/usr/share/hol88-2.02.19940316/contrib/benchmark/unwind.ml is in hol88-contrib-source 2.02.19940316-31.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 | % ===================================================================== %
% FILE : mjcg-unwind.ml %
% DESCRIPTION : Rules for unfolding, unwinding, pruning etc. %
% Original HOL version. %
% %
% REVISED : 90.10.27 (melham) %
% ===================================================================== %
let REWRITES_CONV net = \tm. FIRST_CONV (lookup_term net tm) tm;;
% Rules for unfolding, unwinding, pruning etc. %
% Rules for unfolding %
%
A1 |- t1 = t1' , ... , An |- tn = tn'
---------------------------------------------------------
A1 u ... u An |- (t1 /\ ... /\ tn) = (t1' /\ ... /\ tn')
%
letrec MK_CONJL thl =
(if null thl
then fail
if null(tl thl)
then hd thl
else
(let th = MK_CONJL(tl thl)
in
let t1,() = dest_eq(concl(hd thl))
and (),t2' = dest_eq(concl th)
in
(AP_TERM "$/\ ^t1" th) TRANS (AP_THM (AP_TERM "$/\" (hd thl)) t2'))
) ? failwith `MK_CONJL`;;
%
A1 |- t1 = t1' , ... , An |- tn = tn'
--------------------------------------------------
A1 u ... u An |- ?l1 ... lm. t1 /\ ... /\ tn =
?l1 ... lm. t1' /\ ... /\ tn'
%
let UNFOLD thl =
let net = mk_conv_net thl
in
\t.
((let vars, eqs = strip_exists t
and rewrite = REWRITES_CONV net
in
LIST_MK_EXISTS vars (MK_CONJL(map rewrite (conjuncts eqs)))
) ? failwith `UNFOLD`);;
%
A1 |- t1 = t1' , ... , An |- tn = tn'
A |- t = (?l1 ... lm. t1 /\ ... /\ tn)
------------------------------------------
A |- t = (?l1 ... lm. t1' /\ ... /\ tn')
%
let UNFOLD_RULE thl th =
RIGHT_CONV_RULE (UNFOLD(map SPEC_ALL thl)) (SPEC_ALL th)
? failwith`UNFOLD_RULE`;;
%
|- (x1 = t1) /\ ... (xm = tm) /\ ... /\ (xn = tn) =
(x1 = t1') /\ ... /\ (x[m-1] = t[m-1]') /\ (xm = tm) /\ ... /\ (xn = tn)
where:
1. ti' = ti[tm,...,tn/xm,...,xn]
2. none of x1,...,xn are free in any of tm,...,tn
(the xi's need not be variables)
3. not all of the terms in the conjunction have to be equations
(only the equations are used in unwinding)
In fact, the equations (xi = ti) (where i is between m and n)
can occur anywhere - they don't have to be bunched up at the right
hand end.
let OLD_UNWIND_ONCE_CONV t =
(let eqns = conjuncts t
in
letrec check_frees l t =
(if null l then false
if free_in(hd l)t then true else check_frees (tl l) t)
in
let lefts = mapfilter lhs eqns
in
let l1,l2 = partition (\t. check_frees lefts (rhs t) ? true) eqns
in
if null l1
then REFL(list_mk_conj l2)
else
(let th1 = end_itlist CONJ (map ASSUME l2)
in
let subs_list = map
(\th. (th, genvar(type_of(lhs(concl th)))))
(CONJUNCTS th1)
in
let rn_list = map (\(th,v).(v,lhs(concl th))) subs_list
in
let subs_fn t =
(mk_eq o (I # subst rn_list) o dest_eq) t ? subst rn_list t
in
let th2 = SUBST_CONV
subs_list
(list_mk_conj
(map subs_fn l1))
(list_mk_conj l1)
in
let th3 = CONJ_DISCHL l2 th2
in
let th4 = CONJUNCTS_CONV(t, lhs(concl th3))
in
(th4 TRANS th3))
) ? failwith `OLD_UNWIND_ONCE_CONV`;;
%
let OLD_UNWIND_ONCE_CONV t =
(let eqns = conjuncts t
in
letrec check_frees l t = %any member of l free in t?%
(if null l then false
if free_in(hd l)t then true else check_frees (tl l) t)
in
let lefts = mapfilter lhs eqns
in
let l1,l2 = partition (\t. check_frees lefts (rhs t) ? true) eqns
in
if null l1
then REFL(list_mk_conj eqns)
else
(let subs_fun = subst(map((\(x,y).(y,x)) o dest_eq)l2)
in
let f l = (mk_eq o (I # subs_fun) o dest_eq) l ? subs_fun l in
let l1' = map f l1
in
mk_thm([], mk_eq(t, list_mk_conj(l1'@l2))))
) ? failwith `OLD_UNWIND_ONCE_CONV`;;
% Unwind until no change - may loop!
letrec UNWIND_EQS eqs =
let th = OLD_UNWIND_ONCE_CONV eqs
in
if lhs(concl th)=rhs(concl th)
then th
else th TRANS (UNWIND_EQS(rhs(concl th)));;
%
letrec UNWIND_EQS eqs =
(let th = OLD_UNWIND_ONCE_CONV eqs
in
let t1,t2 = dest_eq(concl th)
in
if t1 = t2
then th
else mk_thm([],mk_eq(t1, rhs(concl(UNWIND_EQS t2))))
) ? failwith`UNWIND_EQS`;;
%
|- (?l1 ... lm. x1 = t1 /\ ... /\ xn = tn) =
(?l1 ... lm. x1 = t1' /\ ... /\ xn = tn')
Where t1',...,tn' are got from t1,...,tn by unwinding using the equations
%
let UNWIND t =
let l,eqs = strip_exists t
in
LIST_MK_EXISTS l (UNWIND_EQS eqs);;
let OLD_UNWIND_RULE th =
RIGHT_CONV_RULE UNWIND th ? failwith `OLD_UNWIND_RULE`;;
%
"(!x. t1) /\ ... /\ (!x. tn)" --->
|- (!x. t1) /\ ... /\ (!x. tn) = !x. t1 /\ ... /\ tn
let AND_FORALL_CONV t =
(let xt1,xt2 = dest_conj t
in
let x = fst(dest_forall xt1)
in
let thl1 = CONJUNCTS(ASSUME t)
in
let th1 = DISCH_ALL(GEN x (LIST_CONJ(map(SPEC x)thl1)))
in
let thl2 =
CONJUNCTS
(SPEC x
(ASSUME
(mk_forall(x,(list_mk_conj(map(snd o dest_forall o concl)thl1))))))
in
let th2 = DISCH_ALL(LIST_CONJ(map (GEN x) thl2))
in
IMP_ANTISYM_RULE th1 th2
) ? failwith `AND_FORALL_CONV`;;
%
% "(!x. t1) /\ ... /\ (!x. tn)" ---> ("x", ["t1"; ... ;"tn"]) %
letrec dest_andl t =
((let x1,t1 = dest_forall t
in
(x1,[t1])
)
?
(let first,rest = dest_conj t
in
let x1,l1 = dest_andl first
and x2,l2 = dest_andl rest
in
if x1=x2 then (x1, l1@l2) else fail)
) ? failwith `dest_andl`;;
% Version of AND_FORALL_CONV below will pull quantifiers out and flatten an
arbitrary tree of /\s, not just a linear list. %
let AND_FORALL_CONV t =
(let x,l = dest_andl t
in
mk_thm([], mk_eq(t,mk_forall(x,list_mk_conj l)))
) ? failwith `AND_FORALL_CONV`;;
%
"!x. t1 /\ ... /\ tn" --->
|- !x. t1 /\ ... /\ tn = (!x. t1) /\ ... /\ (!x. tn)
let FORALL_AND_CONV t =
(let x,l = ((I # conjuncts) o dest_forall) t
in
SYM(AND_FORALL_CONV(list_mk_conj(map(curry mk_forall x)l)))
) ? failwith `AND_FORALL_CONV`;;
%
let FORALL_AND_CONV t =
(let x,l = ((I # conjuncts) o dest_forall) t
in
mk_thm([],mk_eq(t, list_mk_conj(map(curry mk_forall x)l)))
) ? failwith `FORALL_AND_CONV`;;
%
|- (?l1 ... lm. (!x. x1 = t1) /\ ... /\ (!x. xn = tn)) =
(?l1 ... lm. (!x. x1 = t1') /\ ... /\ (!x. xn = tn'))
Where t1',...,tn' are got from t1,...,tn by unwinding using the equations:
x1 = t1 /\ ... /\ xn = tn
%
let UNWINDF t =
(let l,body = strip_exists t
in
let th1 = AND_FORALL_CONV body
in
let x,eqs = dest_forall(rhs(concl th1))
in
let th2 = FORALL_EQ x (UNWIND_EQS eqs)
in
let th3 = FORALL_AND_CONV(rhs(concl th2))
in
LIST_MK_EXISTS l (th1 TRANS th2 TRANS th3)
) ? failwith `UNWINDF`;;
let UNWINDF_RULE th = RIGHT_CONV_RULE UNWINDF th ? failwith `UNWINDF_RULE`;;
%
A |- t1 = t2
-------------- (t2' got from t2 by unwinding)
A |- t1 = t2'
%
% The next lot of rules are for pruning %
% EXISTS_AND_LEFT: term -> thm
"?x.t1/\t2"
| - ?x. t1 /\ t2 = t1 /\ (?x. t2)" (If x not free in t1)
%
let EXISTS_AND_LEFT t =
(let x,t1,t2 = ((I # dest_conj) o dest_exists) t
in
let t1_frees, t2_frees = frees t1, frees t2
in
if not(mem x t2_frees & not(mem x t1_frees))
then fail
else
(let th1 = ASSUME "^t1 /\ ^t2"
and t' = "^t1 /\ (?^x.^t2)"
in
let th2 = ASSUME t'
in
let th3 = DISCH
t
(CHOOSE
(x, ASSUME t)
(CONJ(CONJUNCT1 th1)(EXISTS("?^x.^t2",x)(CONJUNCT2 th1))))
% th3 = |-"?x. t1 /\ t2 ==> t1 /\ (?x. t2)" %
and th4 = DISCH
t'
(CHOOSE
(x, CONJUNCT2 th2)
(EXISTS(t,x)(CONJ(CONJUNCT1 th2)(ASSUME t2))))
% th4 = |-"t1 /\ (?x. t2) ==> ?x. t1 /\ t2" %
in
IMP_ANTISYM_RULE th3 th4)
) ? failwith `EXISTS_AND_LEFT`;;
% EXISTS_AND_RIGHT: term -> thm
?x.t1/\t2
|- ?x. t1 /\ t2 = (?x. t1) /\ t2" (If x not free in t2)
%
let EXISTS_AND_RIGHT t =
(let x,t1,t2 = ((I # dest_conj) o dest_exists) t
in
let t1_frees, t2_frees = frees t1, frees t2
and th1 = ASSUME "^t1 /\ ^t2"
in
if not(mem x t1_frees & not(mem x t2_frees))
then fail
else
(let t' = "(?^x.^t1) /\ ^t2"
in
let th2 = ASSUME t'
in
let th3 = DISCH
t
(CHOOSE
(x, ASSUME t)
(CONJ(EXISTS("?^x.^t1",x)(CONJUNCT1 th1))(CONJUNCT2 th1)))
% th3 = |-"?x. t1 /\ t2 ==> (?x.t1) /\ t2" %
and th4 = DISCH
t'
(CHOOSE
(x, CONJUNCT1 th2)
(EXISTS(t,x)(CONJ(ASSUME t1)(CONJUNCT2 th2))))
% th4 = |-"(?x.t1) /\ t2 ==> ?x. t1 /\ t2" %
in
IMP_ANTISYM_RULE th3 th4)
) ? failwith `EXISTS_AND_RIGHT`;;
% EXISTS_AND_BOTH: term -> thm
?x.t1/\t2
|- ?x. t1 /\ t2 = t1 /\ t2" (If x not free in t1 or t2)
%
let EXISTS_AND_BOTH t =
(let x,t1,t2 = ((I # dest_conj) o dest_exists) t
in
let t1_frees, t2_frees = frees t1, frees t2
and th1 = ASSUME "^t1 /\ ^t2"
in
if (mem x t2_frees) or (mem x t1_frees)
then fail
else
(let t' = "^t1 /\ ^t2"
in
let th3 = DISCH
t
(CHOOSE
(x, ASSUME t)
(ASSUME t'))
% th3 = |-"?x. t1 /\ t2 ==> t1 /\ t2" %
and th4 = DISCH
t'
(EXISTS(t, x)(ASSUME t'))
% th4 = |-"t1 /\ t2 ==> ?x. t1 /\ t2" %
in IMP_ANTISYM_RULE th3 th4)
) ? failwith `EXISTS_AND_BOTH`;;
% EXISTS_AND: term -> thm
?x.t1/\t2
|- ?x. t1 /\ t2 = t1 /\ (?x. t2)" (If x not free in t1)
|- ?x. t1 /\ t2 = (?x. t1) /\ t2" (If x not free in t2)
|- ?x. t1 /\ t2 = t1 /\ t2" (If x not free in t1 or t2)
%
let EXISTS_AND t =
EXISTS_AND_LEFT t ?
EXISTS_AND_RIGHT t ?
EXISTS_AND_BOTH t ?
failwith`EXISTS_AND`;;
%
A |- ?x.?y.t
------------
A |- ?y.?x.t"
%
let EXISTS_PERM th =
let x,y,t = ((I # dest_exists) o dest_exists o concl) th
in
CHOOSE
(x,th)
(CHOOSE
(y, ASSUME "?^y.^t")
(EXISTS("?^y^x.^t",y)(EXISTS("?^x.^t",x)(ASSUME t))));;
% |- (?x y. t) = (?y x.t) %
let EXISTS_PERM_CONV t =
(let th1 = EXISTS_PERM(ASSUME t)
in
let t' = concl th1
in
IMP_ANTISYM_RULE (DISCH t th1) (DISCH t' (EXISTS_PERM(ASSUME t')))
) ? failwith`EXISTS_PERM_CONV`;;
%
EXISTS_EQN
"?l. l x1 ... xn = t" --> |- (?l.l x1 ... xn = t) = T
(if l not free in t)
%
let EXISTS_EQN t =
(let l,t1,t2 = ((I # dest_eq) o dest_exists) t
in
let l',xs = strip_comb t1
in
let t3 = list_mk_abs(xs,t2)
in
let th1 = RIGHT_CONV_RULE LIST_BETA_CONV (REFL(list_mk_comb(t3,xs)))
in
EQT_INTRO(EXISTS("?^l.^(list_mk_comb(l,xs))=^(rhs(concl th1))",t3)th1)
) ? failwith `EXISTS_EQN`;;
%
EXISTS_EQNF
"?l. !x1 ... xn. l x1 ... xn = t" -->
|- (?l. !x1 ... xn. l x1 ... xn = t) = T
(if l not free in t)
%
let EXISTS_EQNF t =
(let l,vars,t1,t2 =
((I # (I # dest_eq)) o (I # strip_forall) o dest_exists) t
in
let l',xs = strip_comb t1
in
let t3 = list_mk_abs(xs,t2)
in
let th1 =
GENL vars (RIGHT_CONV_RULE LIST_BETA_CONV (REFL(list_mk_comb(t3,xs))))
in
EQT_INTRO
(EXISTS
((mk_exists
(l,
list_mk_forall
(xs,
(mk_eq(list_mk_comb(l,xs), rhs(snd(strip_forall(concl th1)))))))),
t3)
th1)
) ? failwith `EXISTS_EQNF`;;
% |- (?x.t) = t if x not free in t
let EXISTS_DEL1 tm =
(let x,t = dest_exists tm
in
let th1 = DISCH tm (CHOOSE (x, ASSUME tm) (ASSUME t))
and th2 = DISCH t (EXISTS(tm,x)(ASSUME t))
in
IMP_ANTISYM_RULE th1 th2
) ? failwith `EXISTS_DEL`;;
%
% |- (?x1 ... xn.t) = t if x1,...,xn not free in t
letrec EXISTS_DEL tm =
(if is_exists tm
then
(let th1 = EXISTS_DEL1 tm
in
let th2 = EXISTS_DEL(rhs(concl th1))
in
th1 TRANS th2)
else REFL tm
) ? failwith`EXISTS_DEL`;;
%
let EXISTS_DEL tm =
(let l,t = strip_exists tm
and l' = frees tm
in
if intersect l l' = [] then mk_thm([], mk_eq(tm,t)) else fail
) ? failwith`EXISTS_DEL`;;
%
The pruning rule below will need to be made more complicated.
|- (?l1 ... lm. t1 /\ ... /\ tn) = (u1 /\ ... /\ up)
where each ti is an equation "xi = ti'" and the uis are those tis
for which xi is not one of l1, ... ,lm. The rule below assumes that
for each li there is exactly one ti with xi=li. This will have to be
relaxed later.
%
% PRUNE1 prunes one hidden variable %
let PRUNE1 x eqs =
(let l1,l2 = partition(free_in x)(conjuncts eqs)
in
let th1 = LIST_MK_EXISTS [x] (CONJ_SET_CONV (conjuncts eqs) (l1@l2))
in
let th2 = th1 TRANS EXISTS_AND_RIGHT(rhs(concl th1))
in
let t1,t2 = dest_conj(rhs(concl th2))
in
let th3 = th2 TRANS (AP_THM(AP_TERM "$/\" (EXISTS_EQN t1))t2)
and th4 = CONJUNCT1 (SPEC t2 AND_CLAUSES)
in
th3 TRANS th4
) ? failwith`PRUNE1`;;
%
|- (?l1 ... lm. t1 /\ ... /\ tn) = (u1 /\ ... /\ up)
where each ti has the form "!x. xi x = ti'" and the uis are those tis
for which xi is not one of l1, ... ,lm. The rule below assumes that
for each li there is exactly one ti with xi=li. This will have to be
relaxed later.
%
% PRUNE1F prunes one hidden variable %
let PRUNE1F x eqs =
(let l1,l2 = partition(free_in x)(conjuncts eqs)
in
let th1 = LIST_MK_EXISTS [x] (CONJ_SET_CONV (conjuncts eqs) (l1@l2))
in
let th2 = th1 TRANS EXISTS_AND_RIGHT(rhs(concl th1))
in
let t1,t2 = dest_conj(rhs(concl th2))
in
let th3 = th2 TRANS (AP_THM(AP_TERM "$/\" (EXISTS_EQNF t1))t2)
and th4 = CONJUNCT1 (SPEC t2 AND_CLAUSES)
in
th3 TRANS th4
) ? failwith`PRUNE1F`;;
letrec PRUNEL vars eqs =
(if null vars
then REFL eqs
if null(tl vars)
then PRUNE1 (hd vars) eqs
else
(let th1 = PRUNEL (tl vars) eqs
in
let th2 = PRUNE1 (hd vars) (rhs(concl th1))
in
(LIST_MK_EXISTS [hd vars] th1) TRANS th2)
) ? failwith`PRUNEL`;;
let PRUNE t =
(let vars,eqs = strip_exists t in PRUNEL vars eqs) ? failwith`PRUNE`;;
let PRUNE_RULE th = RIGHT_CONV_RULE PRUNE th ? failwith `PRUNE_RULE`;;
letrec PRUNELF vars eqs =
(if null vars
then REFL eqs
if null(tl vars)
then PRUNE1F (hd vars) eqs
else
(let th1 = PRUNELF (tl vars) eqs
in
let th2 = PRUNE1F (hd vars) (rhs(concl th1))
in
(LIST_MK_EXISTS [hd vars] th1) TRANS th2)
) ? failwith`PRUNELF`;;
let PRUNEF t =
(let vars,eqs = strip_exists t in PRUNELF vars eqs) ? failwith`PRUNEF`;;
let PRUNEF_RULE th = RIGHT_CONV_RULE PRUNEF th ? failwith `PRUNEF_RULE`;;
% EXPAND below is like EXPAND_IMP of LCF_LSM; it unfolds, unwinds and prunes %
let EXPAND thl th =
let th1 = UNFOLD_RULE thl th
in
let th2 = OLD_UNWIND_RULE th1
in
PRUNE_RULE th2;;
let EXPANDF thl th =
let th1 = UNFOLD_RULE thl th
in
let th2 = UNWINDF_RULE th1
in
PRUNEF_RULE th2;;
% The stuff below superceeds some of the stuff above. Some cleaning %
% up is needed ... %
% New HOL Inference rules for unwinding device implementations. %
% %
% DATE 85.05.21 %
% AUTHOR T. Melham %
% AUXILIARY FUNCTION DEFINITIONS -------------------------------------- %
% line_var "!v1 ... vn. f v1 ... vn = t" ====> "f" %
let line_var tm = fst(strip_comb(lhs(snd(strip_forall tm))));;
% var_name "var" ====> `var` %
let var_name = fst o dest_var;;
% line_name "!v1 ... vn. f v1 ... vn = t" ====> `f` %
let line_name = var_name o line_var;;
% UNWIND CONVERSIONS -------------------------------------------------- %
% UNWIND_ONCE_CONV - Basic conversion for parallel unwinding of lines. %
% %
% DESCRIPTION: tm should be a conjunction, t1 /\ t2 ... /\ tn. %
% p:term->bool is a function which is used to partition the%
% terms (ti) into two sets. Those ti which p is true of %
% are then used as a set of rewrite rules (thus they must %
% be equations) to do a top-down one-step parallel rewrite %
% of the conjunction of the remaining terms. I.e. %
% %
% t1 /\ ... /\ eqn1 /\ ... /\ eqni /\ ... /\ tn %
% --------------------------------------------- %
% |- t1 /\ ... /\ eqn1 /\ ... /\ eqni /\ ... /\ tn %
% = %
% eqn1 /\ ... /\ eqni /\ ... /\ t1' /\ ... /\ tn' %
% %
% where tj' is tj rewritten with the equations eqnx %
let UNWIND_ONCE_CONV p tm =
let eqns = conjuncts tm in
let eq1,eq2 = partition (\tm. ((p tm) ? false)) eqns in
if (null eq1) or (null eq2)
then REFL tm
else let thm = CONJ_DISCHL eq1
(ONCE_DEPTH_CONV
(REWRITES_CONV (mk_conv_net (map ASSUME eq1)))
(list_mk_conj eq2)) in
let re = CONJUNCTS_CONV(tm,(lhs(concl thm))) in
re TRANS thm;;
% Unwind until no change using equations selected by p. %
% WARNING -- MAY LOOP! %
letrec UNWIND_CONV p tm =
let th = UNWIND_ONCE_CONV p tm in
if lhs(concl th)=rhs(concl th)
then th
else th TRANS (UNWIND_CONV p (rhs(concl th)));;
% UNWIND CONVERSIONS -------------------------------------------------- %
% One-step unwinding of device behaviour with hidden lines using line %
% equations selected by p. %
let UNWIND_ONCE_RULE p th =
let rhs_conv = \rhs. (let lines,eqs = strip_exists rhs in
LIST_MK_EXISTS lines (UNWIND_ONCE_CONV p eqs)) in
RIGHT_CONV_RULE rhs_conv th ? failwith `UNWIND_ONCE_RULE`;;
% Unwind device behaviour using line equations selected by p until no %
% change. WARNING --- MAY LOOP! %
let UNWIND_RULE p th =
let rhs_conv = \rhs. (let lines,eqs = strip_exists rhs in
LIST_MK_EXISTS lines (UNWIND_CONV p eqs)) in
RIGHT_CONV_RULE rhs_conv th ? failwith `UNWIND_RULE`;;
% Unwind all lines (except those in the list l) as much as possible. %
let UNWIND_ALL_RULE l th =
let rhs_conv =
\rh. (let lines,eqs = strip_exists rh in
let eqns = filter (can line_name) (conjuncts eqs) in
let line_names = subtract (map line_name eqns) l in
let p = \line. \tm. (line_name tm) = line in
let itfn = \line. \th. th TRANS
UNWIND_CONV (p line) (rhs(concl th)) in
LIST_MK_EXISTS lines (itlist itfn line_names (REFL eqs))) in
RIGHT_CONV_RULE rhs_conv th ? failwith `UNWIND_ALL_RULE`;;
let NEW_EXPANDF l thl th =
let th1 = UNFOLD_RULE thl th
in
let th2 = UNWIND_ALL_RULE l th1
in
PRUNEF_RULE th2;;
% TEST CASES ----------------
let imp = ASSUME
"IMP(f,g,h) = ?l3 l2 l1.
(!x:num. f x = (l1 (x+1)) + (l2 (x+2)) + (l3 (x+3))) /\
(!x. g x = (l3 (l3 (l3 x)))) /\
(!x. l2 x = (l3 x) - 1) /\
(!x. h x = l3 x) /\
(!x. l1 x = (l2 x) + 1) /\
(!x. l3 x = 7) /\
notanequation:bool";;
let tm = "(!x:num. f x = (l1 (x+1)) + (l2 (x+2)) + (l3 (x+3))) /\
(!x. l1 x = (l2 x) + 1) /\
(!x. g x = (l3 (l3 (l3 x)))) /\
(!x. l2 x = (l3 x) - 1) /\
(!x. h x = l3 x) /\
(!x. l3 x = 7) /\
notanequation:bool";;
UNWIND_ONCE_CONV (\tm. mem (line_name tm) [`l1`;`l2`;`l3`]) tm;;
UNWIND_CONV (\tm. mem (line_name tm) [`l1`;`l2`;`l3`]) tm;;
UNWIND_ONCE_RULE (\tm. mem (line_name tm) [`l1`;`l2`;`l3`]) imp;;
UNWIND_RULE (\tm. mem (line_name tm) [`l1`;`l2`;`l3`]) imp;;
UNWIND_ALL_RULE [] imp;;
UNWIND_ALL_RULE [`l3`] imp;;
%
|