)) fpf_INDUCT_2))
THEN REPEAT STRIP_TAC) (asm,gl);;
%----------------------------------------------------------------
RANGE
----------------------------------------------------------------%
let RANGE_P = new_definition
(`RANGE_P`,
"RANGE_P ran (map:(*,**)fpf) =
!y. y IN ran = (?x. APPLY x map = RESULT y)");;
let RANGE_DEF = new_definition
(`RANGE_DEF`,
"RANGE (map:(*,**)fpf) = @ran'. RANGE_P ran' map");;
let RANGE_MEMBER_LEMMA = PROVE(
"!(fpf:(*,**)fpf). RANGE_P (RANGE fpf) fpf",
REWRITE_TAC [RANGE_DEF]
THEN REWRITE_TAC [SYM_RULE RANGE_P]
THEN CONV_TAC (TOP_DEPTH_CONV SELECT_CONV)
THEN REPEAT GEN_TAC
THEN REWRITE_TAC [RANGE_P]
THEN SPEC_TAC ("fpf","fpf")
THEN fpf_INDUCT_TAC_2
THENL [ % 1 %
EXISTS_TAC "EMPTY:(**)set"
THEN REWRITE_TAC [APPLY;NOT_IN_EMPTY;NOT_FAILURE_EQ_RESULT;NOT_RESULT_EQ_FAILURE]
; % 2 %
EXISTS_TAC "y INSERT (ran':(**)set)"
THEN GEN_TAC
THEN REWRITE_TAC [APPLY;IN_INSERT]
THEN ASM_CASES_TAC "(y':**) = y"
THEN ASM_REWRITE_TAC []
THENL [
EXISTS_TAC "x:*" THEN ASM_REWRITE_TAC []
; EQ_TAC THEN STRIP_TAC
THENL [
EXISTS_TAC "x':*" THEN ASM_REWRITE_TAC []
THEN COND_CASES_TAC
THENL [
SMART_ELIMINATE_TAC THEN SMART_TERM_ELIMINATE_TAC
THEN UNDISCH_ALL_TAC THEN REWRITE_TAC [SUCCEEDS_RESULT]
; ASM_REWRITE_TAC []
]
; POP_ASSUM MP_TAC THEN COND_CASES_TAC THEN REWRITE_TAC []
THENL [
DEEP_SYM_ASM_REWRITE_TAC [RESULT_11]
; DISCH_TAC THEN EXISTS_TAC "x':*" THEN ASM_REWRITE_TAC []
]
]
]
]
);;
let IN_RANGE = save_thm (`IN_RANGE`, REWRITE_RULE [RANGE_P] RANGE_MEMBER_LEMMA);;
let RANGE_ZIP = prove_thm(`RANGE_ZIP`,
"RANGE (ZIP:(*,**)fpf) = EMPTY",
REWRITE_TAC [EXTENSION; NOT_IN_EMPTY; IN_RANGE;APPLY;NOT_FAILURE_EQ_RESULT; NOT_RESULT_EQ_FAILURE]
);;
let RANGE_EXT = prove_thm(`RANGE_EXT`,
"! (fpf:(*,**)fpf) x y.
~(x IN (DOM fpf)) ==>
(RANGE (EXT (x,y) fpf) = y INSERT (RANGE fpf))",
REPEAT GEN_TAC
THEN REWRITE_TAC [EXTENSION;IN_DOM;IN_RANGE;APPLY;IN_INSERT;IN_DELETE]
THEN STRIP_TAC THEN GEN_TAC
THEN EQ_TAC THEN STRIP_TAC
THENL [
POP_ASSUM MP_TAC THEN COND_CASES_TAC
THEN REWRITE_TAC [RESULT_11] THEN DISCH_TAC THEN ASM_REWRITE_TAC []
THEN DISJ2_TAC THEN EXISTS_TAC "x'':*" THEN FIRST_ASSUM ACCEPT_TAC
; EXISTS_TAC "x:*" THEN ASM_REWRITE_TAC []
; EXISTS_TAC "x'':*" THEN ASM_REWRITE_TAC []
THEN COND_CASES_TAC THEN TRY SMART_VAR_ELIMINATE_TAC THEN TRY SMART_TERM_ELIMINATE_TAC
THEN UNDISCH_ALL_TAC THEN REWRITE_TAC [SUCCEEDS_RESULT]
]
);;
let EMPTY_RANGE = prove_thm(`EMPTY_RANGE`,
"!(f:(*,**)fpf). (RANGE f = {}) = (f = ZIP)",
GEN_TAC THEN EQ_TAC THENL [ALL_TAC; STRIP_TAC THEN ASM_REWRITE_TAC [RANGE_ZIP]]
THEN SPEC_TAC ("f","f") THEN fpf_INDUCT_TAC_2
THEN UNDISCH_ALL_TAC
THEN REWRITE_TAC [(UNDISCH (SPEC_ALL (PURE_REWRITE_RULE [IN_DOM] RANGE_EXT)))]
THEN ASM_REWRITE_TAC [NOT_EXT_ZIP;NOT_INSERT_EMPTY]
);;
%----------------------------------------------------------------
LIST_TO_FPF - generates a finite partial function from a list of pairs
----------------------------------------------------------------%
let LIST_TO_FPF_DEF = new_recursive_definition false list_Axiom `LIST_TO_FPF_DEF`
"(LIST_TO_FPF [] = ZIP) /\ (LIST_TO_FPF (CONS (pr:(* # **)) t) = EXT pr (LIST_TO_FPF t))";;
%----------------------------------------------------------------
UNEXT
----------------------------------------------------------------%
let SUCCEEDS_OR_FAILURE = prove_thm(`SUCCEEDS_OR_FAILURE`,
"!x (fpf:(*,**)fpf). SUCCEEDS(APPLY x fpf) \/ FAILS(APPLY x fpf)",
REPEAT GEN_TAC
THEN DISJ_CASES_TAC (REWRITE_RULE [DEEP_SYM SUCCEEDS_DEF] (ISPEC "APPLY x (fpf:(*,**)fpf)" ISL_OR_ISR))
THEN ASM_REWRITE_TAC [] THEN IMP_RES_TAC INR THEN POP_ASSUM (SUBST1_TAC o DEEP_SYM)
THEN PURE_ONCE_REWRITE_TAC [one]
THEN REWRITE_TAC [FAILS_DEF; ISR]
);;
let UNEXT_P = new_definition
(`UNEXT_P`,
"UNEXT_P x fpf1 (fpf2:(*,**)fpf) =
!x'. (x = x') => (APPLY x' fpf2 = FAILURE) | (APPLY x' fpf1 = APPLY x' fpf2)");;
let UNEXT_DEF = new_definition
(`UNEXT_DEF`,
"UNEXT x (fpf:(*,**)fpf) = @fpf'. UNEXT_P x fpf fpf'");;
let UNEXT_MEMBER_LEMMA = PROVE(
"!x (fpf:(*,**)fpf). UNEXT_P x fpf (UNEXT x fpf)",
REWRITE_TAC [UNEXT_DEF]
THEN REWRITE_TAC [SYM_RULE UNEXT_P]
THEN CONV_TAC (TOP_DEPTH_CONV SELECT_CONV)
THEN REPEAT GEN_TAC
THEN REWRITE_TAC [UNEXT_P]
THEN SPEC_TAC ("fpf","fpf")
THEN fpf_INDUCT_TAC_2
THENL [ % 1 %
EXISTS_TAC "ZIP:(*,**)fpf"
THEN REWRITE_TAC [APPLY] THEN GEN_TAC THEN COND_CASES_TAC THEN REWRITE_TAC []
; % 2 %
EXISTS_TAC "(x' = x) => fpf' | EXT (x',y) fpf'"
THEN GEN_TAC
THEN REWRITE_TAC [APPLY]
THEN COND_CASES_TAC THEN COND_CASES_TAC
THEN TRY SMART_ELIMINATE_TAC
THEN ASM_REWRITE_TAC [APPLY]
THENL [
FIRST_ASSUM (ACCEPT_TAC o REWRITE_RULE [] o SPEC "x:*")
; FIRST_ASSUM (ACCEPT_TAC o REWRITE_RULE [] o SPEC "x'':*")
; DEEP_SYM_ASM_REWRITE_TAC [APPLY]
; COND_CASES_TAC
THEN FIRST_ASSUM (\t. if is_forall(concl t) then UNDISCH_TAC (concl t) else fail)
THEN DISCH_THEN (MP_TAC o SPEC "x'':*")
THEN ASM_REWRITE_TAC [APPLY]
]
]
);;
let APPLY_UNEXT = save_thm (`APPLY_UNEXT`, REWRITE_RULE [UNEXT_P] UNEXT_MEMBER_LEMMA);;
let UNEXT_ZIP = prove_thm(`UNEXT_ZIP`,
"!x. UNEXT x (ZIP:(*,**)fpf) = ZIP",
REWRITE_TAC [fpf_EQ; APPLY] THEN REPEAT GEN_TAC
THEN ASM_CASES_TAC "x = x'"
THEN MP_TAC (SPECL ["x";"ZIP:(*,**)fpf";"x'"] APPLY_UNEXT)
THEN ASM_REWRITE_TAC []
THEN STRIP_TAC THEN DEEP_SYM_ASM_REWRITE_TAC [APPLY]
);;
let APPLY_UNEXT_SAME = save_thm(`APPLY_UNEXT_SAME`,
GEN_ALL(REWRITE_RULE [] (SPECL ["x:*";"fpf";"x:*"] APPLY_UNEXT)));;
let APPLY_UNEXT_DIFF = save_thm(`APPLY_UNEXT_DIFF`,
PROVE("!x (fpf:(*,**)fpf) x'. ~(x = x') ==> (APPLY x' fpf = APPLY x' (UNEXT x fpf))",
REPEAT STRIP_TAC THEN MP_TAC (SPECL ["x:*";"fpf";"x':*"] APPLY_UNEXT)
THEN ASM_REWRITE_TAC []));;
%< Another grotesque proof involving too many cases >%
let UNEXT_EXT = prove_thm(`UNEXT_EXT`,
"!fpf x x' y. UNEXT x (EXT (x',y) fpf) = (x = x') => (UNEXT x fpf) | EXT (x',y) (UNEXT x fpf)",
fpf_INDUCT_TAC THEN REPEAT GEN_TAC
THENL [
COND_CASES_TAC THEN ASM_REWRITE_TAC [UNEXT_ZIP;APPLY;fpf_EQ]
THEN GEN_TAC THENL [
MP_TAC (SPECL ["x'";"EXT(x',y)ZIP";"x''"] APPLY_UNEXT)
THEN COND_CASES_TAC THEN ASM_REWRITE_TAC [APPLY] THEN DISCH_THEN (ACCEPT_TAC o SYM)
; MP_TAC (SPECL ["x";"EXT(x',y)ZIP";"x''"] APPLY_UNEXT)
THEN COND_CASES_TAC THEN ASM_REWRITE_TAC [APPLY] THENL [
SMART_ELIMINATE_TAC THEN DISCH_TAC THEN DEEP_SYM_ASM_REWRITE_TAC []
; COND_CASES_TAC THEN ASM_REWRITE_TAC [] THEN DISCH_THEN (ACCEPT_TAC o SYM)
]
]
;
COND_CASES_TAC THEN ASM_REWRITE_TAC [APPLY;fpf_EQ]
THEN GEN_TAC THENL [
MP_TAC (SPECL ["x'";"EXT(x',y')(EXT(x,y)fpf)";"x''':*"] APPLY_UNEXT)
THEN COND_CASES_TAC THEN ASM_REWRITE_TAC [APPLY] THENL [
COND_CASES_TAC THEN DISCH_TAC THEN ASM_REWRITE_TAC [APPLY;APPLY_UNEXT_SAME]
THEN DEEP_SYM_ASM_REWRITE_TAC []
; COND_CASES_TAC THENL [
SMART_ELIMINATE_TAC THEN ASM_REWRITE_TAC [APPLY]
THEN DISCH_TAC THEN DEEP_SYM_ASM_REWRITE_TAC []
; COND_CASES_TAC THEN DISCH_THEN (SUBST1_TAC o SYM) THENL [
IMP_RES_TAC APPLY_UNEXT_DIFF
THEN FIRST_ASSUM (ACCEPT_TAC o SPEC_ALL)
; ASM_REWRITE_TAC [APPLY]
THEN IMP_RES_TAC APPLY_UNEXT_DIFF
THEN FIRST_ASSUM (ACCEPT_TAC o SPEC_ALL)
]
]
]
;
MP_TAC (SPECL ["x''";"EXT(x',y')(EXT(x,y)fpf)";"x''':*"] APPLY_UNEXT)
THEN COND_CASES_TAC THEN ASM_REWRITE_TAC [APPLY] THENL [
DISCH_THEN (SUBST1_TAC)
THEN SMART_ELIMINATE_TAC THEN DEEP_SYM_ASM_REWRITE_TAC [APPLY_UNEXT_SAME]
; DISCH_THEN (SUBST1_TAC o SYM) THEN COND_CASES_TAC THEN ASM_REWRITE_TAC []
THEN COND_CASES_TAC THEN ASM_REWRITE_TAC [APPLY]
THEN COND_CASES_TAC THEN ASM_REWRITE_TAC [APPLY]
THEN IMP_RES_TAC APPLY_UNEXT_DIFF
THEN FIRST_ASSUM (ACCEPT_TAC o SPEC_ALL)
]
]
]);;
%----------------------------------------------------------------
EVERYF - true if every mapping satisfies a predicate
----------------------------------------------------------------%
let EVERYF_DEF = new_definition
(`EVERYF_DEF`,
"EVERYF P (map:(*,**)fpf) = !x. x IN (DOM map) ==> P (x,RESULTOF(APPLY x map))");;
let EVERYF_ZIP = prove_thm(`EVERYF_ZIP`,
"!P. EVERYF (P:(*#**)->bool) ZIP = T",
REWRITE_TAC [EVERYF_DEF;DOM;NOT_IN_EMPTY]);;
%<
Initially one might think the result should be:
mk_thm([], "!P (d:*) (r:**) fpf. EVERYF P (EXT (d,r) fpf) = P (d,r) /\ EVERYF P fpf"));;
However, this can't be proven as fpf may contain overridden mappings for x. It was for
this reason that UNEXT was defined above.
>%
let EVERYF_EXT = prove_thm(`EVERYF_EXT`,
"!P fpf (d:*) (r:**). EVERYF P (EXT (d,r) fpf) = P (d,r) /\ EVERYF P (UNEXT d fpf)",
REWRITE_TAC [EVERYF_DEF; DOM; APPLY; IN_INSERT]
THEN REWRITE_TAC [IN_DOM_EQ_APPLY]
THEN REPEAT GEN_TAC THEN EQ_TAC THEN REPEAT STRIP_TAC
THENL [
FIRST_ASSUM (ACCEPT_TAC o REWRITE_RULE [RESULTOF_RESULT] o SPEC "d")
; ASM_REWRITE_TAC [RESULTOF_RESULT] THEN ASM_CASES_TAC "x = d"
THENL [
RES_TAC THEN SMART_ELIMINATE_TAC THEN UNDISCH_ALL_TAC
THEN REWRITE_TAC [APPLY_UNEXT_SAME;RESULTOF_RESULT; NOT_FAILURE_EQ_RESULT]
; POP_ASSUM (ASSUME_TAC o DEEP_SYM)
THEN IMP_RES_TAC APPLY_UNEXT_DIFF
THEN POP_ASSUM (ASSUME_TAC o SPEC_ALL)
THEN SMART_TERM_ELIMINATE_TAC
THEN RES_TAC
THEN POP_ASSUM MP_TAC THEN ASM_REWRITE_TAC [RESULTOF_RESULT]
]
; SMART_ELIMINATE_TAC THEN ASM_REWRITE_TAC [RESULTOF_RESULT]
; COND_CASES_TAC THEN TRY SMART_ELIMINATE_TAC THEN ASM_REWRITE_TAC [RESULTOF_RESULT]
THEN IMP_RES_TAC APPLY_UNEXT_DIFF
THEN POP_ASSUM (ASSUME_TAC o SPEC_ALL)
THEN SMART_TERM_ELIMINATE_TAC
THEN RES_TAC
THEN POP_ASSUM MP_TAC THEN ASM_REWRITE_TAC [RESULTOF_RESULT]
]
);;
let EVERYF = save_thm(`EVERYF`, CONJ EVERYF_ZIP EVERYF_EXT);;
%----------------------------------------------------------------
CANONICAL representations for fpf's
----------------------------------------------------------------%
system `rm fpf_canon.th`;;
new_theory `fpf_canon`;;
let IS_CANONICALa_REP_DEF = new_recursive_definition false list_Axiom `IS_CANONICALa_REP_DEF`
"(IS_CANONICALa_REP fpf [] = (fpf = ZIP)) /\
(IS_CANONICALa_REP fpf (CONS (pr:(*#**)) t) =
(?d. d IN DOM fpf) /\
(pr = (@d. d IN DOM fpf), (RESULTOF(APPLY (FST pr) fpf))) /\
(IS_CANONICALa_REP (UNEXT (FST pr) fpf) t))";;
let IS_CANONICALa_REP_CONS_PAIR = save_thm(`IS_CANONICALa_REP_CONS_PAIR`,
let thm1 = PURE_ONCE_REWRITE_RULE [DEEP_SYM PAIR] (CONJUNCT2 IS_CANONICALa_REP_DEF) in
let thm2 = SPECL ["fpf:(*,**)fpf";"(x:*,y:**)"] (REWRITE_RULE [] (PURE_ONCE_REWRITE_RULE [PAIR_EQ] thm1)) in
REWRITE_RULE [] (GEN_ALL thm2));;
let IS_CANONICALa_REP_ZIP = prove_thm(`IS_CANONICALa_REP_ZIP`,
"!(l:(*#**)list). IS_CANONICALa_REP ZIP l = (l = [])",
INDUCT_THEN list_INDUCT MP_TAC
THENL [
REWRITE_TAC [REWRITE_RULE [] (SPEC "ZIP:(*,**)fpf" (CONJUNCT1 IS_CANONICALa_REP_DEF))]
; REWRITE_TAC [IS_CANONICALa_REP_DEF;APPLY;UNEXT_ZIP;NOT_CONS_NIL;DOM;theorem `sets` `NOT_IN_EMPTY`]
]);;
let IS_CANONICALa_REP = prove_thm(`IS_CANONICALa_REP`,
"!l (fpf:(*,**)fpf). IS_CANONICALa_REP fpf (CONS((@d. d IN (DOM fpf)), RESULTOF(APPLY(@d. d IN DOM fpf)fpf)) l) =
(?d. d IN DOM fpf) /\ IS_CANONICALa_REP (UNEXT (@d. d IN DOM fpf) fpf) l",
REWRITE_TAC [IS_CANONICALa_REP_CONS_PAIR]);;
%< To prove the following I think we would need an induction principal down UNEXT operations, i.e. ZIP
is the result of a finte number of UNEXTs. Tricky..?? :-)
No...we need the induction over the cardinality of the domain methinks...
REPEAT STRIP_TAC
THEN SPEC_TAC ("fpf","fpf")
THEN MATCH_MP_TAC fpf_CARD_INDUCT
>%
%< a few lemmas which I didn't have time to prove - hope they're not too hard... >%
let CARD_UNEXT_LEQ_SUC = mk_thm([],
"!x. x IN DOM (f:(*,**)fpf) ==> (CARD(DOM f)) <= (SUC j) ==> (CARD(DOM (UNEXT x f))) <= j");;
let CHOICE_IN_DOM = mk_thm([],
"!f:(*,**)fpf. (f = ZIP) \/ ((@d. d IN DOM f) IN DOM f)");;
let CANONICALa_REP_EXISTS = BETA_RULE (PROVE (
" !(fpf:(*,**)fpf). (\fpf. ?l. IS_CANONICALa_REP fpf l) fpf",
MATCH_MP_TAC fpf_CARD_INDUCT
THEN BETA_TAC THEN REPEAT STRIP_TAC
THENL [
EXISTS_TAC "[]:(*#**)list" THEN ASM_REWRITE_TAC[IS_CANONICALa_REP_DEF]
; FIRST_ASSUM (STRIP_ASSUME_TAC
o REWRITE_RULE [DEEP_SYM LESS_OR_EQ]
o SPEC "UNEXT (@d. d IN DOM f) (f:(*,**)fpf)"
o REWRITE_RULE [LESS_OR_EQ] o SPEC "j:num")
THEN DISJ_CASES_TAC (SPEC "f" CHOICE_IN_DOM)
THENL [
EXISTS_TAC "[]:(*#**)list" THEN ASM_REWRITE_TAC[IS_CANONICALa_REP_DEF]
; IMP_RES_TAC CARD_UNEXT_LEQ_SUC THEN RES_TAC
THEN EXISTS_TAC "CONS ((@d. d IN DOM (f:(*,**)fpf)), RESULTOF(APPLY (@d. d IN DOM f) f)) l"
THEN ASM_REWRITE_TAC [IS_CANONICALa_REP]
THEN EXISTS_TAC "@d. d IN (DOM (f:(*,**)fpf))" THEN ASM_REWRITE_TAC []
]
]
));;
let CONV_ASM_TAC conv =
POP_ASSUM_LIST (\asms.
(EVERY (rev (map (STRIP_ASSUME_TAC o CONV_RULE (DEPTH_CONV conv)) asms))));;
let CANONICALa_REP_UNIQUE = prove_thm(`CANONICALa_REP_UNIQUE`,
" !(fpf:(*,**)fpf). ?!l. IS_CANONICALa_REP fpf l",
PURE_ONCE_REWRITE_TAC [EXISTS_UNIQUE_DEF]
THEN BETA_TAC
THEN REWRITE_TAC [CANONICALa_REP_EXISTS]
THEN REPEAT GEN_TAC THEN SPEC_TAC("fpf","fpf")
THEN SPEC_TAC ("x:(*#**)list","x") THEN SPEC_TAC ("y:(*#**)list","y")
THEN INDUCT_THEN list_INDUCT STRIP_ASSUME_TAC THENL [ALL_TAC ; GEN_TAC]
THEN INDUCT_THEN list_INDUCT STRIP_ASSUME_TAC THEN REPEAT GEN_TAC
THEN BETA_TAC THEN REWRITE_TAC [IS_CANONICALa_REP_DEF;NOT_NIL_CONS;NOT_CONS_NIL]
THEN REPEAT STRIP_TAC
THEN (TRY (REPEAT SMART_ELIMINATE_TAC
THEN FIRST_ASSUM (ACCEPT_TAC o REWRITE_RULE [DOM;NOT_IN_EMPTY])
THEN NO_TAC
)) THEN CONV_ASM_TAC BETA_CONV THEN UNDISCH_ALL_TAC
THEN PURE_ONCE_REWRITE_TAC [DEEP_SYM PAIR]
THEN PURE_REWRITE_TAC [PAIR_EQ;FST;SND]
THEN REPEAT STRIP_TAC
THEN REPEAT SMART_TERM_ELIMINATE_TAC
THEN RES_TAC THEN SMART_ELIMINATE_TAC THEN REWRITE_TAC []
);;
let CANONICALa_REP_UNIQUENESS = save_thm(`CANONICALa_REP_UNIQUENESS`,
(BETA_RULE o GEN_ALL o CONJUNCT2 o BETA_RULE)
(PURE_ONCE_REWRITE_RULE [EXISTS_UNIQUE_DEF] (SPEC_ALL CANONICALa_REP_UNIQUE)));;
let CANONICALa_REP_DEF = new_definition(`CANONICALa_REP_DEF`,
"CANONICALa_REP (fpf:(*,**)fpf) = @l. IS_CANONICALa_REP fpf l"
);;
let CANONICALa_ABS_DEF = new_definition(`CANONICALa_ABS_DEF`,
"CANONICALa_ABS (l:(*#**)list) = @fpf. IS_CANONICALa_REP fpf l"
);;
%< yet another unproved lemma >%
let lemma = mk_thm([],
"!fpf (fpf':(*,**)fpf).
(RESULTOF(APPLY(@d. d IN (DOM fpf))fpf') = RESULTOF(APPLY(@d. d IN (DOM fpf))fpf)) /\
(UNEXT(@d. d IN (DOM fpf))fpf' = UNEXT(@d. d IN (DOM fpf))fpf) ==>
(fpf = fpf')");;
let CANONICALa_ABS_UNIQUENESS = prove_thm(`CANONICALa_ABS_UNIQUENESS`,
" !(l:(*#**)list). !fpf fpf'. IS_CANONICALa_REP fpf l /\ IS_CANONICALa_REP fpf' l ==> (fpf = fpf')",
INDUCT_THEN list_INDUCT MP_TAC
THEN REWRITE_TAC [IS_CANONICALa_REP_DEF;PAIR_EQ]
THENL [
REPEAT STRIP_TAC THEN REPEAT SMART_ELIMINATE_TAC THEN REWRITE_TAC []
; STRIP_TAC THEN REPEAT GEN_TAC THEN PURE_ONCE_REWRITE_TAC [DEEP_SYM PAIR]
THEN PURE_REWRITE_TAC [PAIR_EQ;FST;SND]
THEN REPEAT STRIP_TAC THEN REPEAT SMART_TERM_ELIMINATE_TAC
THEN RES_TAC THEN IMP_RES_TAC lemma
]
);;
%----------------------------------------------------------------
----------------------------------------------------------------%
close_theory();;
|