This file is indexed.

/usr/share/doc/haskell98-report/html/haskell98-report-html/basic.html is in haskell98-report 20080907-5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
<title>The Haskell 98 Report: Predefined Types and Classes</title>
<body bgcolor="#ffffff"> <i>The Haskell 98 Report</i><br> <a href="index.html">top</a> | <a href="modules.html">back</a> | <a href="io-13.html">next</a> | <a href="index98.html">contents</a> | <a href="prelude-index.html">function index</a> <br><hr>
<a name="basic-types-and-classes"></a><a name="sect6"></a>
<h2>6<tt>&nbsp;&nbsp;</tt>Predefined Types and Classes</h2>

The Haskell  Prelude contains predefined classes, types,
and functions that are implicitly imported into every Haskell
program.  In this chapter, we describe the types and classes found in
the Prelude.
Most functions are not described in detail here as they
can easily be understood from their definitions as given in Chapter <a href="standard-prelude.html#stdprelude">8</a>.
Other predefined types such as arrays, complex numbers, and rationals
are defined in Part II.<a name="basic-types"></a><p>
<a name="sect6.1"></a>
<h3>6.1<tt>&nbsp;&nbsp;</tt>Standard Haskell Types</h3>

These types are defined by the Haskell  Prelude.  Numeric types are
described in Section <a href="basic.html#numbers">6.4</a>.  When appropriate, the Haskell 
definition of the type is given.  Some definitions may not be
completely valid on syntactic grounds but they faithfully convey the
meaning of the underlying type.<a name="booleans"></a><p>
<a name="sect6.1.1"></a>
<h4>6.1.1<tt>&nbsp;&nbsp;</tt>Booleans</h4>


<tt><br>

<br>
data&nbsp;&nbsp;Bool&nbsp;&nbsp;=&nbsp;&nbsp;False&nbsp;|&nbsp;True&nbsp;deriving&nbsp;<br>
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;(Read,&nbsp;Show,&nbsp;Eq,&nbsp;Ord,&nbsp;Enum,&nbsp;Bounded)<br>

<br>

</tt>The boolean type <tt>Bool</tt> is an enumeration. The basic boolean functions are <tt>&amp;&amp;</tt> (and), <tt>||</tt> (or), and <tt>not</tt>.
The name <tt>otherwise</tt> is defined as <tt>True</tt> to make guarded expressions
more readable.<a name="prelude-bool"></a><p>
<a name="characters"></a><p>
<a name="sect6.1.2"></a>
<h4>6.1.2<tt>&nbsp;&nbsp;</tt>Characters and Strings</h4>
<p>
The character type <tt>Char
</tt>is an enumeration whose values represent Unicode characters [<a href="haskell.html#$unicode">11</a>].
The lexical syntax for
characters is defined in Section <a href="lexemes.html#lexemes-char">2.6</a>; character
literals are nullary constructors in the datatype <tt>Char</tt>.  Type <tt>Char
</tt>is an instance of the classes <tt>Read</tt>, <tt>Show</tt>, <tt>Eq</tt>, <tt>Ord</tt>, 
<tt>Enum</tt>, and <tt>Bounded</tt>.  The <tt>toEnum</tt> and <tt>fromEnum</tt> functions,
standard functions from class <tt>Enum</tt>, map characters to and from the
<tt>Int</tt> type.<p>
Note that ASCII control characters each have several representations
in character literals: numeric escapes, ASCII mnemonic escapes,
and the <tt>\^</tt><I>X</I> notation.
In addition, there are the following equivalences:
<tt>\a</tt> and <tt>\BEL</tt>, <tt>\b</tt> and <tt>\BS</tt>, <tt>\f</tt> and <tt>\FF</tt>, <tt>\r</tt> and <tt>\CR</tt>,
<tt>\t</tt> and <tt>\HT</tt>, <tt>\v</tt> and <tt>\VT</tt>, and <tt>\n</tt> and <tt>\LF</tt>.<p>
A <I>string</I> is a list of characters:
<tt><br>

<br>
type&nbsp;&nbsp;String&nbsp;&nbsp;=&nbsp;&nbsp;[Char]<br>

<br>


</tt>Strings may be abbreviated using the lexical syntax described in
Section <a href="lexemes.html#lexemes-char">2.6</a>.  For example, <tt>"A&nbsp;string"</tt> abbreviates
<p>

<tt>[&nbsp;'A','&nbsp;','s','t','r',&nbsp;'i','n','g']
<p>
<a name="basic-lists"></a><p>
</tt><a name="sect6.1.3"></a>
<h4>6.1.3<tt>&nbsp;&nbsp;</tt>Lists</h4>


<tt><br>

<br>
data&nbsp;&nbsp;[a]&nbsp;&nbsp;=&nbsp;&nbsp;[]&nbsp;|&nbsp;a&nbsp;:&nbsp;[a]&nbsp;&nbsp;deriving&nbsp;(Eq,&nbsp;Ord)<br>

<br>

</tt>Lists are an algebraic datatype of two constructors, although
with special syntax, as described in Section <a href="exps.html#lists">3.7</a>.
The first constructor is the null list, written `<tt>[]</tt>' ("nil"),
and the second is `<tt>:</tt>' ("cons").

The module <tt>PreludeList</tt> (see Section <a href="standard-prelude.html#preludelist">8.1</a>)
defines many standard list functions.  
Arithmetic sequences

and list comprehensions,

two convenient
syntaxes for special kinds of lists, are described in
Sections <a href="exps.html#arithmetic-sequences">3.10</a> and <a href="exps.html#list-comprehensions">3.11</a>,
respectively.  Lists are an instance of classes <tt>Read</tt>, <tt>Show</tt>, <tt>Eq</tt>, <tt>Ord</tt>, 
<tt>Monad</tt>, <tt>Functor</tt>, and <tt>MonadPlus</tt>.<a name="basic-tuples"></a><p>
<a name="sect6.1.4"></a>
<h4>6.1.4<tt>&nbsp;&nbsp;</tt>Tuples</h4>
<p>
Tuples are algebraic datatypes with special syntax, as defined
in Section <a href="exps.html#tuples">3.8</a>.  Each tuple type has a single constructor.
All tuples are instances of <tt>Eq</tt>, <tt>Ord</tt>, <tt>Bounded</tt>, <tt>Read</tt>,
and <tt>Show</tt> (provided, of course, that all their component types are).<p>
There is no upper bound on the size of a tuple, but some Haskell 
implementations may restrict the size of tuples, and limit the
instances associated with larger tuples.  However, every Haskell
implementation must support tuples up to size 15, together with the instances
for <tt>Eq</tt>, <tt>Ord</tt>, <tt>Bounded</tt>, <tt>Read</tt>, and <tt>Show</tt>.  The Prelude and
libraries define tuple functions such as <tt>zip</tt> for tuples up to a size
of 7.<p>
The constructor for a tuple is written by omitting the expressions
surrounding the commas; thus <tt>(x,y)</tt> and <tt>(,)&nbsp;x&nbsp;y</tt> produce the same
value. The same holds for tuple type constructors; thus, <tt>(Int,Bool,Int)
</tt>and <tt>(,,)&nbsp;Int&nbsp;Bool&nbsp;Int</tt> denote the same type.<p>
The following functions are defined for pairs (2-tuples):
<tt>fst</tt>, <tt>snd</tt>, <tt>curry</tt>, and <tt>uncurry</tt>.  Similar functions are not
predefined for larger tuples.<a name="basic-trivial"></a><p>
<a name="sect6.1.5"></a>
<h4>6.1.5<tt>&nbsp;&nbsp;</tt>The Unit Datatype</h4>

<tt><br>

<br>
data&nbsp;&nbsp;()&nbsp;=&nbsp;()&nbsp;deriving&nbsp;(Eq,&nbsp;Ord,&nbsp;Bounded,&nbsp;Enum,&nbsp;Read,&nbsp;Show)<br>

<br>

</tt>The unit datatype <tt>()</tt> has one non-<I>_|_
</I>member, the nullary constructor <tt>()</tt>.  See also Section <a href="exps.html#unit-expression">3.9</a>.<p>
<a name="sect6.1.6"></a>
<h4>6.1.6<tt>&nbsp;&nbsp;</tt>Function Types</h4>

Functions are an abstract type: no constructors directly create
functional values.  The following simple functions are found in the Prelude:
<tt>id</tt>, <tt>const</tt>, <tt>(.)</tt>, <tt>flip</tt>, <tt>($)</tt>, and <tt>until</tt>.<p>
<a name="sect6.1.7"></a>
<h4>6.1.7<tt>&nbsp;&nbsp;</tt>The IO and IOError Types</h4>
The <tt>IO</tt> type serves as a tag for operations (actions) that interact
with the outside world.  The <tt>IO</tt> type is abstract: no constructors are
visible to the user.  <tt>IO</tt> is an instance of the <tt>Monad</tt> and <tt>Functor
</tt>classes.  Chapter <a href="io-13.html#io">7</a> describes I/O operations.<p>
<tt>IOError</tt> is an abstract type representing errors raised by I/O
operations.  It is an instance of <tt>Show</tt> and <tt>Eq</tt>.  Values of this type
are constructed by the various I/O functions and are not presented in
any further detail in this report.  The Prelude contains a few
I/O functions (defined in Section <a href="standard-prelude.html#preludeio">8.3</a>), and Part II
contains many more.<p>
<a name="sect6.1.8"></a>
<h4>6.1.8<tt>&nbsp;&nbsp;</tt>Other Types</h4>

<tt><br>

<br>
data&nbsp;&nbsp;Maybe&nbsp;a&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;=&nbsp;&nbsp;Nothing&nbsp;|&nbsp;Just&nbsp;a&nbsp;&nbsp;deriving&nbsp;(Eq,&nbsp;Ord,&nbsp;Read,&nbsp;Show)<br>
data&nbsp;&nbsp;Either&nbsp;a&nbsp;b&nbsp;&nbsp;=&nbsp;&nbsp;Left&nbsp;a&nbsp;|&nbsp;Right&nbsp;b&nbsp;&nbsp;deriving&nbsp;(Eq,&nbsp;Ord,&nbsp;Read,&nbsp;Show)<br>
data&nbsp;&nbsp;Ordering&nbsp;&nbsp;&nbsp;&nbsp;=&nbsp;&nbsp;LT&nbsp;|&nbsp;EQ&nbsp;|&nbsp;GT&nbsp;deriving<br>
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;(Eq,&nbsp;Ord,&nbsp;Bounded,&nbsp;Enum,&nbsp;Read,&nbsp;Show)<br>













<br>


</tt>The <tt>Maybe</tt> type is an instance of classes <tt>Functor</tt>, <tt>Monad</tt>,
and <tt>MonadPlus</tt>.  The <tt>Ordering</tt> type is used by <tt>compare
</tt>in the class <tt>Ord</tt>. The functions <tt>maybe</tt> and <tt>either</tt> are found in
the Prelude.<a name="strict-eval"></a><p>
<a name="sect6.2"></a>
<h3>6.2<tt>&nbsp;&nbsp;</tt>Strict Evaluation</h3>




Function application in Haskell is non-strict; that is, a function
argument is evaluated only when required.  Sometimes it is desirable to
force the evaluation of a value, using the <tt>seq</tt> function:
<tt><br>

<br>
&nbsp;&nbsp;seq&nbsp;::&nbsp;a&nbsp;-&gt;&nbsp;b&nbsp;-&gt;&nbsp;b<br>

<br>

</tt>The function <tt>seq</tt> is defined by the equations:
<p>
<table >
<tr><td>
<tt>seq</tt><I> _|_b = _|_</I> </td></tr><tr><td><tt>seq</tt><I>  a b =  b,  if a /=_|_</I> </td></tr></table>
<p>

<tt>seq</tt> is usually introduced to improve performance by
avoiding unneeded laziness.  Strict datatypes (see

Section <a href="decls.html#strictness-flags">4.2.1</a>) are defined in terms of the <tt>$!
</tt>operator. 
However, the provision of <tt>seq</tt> has important semantic consequences, because it is available
<I>at every type</I>.
As a consequence, <I>_|_</I> is
not the same as <tt>\x&nbsp;-&gt;&nbsp;</tt> <I>_|_</I>, since <tt>seq</tt> can be used to distinguish them.
For the same reason, the existence of <tt>seq</tt> weakens Haskell's parametricity properties.<p>
The operator <tt>$!</tt> is strict (call-by-value) application, and is defined
in terms of <tt>seq</tt>.  The Prelude also defines the <tt>$</tt> operator to perform 
non-strict application.
<tt><br>

<br>
&nbsp;&nbsp;infixr&nbsp;0&nbsp;$,&nbsp;$!<br>
&nbsp;&nbsp;($),&nbsp;($!)&nbsp;::&nbsp;(a&nbsp;-&gt;&nbsp;b)&nbsp;-&gt;&nbsp;a&nbsp;-&gt;&nbsp;b<br>
&nbsp;&nbsp;f&nbsp;$&nbsp;&nbsp;x&nbsp;&nbsp;&nbsp;=&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;f&nbsp;x<br>
&nbsp;&nbsp;f&nbsp;$!&nbsp;x&nbsp;&nbsp;&nbsp;=&nbsp;&nbsp;x&nbsp;`seq`&nbsp;f&nbsp;x<br>

<br>

</tt>The non-strict application operator <tt>$</tt> may appear redundant, since 
ordinary application <tt>(f&nbsp;x)</tt> means the same as <tt>(f&nbsp;$&nbsp;x)</tt>.
However, <tt>$</tt> has low, right-associative binding precedence,
so it sometimes allows parentheses to be omitted; for example:
<tt><br>

<br>
&nbsp;&nbsp;f&nbsp;$&nbsp;g&nbsp;$&nbsp;h&nbsp;x&nbsp;&nbsp;=&nbsp;&nbsp;f&nbsp;(g&nbsp;(h&nbsp;x))<br>

<br>

</tt>It is also useful in higher-order situations, such as <tt>map&nbsp;($&nbsp;0)&nbsp;xs</tt>,
or <tt>zipWith&nbsp;($)&nbsp;fs&nbsp;xs</tt>.<p>
<a name="sect6.3"></a>
<h3>6.3<tt>&nbsp;&nbsp;</tt>Standard Haskell Classes</h3>
Figure <a href="basic.html#standard-classes">6.1</a> shows the hierarchy of 
Haskell  classes defined in the Prelude and the Prelude types that
are instances of these classes.
<table border=2 cellpadding=3>
<tr><td><div align=center><img src="classes.gif" alt="Diagram of standard Haskell classes"> 
<h4>Figure 5</h4> </div>
<div align=center><h3>Standard Haskell Classes</h3></div><a name="standard-classes"></a>

</td></tr></table>
<p>
Default class method declarations (Section <a href="decls.html#classes">4.3</a>) are provided
for many of the methods in standard classes.  A comment with each
<tt>class</tt> declaration in Chapter <a href="standard-prelude.html#stdprelude">8</a> specifies the
smallest collection of method definitions that, together with the
default declarations, provide a reasonable definition for all the
class methods.  If there is no such comment, then all class methods
must be given to fully specify an instance.<p>
<a name="sect6.3.1"></a>
<h4>6.3.1<tt>&nbsp;&nbsp;</tt>The Eq Class</h4>



<tt><br>

<br>
&nbsp;&nbsp;class&nbsp;&nbsp;Eq&nbsp;a&nbsp;&nbsp;where<br>
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;(==),&nbsp;(/=)&nbsp;&nbsp;::&nbsp;&nbsp;a&nbsp;-&gt;&nbsp;a&nbsp;-&gt;&nbsp;Bool<br>
<br>
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;x&nbsp;/=&nbsp;y&nbsp;&nbsp;=&nbsp;not&nbsp;(x&nbsp;==&nbsp;y)<br>
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;x&nbsp;==&nbsp;y&nbsp;&nbsp;=&nbsp;not&nbsp;(x&nbsp;/=&nbsp;y)<br>

<br>

</tt>The <tt>Eq</tt> class provides equality (<tt>==</tt>) and inequality (<tt>/=</tt>) methods.
All basic datatypes except for functions and <tt>IO</tt> are instances of this class.
Instances of <tt>Eq</tt> can be derived for any user-defined datatype whose
constituents are also instances of <tt>Eq</tt>.<p>
This declaration gives default method declarations for both <tt>/=</tt> and <tt>==</tt>,
each being defined in terms of the other.  If an instance declaration
for <tt>Eq</tt> defines neither <tt>==</tt> nor <tt>/=</tt>, then both will loop.
If one is defined, the default method for the other will make use of
the one that is defined.  If both are defined, neither default method is used.<p>
<a name="sect6.3.2"></a>
<h4>6.3.2<tt>&nbsp;&nbsp;</tt>The Ord Class</h4>








<tt><br>

<br>
&nbsp;&nbsp;class&nbsp;&nbsp;(Eq&nbsp;a)&nbsp;=&gt;&nbsp;Ord&nbsp;a&nbsp;&nbsp;where<br>
&nbsp;&nbsp;&nbsp;&nbsp;compare&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;::&nbsp;a&nbsp;-&gt;&nbsp;a&nbsp;-&gt;&nbsp;Ordering<br>
&nbsp;&nbsp;&nbsp;&nbsp;(&lt;),&nbsp;(&lt;=),&nbsp;(&gt;=),&nbsp;(&gt;)&nbsp;::&nbsp;a&nbsp;-&gt;&nbsp;a&nbsp;-&gt;&nbsp;Bool<br>
&nbsp;&nbsp;&nbsp;&nbsp;max,&nbsp;min&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;::&nbsp;a&nbsp;-&gt;&nbsp;a&nbsp;-&gt;&nbsp;a<br>
<br>
&nbsp;&nbsp;&nbsp;&nbsp;compare&nbsp;x&nbsp;y&nbsp;|&nbsp;x&nbsp;==&nbsp;y&nbsp;&nbsp;&nbsp;&nbsp;=&nbsp;EQ<br>
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;|&nbsp;x&nbsp;&lt;=&nbsp;y&nbsp;&nbsp;&nbsp;&nbsp;=&nbsp;LT<br>
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;|&nbsp;otherwise&nbsp;=&nbsp;GT<br>
<br>
&nbsp;&nbsp;&nbsp;&nbsp;x&nbsp;&lt;=&nbsp;y&nbsp;&nbsp;=&nbsp;compare&nbsp;x&nbsp;y&nbsp;/=&nbsp;GT<br>
&nbsp;&nbsp;&nbsp;&nbsp;x&nbsp;&lt;&nbsp;&nbsp;y&nbsp;&nbsp;=&nbsp;compare&nbsp;x&nbsp;y&nbsp;==&nbsp;LT<br>
&nbsp;&nbsp;&nbsp;&nbsp;x&nbsp;&gt;=&nbsp;y&nbsp;&nbsp;=&nbsp;compare&nbsp;x&nbsp;y&nbsp;/=&nbsp;LT<br>
&nbsp;&nbsp;&nbsp;&nbsp;x&nbsp;&gt;&nbsp;&nbsp;y&nbsp;&nbsp;=&nbsp;compare&nbsp;x&nbsp;y&nbsp;==&nbsp;GT<br>
<br>
&nbsp;&nbsp;&nbsp;&nbsp;--&nbsp;Note&nbsp;that&nbsp;(min&nbsp;x&nbsp;y,&nbsp;max&nbsp;x&nbsp;y)&nbsp;=&nbsp;(x,y)&nbsp;or&nbsp;(y,x)<br>
&nbsp;&nbsp;&nbsp;&nbsp;max&nbsp;x&nbsp;y&nbsp;|&nbsp;x&nbsp;&lt;=&nbsp;y&nbsp;&nbsp;&nbsp;&nbsp;=&nbsp;&nbsp;y<br>
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;|&nbsp;otherwise&nbsp;=&nbsp;&nbsp;x<br>
&nbsp;&nbsp;&nbsp;&nbsp;min&nbsp;x&nbsp;y&nbsp;|&nbsp;x&nbsp;&lt;=&nbsp;y&nbsp;&nbsp;&nbsp;&nbsp;=&nbsp;&nbsp;x<br>
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;|&nbsp;otherwise&nbsp;=&nbsp;&nbsp;y<br>

<br>

</tt>The <tt>Ord</tt> class is used for totally ordered datatypes.  All basic
datatypes
except for functions, <tt>IO</tt>, and <tt>IOError</tt>, are instances of this class.  Instances
of <tt>Ord</tt> 
can be derived for any user-defined datatype whose constituent types
are in <tt>Ord</tt>.  The declared order
of the constructors in the data declaration determines the ordering in
derived <tt>Ord</tt> instances.
The <tt>Ordering</tt> datatype
allows a single comparison to determine the precise ordering of two
objects.<p>
The default declarations allow a user to create an <tt>Ord</tt> instance 
either with a type-specific <tt>compare</tt> function or with type-specific
<tt>==</tt> and <tt>&lt;=</tt> functions.<p>
<a name="sect6.3.3"></a>
<h4>6.3.3<tt>&nbsp;&nbsp;</tt>The Read and Show Classes</h4>









<tt><br>

<br>
type&nbsp;&nbsp;ReadS&nbsp;a&nbsp;=&nbsp;String&nbsp;-&gt;&nbsp;[(a,String)]<br>
type&nbsp;&nbsp;ShowS&nbsp;&nbsp;&nbsp;=&nbsp;String&nbsp;-&gt;&nbsp;String<br>
<br>
class&nbsp;&nbsp;Read&nbsp;a&nbsp;&nbsp;where<br>
&nbsp;&nbsp;&nbsp;&nbsp;readsPrec&nbsp;::&nbsp;Int&nbsp;-&gt;&nbsp;ReadS&nbsp;a<br>
&nbsp;&nbsp;&nbsp;&nbsp;readList&nbsp;&nbsp;::&nbsp;ReadS&nbsp;[a]<br>
&nbsp;&nbsp;&nbsp;&nbsp;--&nbsp;...&nbsp;default&nbsp;decl&nbsp;for&nbsp;readList&nbsp;given&nbsp;in&nbsp;Prelude<br>
<br>
class&nbsp;&nbsp;Show&nbsp;a&nbsp;&nbsp;where<br>
&nbsp;&nbsp;&nbsp;&nbsp;showsPrec&nbsp;::&nbsp;Int&nbsp;-&gt;&nbsp;a&nbsp;-&gt;&nbsp;ShowS<br>
&nbsp;&nbsp;&nbsp;&nbsp;show&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;::&nbsp;a&nbsp;-&gt;&nbsp;String&nbsp;<br>
&nbsp;&nbsp;&nbsp;&nbsp;showList&nbsp;&nbsp;::&nbsp;[a]&nbsp;-&gt;&nbsp;ShowS<br>
<br>
&nbsp;&nbsp;&nbsp;&nbsp;showsPrec&nbsp;_&nbsp;x&nbsp;s&nbsp;&nbsp;&nbsp;=&nbsp;show&nbsp;x&nbsp;++&nbsp;s<br>
&nbsp;&nbsp;&nbsp;&nbsp;show&nbsp;x&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;=&nbsp;showsPrec&nbsp;0&nbsp;x&nbsp;""<br>
&nbsp;&nbsp;&nbsp;&nbsp;--&nbsp;...&nbsp;default&nbsp;decl&nbsp;for&nbsp;showList&nbsp;given&nbsp;in&nbsp;Prelude<br>

<br>

</tt>The <tt>Read</tt> and <tt>Show</tt> classes are used to convert values to
or from strings. 
The <tt>Int</tt> argument to <tt>showsPrec</tt> and <tt>readsPrec</tt> gives the operator
precedence of the enclosing context (see Section <a href="derived.html#derived-text">10.4</a>).<p>
<tt>showsPrec</tt> and <tt>showList</tt> return a <tt>String</tt>-to-<tt>String
</tt>function, to allow constant-time concatenation of its results using function
composition.
A specialised variant, <tt>show</tt>, is also provided, which
uses precedence context zero, and returns an ordinary <tt>String</tt>.
The method <tt>showList</tt> is provided to allow the programmer to
give a specialised way of showing lists of values.  This is particularly
useful for the <tt>Char</tt> type, where values of type <tt>String</tt> should be
shown in double quotes, rather than between square brackets.<p>
Derived instances of <tt>Read</tt> and <tt>Show</tt> replicate the style in which a
constructor is declared: infix constructors and field names are used
on input and output.  Strings produced by <tt>showsPrec</tt> are usually
readable by <tt>readsPrec</tt>.  <p>
All <tt>Prelude</tt> types, except function types and <tt>IO</tt> types,
are instances of <tt>Show</tt> and <tt>Read</tt>.
(If desired, a programmer can easily make functions and <tt>IO</tt> types 
into (vacuous) instances of <tt>Show</tt>, by providing an instance declaration.)<p>



For convenience, the Prelude provides the following auxiliary
functions: 
<tt><br>

<br>
reads&nbsp;&nbsp;&nbsp;::&nbsp;(Read&nbsp;a)&nbsp;=&gt;&nbsp;ReadS&nbsp;a<br>
reads&nbsp;&nbsp;&nbsp;=&nbsp;&nbsp;readsPrec&nbsp;0<br>
<br>
shows&nbsp;&nbsp;&nbsp;::&nbsp;(Show&nbsp;a)&nbsp;=&gt;&nbsp;a&nbsp;-&gt;&nbsp;ShowS<br>
shows&nbsp;&nbsp;&nbsp;=&nbsp;&nbsp;showsPrec&nbsp;0<br>
<br>
read&nbsp;&nbsp;&nbsp;&nbsp;::&nbsp;(Read&nbsp;a)&nbsp;=&gt;&nbsp;String&nbsp;-&gt;&nbsp;a<br>
read&nbsp;s&nbsp;&nbsp;=&nbsp;&nbsp;case&nbsp;[x&nbsp;|&nbsp;(x,t)&nbsp;&lt;-&nbsp;reads&nbsp;s,&nbsp;("","")&nbsp;&lt;-&nbsp;lex&nbsp;t]&nbsp;of<br>
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;[x]&nbsp;-&gt;&nbsp;x<br>
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;[]&nbsp;&nbsp;-&gt;&nbsp;error&nbsp;"PreludeText.read:&nbsp;no&nbsp;parse"<br>
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;_&nbsp;&nbsp;&nbsp;-&gt;&nbsp;error&nbsp;"PreludeText.read:&nbsp;ambiguous&nbsp;parse"<br>

<br>


shows</tt> and <tt>reads</tt> use a default precedence of 0.  The <tt>read</tt> function reads
input from a string, which must be completely consumed by the input
process.  <p>

The function <tt>lex&nbsp;::&nbsp;ReadS&nbsp;String</tt>, used by <tt>read</tt>, is also part of the Prelude.
It reads a single lexeme from the input, discarding initial white space, and
returning the characters that constitute the lexeme.  If the input string contains
only white space, <tt>lex</tt> returns a single successful "lexeme" consisting of the
empty string.  (Thus <tt>lex&nbsp;""</tt> = <tt>[("","")]</tt>.)  If there is no legal lexeme at the
beginning of the input string, <tt>lex</tt> fails (i.e. returns <tt>[]</tt>).<a name="enum-class"></a><p>
<a name="sect6.3.4"></a>
<h4>6.3.4<tt>&nbsp;&nbsp;</tt>The Enum Class</h4>








<tt><br>

<br>
class&nbsp;&nbsp;Enum&nbsp;a&nbsp;&nbsp;where<br>
&nbsp;&nbsp;&nbsp;&nbsp;succ,&nbsp;pred&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;::&nbsp;a&nbsp;-&gt;&nbsp;a<br>
&nbsp;&nbsp;&nbsp;&nbsp;toEnum&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;::&nbsp;Int&nbsp;-&gt;&nbsp;a<br>
&nbsp;&nbsp;&nbsp;&nbsp;fromEnum&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;::&nbsp;a&nbsp;-&gt;&nbsp;Int<br>
&nbsp;&nbsp;&nbsp;&nbsp;enumFrom&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;::&nbsp;a&nbsp;-&gt;&nbsp;[a]&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;--&nbsp;[n..]<br>
&nbsp;&nbsp;&nbsp;&nbsp;enumFromThen&nbsp;&nbsp;&nbsp;::&nbsp;a&nbsp;-&gt;&nbsp;a&nbsp;-&gt;&nbsp;[a]&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;--&nbsp;[n,n'..]<br>
&nbsp;&nbsp;&nbsp;&nbsp;enumFromTo&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;::&nbsp;a&nbsp;-&gt;&nbsp;a&nbsp;-&gt;&nbsp;[a]&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;--&nbsp;[n..m]<br>
&nbsp;&nbsp;&nbsp;&nbsp;enumFromThenTo&nbsp;::&nbsp;a&nbsp;-&gt;&nbsp;a&nbsp;-&gt;&nbsp;a&nbsp;-&gt;&nbsp;[a]&nbsp;&nbsp;--&nbsp;[n,n'..m]<br>
<br>
&nbsp;&nbsp;&nbsp;&nbsp;--&nbsp;Default&nbsp;declarations&nbsp;given&nbsp;in&nbsp;Prelude<br>

<br>

</tt>Class <tt>Enum</tt> defines operations on sequentially ordered types.
The functions <tt>succ</tt> and <tt>pred</tt> return the successor and predecessor,
respectively, of a value.
The functions <tt>fromEnum</tt> and <tt>toEnum</tt> map values from a type in
<tt>Enum</tt> to and from <tt>Int</tt>.  
The <tt>enumFrom</tt>... methods are used when translating arithmetic
sequences (Section <a href="exps.html#arithmetic-sequences">3.10</a>).<p>
Instances of <tt>Enum</tt> may be derived for any enumeration type (types
whose constructors have no fields); see Chapter <a href="derived.html#derived-appendix">10</a>.<p>
For any type that is an instance of class <tt>Bounded</tt> as well as <tt>Enum</tt>, the following
should hold:
<UL><LI>The calls <tt>succ&nbsp;maxBound</tt> and <tt>pred&nbsp;minBound</tt> should result in
a runtime error.<p>
<LI><tt>fromEnum</tt> and <tt>toEnum</tt> should give a runtime error if the 
result value is not representable in the result type.  For example,
<tt>toEnum&nbsp;7&nbsp;::&nbsp;Bool</tt> is an error.<p>
<LI><tt>enumFrom</tt> and <tt>enumFromThen</tt> should be defined with 
an implicit bound, thus:
<tt><br>

<br>
&nbsp;&nbsp;enumFrom&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;x&nbsp;&nbsp;&nbsp;=&nbsp;enumFromTo&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;x&nbsp;maxBound<br>
&nbsp;&nbsp;enumFromThen&nbsp;x&nbsp;y&nbsp;=&nbsp;enumFromThenTo&nbsp;x&nbsp;y&nbsp;bound<br>
&nbsp;&nbsp;&nbsp;&nbsp;where<br>
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;bound&nbsp;|&nbsp;fromEnum&nbsp;y&nbsp;&gt;=&nbsp;fromEnum&nbsp;x&nbsp;=&nbsp;maxBound<br>
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;|&nbsp;otherwise&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;=&nbsp;minBound<br>

<br>

</tt></UL><p>
The following <tt>Prelude</tt> types are instances of <tt>Enum</tt>: 
<UL><LI>Enumeration types: <tt>()</tt>, <tt>Bool</tt>, and <tt>Ordering</tt>. The
semantics of these instances is given by Chapter <a href="derived.html#derived-appendix">10</a>.
For example, <tt>[LT..]</tt> is the list <tt>[LT,EQ,GT]</tt>.<p>
<LI><tt>Char</tt>: the instance is given in Chapter <a href="standard-prelude.html#stdprelude">8</a>, based
on the primitive functions that convert between a <tt>Char</tt> and an <tt>Int</tt>.
For example, <tt>enumFromTo&nbsp;'a'&nbsp;'z'</tt> denotes
the list of lowercase letters in alphabetical order.<p>
<LI>Numeric types: <tt>Int</tt>, <tt>Integer</tt>, <tt>Float</tt>, <tt>Double</tt>.  The semantics
of these instances is given next.
</UL>
For all four numeric types, <tt>succ</tt> adds 1, and <tt>pred</tt> subtracts 1.
The conversions <tt>fromEnum</tt> and <tt>toEnum</tt> convert between the type and <tt>Int</tt>.
In the case of <tt>Float</tt> and <tt>Double</tt>, the digits after the decimal point may be lost.
It is implementation-dependent what <tt>fromEnum</tt> returns when applied to 
a value that is too large to fit in an <tt>Int</tt>.<p>
For the types <tt>Int</tt> and <tt>Integer</tt>, the enumeration functions 
have the following meaning:
<UL><LI>The sequence <tt>enumFrom</tt><I> e</I><sub><I>1</I></sub> is the list <tt>[</tt><I>e</I><sub><I>1</I></sub><tt>,</tt><I>e</I><sub><I>1</I></sub><I>+1</I><tt>,</tt><I>e</I><sub><I>1</I></sub><I>+2</I><tt>,</tt><I>...</I><tt>]</tt>.<p>
<LI>The sequence <tt>enumFromThen</tt><I> e</I><sub><I>1</I></sub><I> e</I><sub><I>2</I></sub> is the list <tt>[</tt><I>e</I><sub><I>1</I></sub><tt>,</tt><I>e</I><sub><I>1</I></sub><I>+i</I><tt>,</tt><I>e</I><sub><I>1</I></sub><I>+2i</I><tt>,</tt><I>...</I><tt>]</tt>,
where the increment, <I>i</I>, is <I>e</I><sub><I>2</I></sub><I>-e</I><sub><I>1</I></sub>.  The increment may be zero or negative.
If the increment is zero, all the list elements are the same.<p>
<LI>The sequence <tt>enumFromTo</tt><I> e</I><sub><I>1</I></sub><I> e</I><sub><I>3</I></sub> is 
the list <tt>[</tt><I>e</I><sub><I>1</I></sub><tt>,</tt><I>e</I><sub><I>1</I></sub><I>+1</I><tt>,</tt><I>e</I><sub><I>1</I></sub><I>+2</I><tt>,</tt><I>...e</I><sub><I>3</I></sub><tt>]</tt>.
The list is empty if <I>e</I><sub><I>1</I></sub><I> &gt; e</I><sub><I>3</I></sub>.<p>
<LI>The sequence <tt>enumFromThenTo</tt><I> e</I><sub><I>1</I></sub><I> e</I><sub><I>2</I></sub><I> e</I><sub><I>3</I></sub> 
is the list <tt>[</tt><I>e</I><sub><I>1</I></sub><tt>,</tt><I>e</I><sub><I>1</I></sub><I>+i</I><tt>,</tt><I>e</I><sub><I>1</I></sub><I>+2i</I><tt>,</tt><I>...e</I><sub><I>3</I></sub><tt>]</tt>,
where the increment, <I>i</I>, is <I>e</I><sub><I>2</I></sub><I>-e</I><sub><I>1</I></sub>.  If the increment 
is positive or zero, the list terminates when the next element would
be greater than <I>e</I><sub><I>3</I></sub>; the list is empty if <I>e</I><sub><I>1</I></sub><I> &gt; e</I><sub><I>3</I></sub>.
If the increment is negative, the list terminates when the next element would
be less than <I>e</I><sub><I>3</I></sub>; the list is empty if <I>e1 &lt; e</I><sub><I>3</I></sub>.
</UL>
For <tt>Float</tt> and <tt>Double</tt>, the semantics of the <tt>enumFrom</tt> family is
given by the rules for <tt>Int</tt> above, except that the list terminates
when the elements become greater than <I>e</I><sub><I>3</I></sub><I>+i/2</I> for positive increment
<I>i</I>, or when they become less than <I>e</I><sub><I>3</I></sub><I>+i/2</I> for negative <I>i</I>.<p>
For all four of these Prelude numeric types, all of the <tt>enumFrom</tt> 
family of functions are strict in all their arguments.<p>
<a name="sect6.3.5"></a>
<h4>6.3.5<tt>&nbsp;&nbsp;</tt>The Functor Class</h4><p>
<tt><br>

<br>
class&nbsp;&nbsp;Functor&nbsp;f&nbsp;&nbsp;where<br>
&nbsp;&nbsp;&nbsp;&nbsp;fmap&nbsp;&nbsp;&nbsp;&nbsp;::&nbsp;(a&nbsp;-&gt;&nbsp;b)&nbsp;-&gt;&nbsp;f&nbsp;a&nbsp;-&gt;&nbsp;f&nbsp;b<br>

<br>

</tt>The <tt>Functor
</tt>class is used for types that can be mapped over.  Lists, <tt>IO</tt>, and
<tt>Maybe</tt> are in this class. <p>
Instances of <tt>Functor</tt> should satisfy the following laws:
<p>
<table >
<tr><td>
<tt>fmap&nbsp;id</tt></td><td align=center>=</td><td><tt>id</tt></td></tr><tr><td><tt>fmap&nbsp;(f&nbsp;.&nbsp;g)</tt></td><td align=center>=</td><td><tt>fmap&nbsp;f&nbsp;.&nbsp;fmap&nbsp;g</tt></td></tr></table>
<p>

All instances of <tt>Functor</tt> defined in the Prelude satisfy these laws.<a name="monad-class"></a><p>
<a name="sect6.3.6"></a>
<h4>6.3.6<tt>&nbsp;&nbsp;</tt>The Monad Class</h4>







<tt><br>

<br>
class&nbsp;&nbsp;Monad&nbsp;m&nbsp;&nbsp;where<br>
&nbsp;&nbsp;&nbsp;&nbsp;(&gt;&gt;=)&nbsp;&nbsp;&nbsp;::&nbsp;m&nbsp;a&nbsp;-&gt;&nbsp;(a&nbsp;-&gt;&nbsp;m&nbsp;b)&nbsp;-&gt;&nbsp;m&nbsp;b<br>
&nbsp;&nbsp;&nbsp;&nbsp;(&gt;&gt;)&nbsp;&nbsp;&nbsp;&nbsp;::&nbsp;m&nbsp;a&nbsp;-&gt;&nbsp;m&nbsp;b&nbsp;-&gt;&nbsp;m&nbsp;b<br>
&nbsp;&nbsp;&nbsp;&nbsp;return&nbsp;&nbsp;::&nbsp;a&nbsp;-&gt;&nbsp;m&nbsp;a<br>
&nbsp;&nbsp;&nbsp;&nbsp;fail&nbsp;&nbsp;&nbsp;&nbsp;::&nbsp;String&nbsp;-&gt;&nbsp;m&nbsp;a<br>
<br>
&nbsp;&nbsp;&nbsp;&nbsp;m&nbsp;&gt;&gt;&nbsp;k&nbsp;&nbsp;=&nbsp;&nbsp;m&nbsp;&gt;&gt;=&nbsp;\_&nbsp;-&gt;&nbsp;k<br>
&nbsp;&nbsp;&nbsp;&nbsp;fail&nbsp;s&nbsp;&nbsp;=&nbsp;error&nbsp;s<br>

<br>

</tt>The <tt>Monad</tt> class defines the basic operations over a <I>monad</I>.
See Chapter <a href="io-13.html#io">7</a> for more information about monads.<p>
"<tt>do</tt>" expressions provide a convenient syntax for writing
monadic expressions (see Section <a href="exps.html#do-expressions">3.14</a>).
The <tt>fail</tt> method is invoked on pattern-match failure in a <tt>do
</tt>expression.<p>
In the Prelude, lists, 
<tt>Maybe</tt>, and <tt>IO</tt> are all instances of <tt>Monad</tt>.
The <tt>fail</tt> method for lists returns the empty list <tt>[]</tt>,
for <tt>Maybe</tt> returns <tt>Nothing</tt>, and for <tt>IO</tt> raises a user
exception in the IO monad (see Section <a href="io-13.html#io-exceptions">7.3</a>).<p>
Instances of <tt>Monad</tt> should satisfy the following laws:
<p>
<table >
<tr><td>
<tt>return&nbsp;a&nbsp;&gt;&gt;=&nbsp;k</tt></td><td align=center>=</td><td><tt>k&nbsp;a</tt> </td></tr><tr><td><tt>m&nbsp;&gt;&gt;=&nbsp;return</tt></td><td align=center>=</td><td><tt>m</tt> </td></tr><tr><td><tt>m&nbsp;&gt;&gt;=&nbsp;(\x&nbsp;-&gt;&nbsp;k&nbsp;x&nbsp;&gt;&gt;=&nbsp;h)</tt></td><td align=center>=</td><td><tt>(m&nbsp;&gt;&gt;=&nbsp;k)&nbsp;&gt;&gt;=&nbsp;h</tt></td></tr></table>
<p>

Instances of both <tt>Monad</tt> and <tt>Functor</tt> should additionally satisfy the law:
<p>
<table >
<tr><td>
<tt>fmap&nbsp;f&nbsp;xs</tt></td><td align=center>=</td><td><tt>xs&nbsp;&gt;&gt;=&nbsp;return&nbsp;.&nbsp;f</tt></td></tr></table>
<p>

All instances of <tt>Monad</tt> defined in the Prelude satisfy these laws.<p>
The Prelude provides the following auxiliary functions: 
<tt><br>

<br>
sequence&nbsp;&nbsp;::&nbsp;Monad&nbsp;m&nbsp;=&gt;&nbsp;[m&nbsp;a]&nbsp;-&gt;&nbsp;m&nbsp;[a]&nbsp;<br>
sequence_&nbsp;::&nbsp;Monad&nbsp;m&nbsp;=&gt;&nbsp;[m&nbsp;a]&nbsp;-&gt;&nbsp;m&nbsp;()&nbsp;<br>
mapM&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;::&nbsp;Monad&nbsp;m&nbsp;=&gt;&nbsp;(a&nbsp;-&gt;&nbsp;m&nbsp;b)&nbsp;-&gt;&nbsp;[a]&nbsp;-&gt;&nbsp;m&nbsp;[b]<br>
mapM_&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;::&nbsp;Monad&nbsp;m&nbsp;=&gt;&nbsp;(a&nbsp;-&gt;&nbsp;m&nbsp;b)&nbsp;-&gt;&nbsp;[a]&nbsp;-&gt;&nbsp;m&nbsp;()<br>
(=&lt;&lt;)&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;::&nbsp;Monad&nbsp;m&nbsp;=&gt;&nbsp;(a&nbsp;-&gt;&nbsp;m&nbsp;b)&nbsp;-&gt;&nbsp;m&nbsp;a&nbsp;-&gt;&nbsp;m&nbsp;b<br>

<br>
<p>
</tt><a name="sect6.3.7"></a>
<h4>6.3.7<tt>&nbsp;&nbsp;</tt>The Bounded Class</h4>



<tt><br>
class&nbsp;&nbsp;Bounded&nbsp;a&nbsp;&nbsp;where<br>
&nbsp;&nbsp;&nbsp;&nbsp;minBound,&nbsp;maxBound&nbsp;::&nbsp;a<br>
<p>
</tt>The <tt>Bounded</tt> class is used to name the upper and lower limits of a
type.  <tt>Ord</tt> is not a superclass of <tt>Bounded</tt> since types that are not
totally ordered may also have upper and lower bounds.
The types <tt>Int</tt>, <tt>Char</tt>, <tt>Bool</tt>,
<tt>()</tt>, <tt>Ordering</tt>, and all tuples are instances of <tt>Bounded</tt>.  
The <tt>Bounded</tt> class may be derived
for any enumeration type; <tt>minBound</tt> is the first constructor listed
in the <tt>data</tt> declaration and <tt>maxBound</tt> is the last.  <tt>Bounded</tt> may
also be derived for single-constructor datatypes whose constituent
types are in <tt>Bounded</tt>.<a name="numbers"></a><p>
<a name="sect6.4"></a>
<h3>6.4<tt>&nbsp;&nbsp;</tt>Numbers</h3>
<p>
Haskell  provides several kinds of numbers; the numeric
types and the operations upon them have been heavily influenced by
Common Lisp and Scheme.
Numeric function names and operators are usually overloaded, using
several type classes with an inclusion relation shown in
Figure <a href="basic.html#standard-classes">6.1</a>.
The class <tt>Num</tt> of numeric
types is a subclass of <tt>Eq</tt>, since all numbers may be
compared for equality; its subclass <tt>Real</tt> is also a
subclass of <tt>Ord</tt>, since the other comparison operations
apply to all but complex numbers (defined in the <tt>Complex</tt> library).
The class <tt>Integral</tt> contains integers of both 
limited and unlimited range; the class
<tt>Fractional</tt> contains all non-integral types; and
the class <tt>Floating</tt> contains all floating-point
types, both real and complex.<p>
The Prelude defines only the most basic numeric types: fixed sized
integers (<tt>Int</tt>), arbitrary precision integers (<tt>Integer</tt>), single
precision floating (<tt>Float</tt>), and double precision floating
(<tt>Double</tt>).  Other numeric types such as rationals and complex numbers
are defined in libraries.  In particular, the type <tt>Rational</tt> is a
ratio of two <tt>Integer</tt> values, as defined in the <tt>Ratio
</tt>library.  <p>
The default floating point operations defined by the Haskell 
Prelude do not 
conform to current language independent arithmetic (LIA) standards.  These
standards require considerably more complexity in the numeric
structure and have thus been relegated to a library.  Some, but not
all, aspects of the IEEE floating point standard have been
accounted for in Prelude class <tt>RealFloat</tt>.<p>
The standard numeric types are listed in Table <a href="basic.html#standard-numeric-types">6.1</a>.
The finite-precision integer type <tt>Int</tt> covers at
least the range 
<I>[ - 2</I><sup><I>29</I></sup><I>, 2</I><sup><I>29</I></sup><I> - 1]</I>.  As <tt>Int</tt> is an instance of the <tt>Bounded
</tt>class, <tt>maxBound</tt> and <tt>minBound</tt> can be used to determine the exact
<tt>Int</tt> range defined by an implementation.
<tt>Float</tt> is implementation-defined; it is desirable that
this type be at least equal in range and precision to the IEEE
single-precision type.  Similarly, <tt>Double</tt> should
cover IEEE double-precision.  The results of exceptional
conditions (such as overflow or underflow) on the fixed-precision
numeric types are undefined; an implementation may choose error
(<I>_|_</I>, semantically), a truncated value, or a special value such as
infinity, indefinite, etc.<p>
<div align=center>
<p>

<table border=2>
<tr><td>

Type </td><td> 
	Class </td><td>
	Description </td></tr><tr><td>
<tt>Integer</tt> </td><td> <tt>Integral</tt> </td><td> Arbitrary-precision integers </td></tr><tr><td><tt>Int</tt> </td><td> <tt>Integral</tt> </td><td> Fixed-precision integers </td></tr><tr><td><tt>(Integral&nbsp;a)&nbsp;=&gt;&nbsp;Ratio&nbsp;a</tt> </td><td> <tt>RealFrac</tt> </td><td> Rational numbers </td></tr><tr><td><tt>Float</tt> </td><td> <tt>RealFloat</tt> </td><td> Real floating-point, single precision </td></tr><tr><td><tt>Double</tt> </td><td> <tt>RealFloat</tt> </td><td> Real floating-point, double precision </td></tr><tr><td><tt>(RealFloat&nbsp;a)&nbsp;=&gt;&nbsp;Complex&nbsp;a</tt> </td><td> <tt>Floating</tt> </td><td> Complex floating-point </td></tr><tr><td>
</td></tr></table>

<p>

<div align=center> <h4>Table 2</h4> </div>
<div align=center><h3>Standard Numeric Types</h3></div><a name="standard-numeric-types"></a>


</div><p>
The standard numeric classes and other numeric functions defined in
the Prelude are shown
in Figures <a href="basic.html#basic-numeric-1">6.2</a>--<a href="basic.html#basic-numeric-2">6.3</a>.
Figure <a href="basic.html#standard-classes">6.1</a> shows the class dependencies and
built-in types that are instances of the numeric classes.<p>
<table border=2 cellpadding=3>
<tr><td>
<div align=center><table border=2 cellpadding=3>
<tr><td>
<tt><br>
class&nbsp;&nbsp;(Eq&nbsp;a,&nbsp;Show&nbsp;a)&nbsp;=&gt;&nbsp;Num&nbsp;a&nbsp;&nbsp;where<br>
&nbsp;&nbsp;&nbsp;&nbsp;(+),&nbsp;(-),&nbsp;(*)&nbsp;&nbsp;::&nbsp;a&nbsp;-&gt;&nbsp;a&nbsp;-&gt;&nbsp;a<br>
&nbsp;&nbsp;&nbsp;&nbsp;negate&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;::&nbsp;a&nbsp;-&gt;&nbsp;a<br>
&nbsp;&nbsp;&nbsp;&nbsp;abs,&nbsp;signum&nbsp;&nbsp;&nbsp;&nbsp;::&nbsp;a&nbsp;-&gt;&nbsp;a<br>
&nbsp;&nbsp;&nbsp;&nbsp;fromInteger&nbsp;&nbsp;&nbsp;&nbsp;::&nbsp;Integer&nbsp;-&gt;&nbsp;a<br>
<br>
class&nbsp;&nbsp;(Num&nbsp;a,&nbsp;Ord&nbsp;a)&nbsp;=&gt;&nbsp;Real&nbsp;a&nbsp;&nbsp;where<br>
&nbsp;&nbsp;&nbsp;&nbsp;toRational&nbsp;::&nbsp;&nbsp;a&nbsp;-&gt;&nbsp;Rational<br>
<br>
class&nbsp;&nbsp;(Real&nbsp;a,&nbsp;Enum&nbsp;a)&nbsp;=&gt;&nbsp;Integral&nbsp;a&nbsp;&nbsp;where<br>
&nbsp;&nbsp;&nbsp;&nbsp;quot,&nbsp;rem,&nbsp;div,&nbsp;mod&nbsp;::&nbsp;a&nbsp;-&gt;&nbsp;a&nbsp;-&gt;&nbsp;a<br>
&nbsp;&nbsp;&nbsp;&nbsp;quotRem,&nbsp;divMod&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;::&nbsp;a&nbsp;-&gt;&nbsp;a&nbsp;-&gt;&nbsp;(a,a)<br>
&nbsp;&nbsp;&nbsp;&nbsp;toInteger&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;::&nbsp;a&nbsp;-&gt;&nbsp;Integer<br>
<br>
class&nbsp;&nbsp;(Num&nbsp;a)&nbsp;=&gt;&nbsp;Fractional&nbsp;a&nbsp;&nbsp;where<br>
&nbsp;&nbsp;&nbsp;&nbsp;(/)&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;::&nbsp;a&nbsp;-&gt;&nbsp;a&nbsp;-&gt;&nbsp;a<br>
&nbsp;&nbsp;&nbsp;&nbsp;recip&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;::&nbsp;a&nbsp;-&gt;&nbsp;a<br>
&nbsp;&nbsp;&nbsp;&nbsp;fromRational&nbsp;::&nbsp;Rational&nbsp;-&gt;&nbsp;a<br>
<br>
class&nbsp;&nbsp;(Fractional&nbsp;a)&nbsp;=&gt;&nbsp;Floating&nbsp;a&nbsp;&nbsp;where<br>
&nbsp;&nbsp;&nbsp;&nbsp;pi&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;::&nbsp;a<br>
&nbsp;&nbsp;&nbsp;&nbsp;exp,&nbsp;log,&nbsp;sqrt&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;::&nbsp;a&nbsp;-&gt;&nbsp;a<br>
&nbsp;&nbsp;&nbsp;&nbsp;(**),&nbsp;logBase&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;::&nbsp;a&nbsp;-&gt;&nbsp;a&nbsp;-&gt;&nbsp;a<br>
&nbsp;&nbsp;&nbsp;&nbsp;sin,&nbsp;cos,&nbsp;tan&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;::&nbsp;a&nbsp;-&gt;&nbsp;a<br>
&nbsp;&nbsp;&nbsp;&nbsp;asin,&nbsp;acos,&nbsp;atan&nbsp;&nbsp;&nbsp;&nbsp;::&nbsp;a&nbsp;-&gt;&nbsp;a<br>
&nbsp;&nbsp;&nbsp;&nbsp;sinh,&nbsp;cosh,&nbsp;tanh&nbsp;&nbsp;&nbsp;&nbsp;::&nbsp;a&nbsp;-&gt;&nbsp;a<br>
&nbsp;&nbsp;&nbsp;&nbsp;asinh,&nbsp;acosh,&nbsp;atanh&nbsp;::&nbsp;a&nbsp;-&gt;&nbsp;a<br>

</tt></td></tr></table>
</div>
<div align=center> <h4>Figure 6</h4> </div>
<div align=center><h3>Standard Numeric Classes and Related Operations, Part 1</h3></div><a name="basic-numeric-1"></a>





         








       
 


                        
               
               
      
</td></tr></table>
<p>
<table border=2 cellpadding=3>
<tr><td>
<div align=center><table border=2 cellpadding=3>
<tr><td>
<tt><br>
class&nbsp;&nbsp;(Real&nbsp;a,&nbsp;Fractional&nbsp;a)&nbsp;=&gt;&nbsp;RealFrac&nbsp;a&nbsp;&nbsp;where<br>
&nbsp;&nbsp;&nbsp;&nbsp;properFraction&nbsp;&nbsp;&nbsp;::&nbsp;(Integral&nbsp;b)&nbsp;=&gt;&nbsp;a&nbsp;-&gt;&nbsp;(b,a)<br>
&nbsp;&nbsp;&nbsp;&nbsp;truncate,&nbsp;round&nbsp;&nbsp;::&nbsp;(Integral&nbsp;b)&nbsp;=&gt;&nbsp;a&nbsp;-&gt;&nbsp;b<br>
&nbsp;&nbsp;&nbsp;&nbsp;ceiling,&nbsp;floor&nbsp;&nbsp;&nbsp;::&nbsp;(Integral&nbsp;b)&nbsp;=&gt;&nbsp;a&nbsp;-&gt;&nbsp;b<br>
<br>
class&nbsp;&nbsp;(RealFrac&nbsp;a,&nbsp;Floating&nbsp;a)&nbsp;=&gt;&nbsp;RealFloat&nbsp;a&nbsp;&nbsp;where<br>
&nbsp;&nbsp;&nbsp;&nbsp;floatRadix&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;::&nbsp;a&nbsp;-&gt;&nbsp;Integer<br>
&nbsp;&nbsp;&nbsp;&nbsp;floatDigits&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;::&nbsp;a&nbsp;-&gt;&nbsp;Int<br>
&nbsp;&nbsp;&nbsp;&nbsp;floatRange&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;::&nbsp;a&nbsp;-&gt;&nbsp;(Int,Int)<br>
&nbsp;&nbsp;&nbsp;&nbsp;decodeFloat&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;::&nbsp;a&nbsp;-&gt;&nbsp;(Integer,Int)<br>
&nbsp;&nbsp;&nbsp;&nbsp;encodeFloat&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;::&nbsp;Integer&nbsp;-&gt;&nbsp;Int&nbsp;-&gt;&nbsp;a<br>
&nbsp;&nbsp;&nbsp;&nbsp;exponent&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;::&nbsp;a&nbsp;-&gt;&nbsp;Int<br>
&nbsp;&nbsp;&nbsp;&nbsp;significand&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;::&nbsp;a&nbsp;-&gt;&nbsp;a<br>
&nbsp;&nbsp;&nbsp;&nbsp;scaleFloat&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;::&nbsp;Int&nbsp;-&gt;&nbsp;a&nbsp;-&gt;&nbsp;a<br>
&nbsp;&nbsp;&nbsp;&nbsp;isNaN,&nbsp;isInfinite,&nbsp;isDenormalized,&nbsp;isNegativeZero,&nbsp;isIEEE&nbsp;<br>
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;::&nbsp;a&nbsp;-&gt;&nbsp;Bool<br>
&nbsp;&nbsp;&nbsp;&nbsp;atan2&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;::&nbsp;a&nbsp;-&gt;&nbsp;a&nbsp;-&gt;&nbsp;a<br>
<br>
gcd,&nbsp;lcm&nbsp;::&nbsp;(Integral&nbsp;a)&nbsp;=&gt;&nbsp;a&nbsp;-&gt;&nbsp;a-&gt;&nbsp;a<br>
(^)&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;::&nbsp;(Num&nbsp;a,&nbsp;Integral&nbsp;b)&nbsp;=&gt;&nbsp;a&nbsp;-&gt;&nbsp;b&nbsp;-&gt;&nbsp;a<br>
(^^)&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;::&nbsp;(Fractional&nbsp;a,&nbsp;Integral&nbsp;b)&nbsp;=&gt;&nbsp;a&nbsp;-&gt;&nbsp;b&nbsp;-&gt;&nbsp;a<br>
<br>
fromIntegral&nbsp;::&nbsp;(Integral&nbsp;a,&nbsp;Num&nbsp;b)&nbsp;=&gt;&nbsp;a&nbsp;-&gt;&nbsp;b<br>
realToFrac&nbsp;&nbsp;&nbsp;::&nbsp;(Real&nbsp;a,&nbsp;Fractional&nbsp;b)&nbsp;=&gt;&nbsp;a&nbsp;-&gt;&nbsp;b<br>

</tt></td></tr></table>
</div>
<div align=center> <h4>Figure 7</h4> </div>
<div align=center><h3>Standard Numeric Classes and Related Operations, Part 2</h3></div><a name="basic-numeric-2"></a>



    

 




 
  



</td></tr></table>
<a name="numeric-literals"></a><p>
<a name="sect6.4.1"></a>
<h4>6.4.1<tt>&nbsp;&nbsp;</tt>Numeric Literals</h4>
<p>
The syntax of numeric literals is given in
Section <a href="lexemes.html#lexemes-numeric">2.5</a>.  An integer literal represents the
application
of the function <tt>fromInteger</tt> to the appropriate
value of type 
<tt>Integer</tt>.  Similarly, a floating literal stands for an application of
<tt>fromRational</tt> to a value of type <tt>Rational</tt> (that is, 
<tt>Ratio&nbsp;Integer</tt>).  Given the typings:
<tt><br>

<br>
fromInteger&nbsp;&nbsp;::&nbsp;(Num&nbsp;a)&nbsp;=&gt;&nbsp;Integer&nbsp;-&gt;&nbsp;a<br>
fromRational&nbsp;::&nbsp;(Fractional&nbsp;a)&nbsp;=&gt;&nbsp;Rational&nbsp;-&gt;&nbsp;a<br>

<br>
</tt>integer and floating literals have the
typings <tt>(Num&nbsp;a)&nbsp;=&gt;&nbsp;a</tt> and <tt>(Fractional&nbsp;a)&nbsp;=&gt;&nbsp;a</tt>, respectively.
Numeric literals are defined in this indirect way so that they may be
interpreted as values of any appropriate numeric type.
See Section <a href="decls.html#default-decls">4.3.4</a> for a discussion of overloading ambiguity.<a name="arithmetic-operators"></a><p>
<a name="sect6.4.2"></a>
<h4>6.4.2<tt>&nbsp;&nbsp;</tt>Arithmetic and Number-Theoretic Operations</h4>
<p>
The infix class methods 
<tt>(+)</tt>,

<tt>(*)</tt>,

<tt>(-)</tt>,

and the unary function
<tt>negate</tt> (which can also be written as a prefix minus sign; see
section <a href="exps.html#operators">3.4</a>) apply to all numbers.  The class methods
<tt>quot</tt>, <tt>rem</tt>, <tt>div</tt>, and
<tt>mod</tt> apply only to integral numbers, while the class method
<tt>(/)

</tt>applies only to fractional ones.  The <tt>quot</tt>, <tt>rem</tt>,
<tt>div</tt>, and <tt>mod</tt> class methods satisfy these laws if <tt>y</tt> is non-zero:
<p>
<table >
<tr><td align=center>
<tt>(x&nbsp;</tt>`<tt>quot</tt>`<tt>&nbsp;y)*y&nbsp;+&nbsp;(x&nbsp;</tt>`<tt>rem</tt>`<tt>&nbsp;y)&nbsp;==&nbsp;x</tt></td></tr><tr><td align=center><tt>(x&nbsp;</tt>`<tt>div</tt>`<tt>&nbsp;&nbsp;y)*y&nbsp;+&nbsp;(x&nbsp;</tt>`<tt>mod</tt>`<tt>&nbsp;y)&nbsp;==&nbsp;x
</tt></td></tr></table>
<p>

<tt>`quot`</tt> is integer division truncated toward zero,
while the result of <tt>`div`</tt> is truncated toward
negative infinity. 
The <tt>quotRem</tt> class method takes a dividend and a divisor as arguments
and returns a (quotient, remainder) pair; <tt>divMod</tt> is defined
similarly:
<tt><br>

<br>
quotRem&nbsp;x&nbsp;y&nbsp;&nbsp;=&nbsp;&nbsp;(x&nbsp;</tt>`<tt>quot</tt>`<tt>&nbsp;y,&nbsp;x&nbsp;</tt>`<tt>rem</tt>`<tt>&nbsp;y)<br>
divMod&nbsp;&nbsp;x&nbsp;y&nbsp;&nbsp;=&nbsp;&nbsp;(x&nbsp;</tt>`<tt>div</tt>`<tt>&nbsp;y,&nbsp;x&nbsp;</tt>`<tt>mod</tt>`<tt>&nbsp;y)<br>

<br>

</tt>Also available on integral numbers are the even and odd predicates:
<tt><br>

<br>
even&nbsp;x&nbsp;=&nbsp;&nbsp;x&nbsp;</tt>`<tt>rem</tt>`<tt>&nbsp;2&nbsp;==&nbsp;0<br>
odd&nbsp;&nbsp;&nbsp;&nbsp;=&nbsp;&nbsp;not&nbsp;.&nbsp;even<br>

<br>

</tt>Finally, there are the greatest common divisor and least common
multiple functions.  <tt>gcd</tt> <I>x</I> <I>y</I> is the greatest
(positive) integer that divides both <I>x</I> and <I>y</I>; for example <tt>gcd&nbsp;(-3)&nbsp;6</tt> = <tt>3</tt>, <tt>gcd&nbsp;(-3)&nbsp;(-6)</tt> = <tt>3</tt>, 
<tt>gcd&nbsp;0&nbsp;4</tt> = <tt>4</tt>. <tt>gcd&nbsp;0&nbsp;0</tt> raises a runtime error.<p>
<tt>lcm</tt> <I>x</I> <I>y</I> is the smallest positive integer that both <I>x</I> and <I>y</I> divide.<p>
<a name="sect6.4.3"></a>
<h4>6.4.3<tt>&nbsp;&nbsp;</tt>Exponentiation and Logarithms</h4><p>
The one-argument exponential function <tt>exp</tt> and the
logarithm function <tt>log</tt> act on floating-point numbers and
use base <I>e</I>.  <tt>logBase</tt> <I>a</I> <I>x</I> returns the
logarithm of <I>x</I> in base <I>a</I>.  <tt>sqrt</tt> returns the
principal square root of a floating-point number.
There are three two-argument exponentiation operations:
<tt>(^)</tt> raises any  number to a nonnegative integer power,
<tt>(^^)</tt> raises a
fractional number to any integer power, and <tt>(**)

</tt>takes two floating-point arguments.  The value of <I>x</I><tt>^0</tt> or <I>x</I><tt>^^0
</tt>is <tt>1</tt> for any <I>x</I>, including zero; <tt>0**</tt><I>y</I> is undefined.
  <a name="magnitude-sign"></a>
<a name="sect6.4.4"></a>
<h4>6.4.4<tt>&nbsp;&nbsp;</tt>Magnitude and Sign</h4>
<p>
A number has a <I>magnitude
</I>and a <I>sign</I>.  The functions <tt>abs</tt> and
<tt>signum</tt> apply to any number and satisfy the law:
<tt><br>

<br>
abs&nbsp;x&nbsp;*&nbsp;signum&nbsp;x&nbsp;==&nbsp;x<br>

<br>

</tt>For real numbers, these functions are defined by:
<tt><br>

<br>
abs&nbsp;x&nbsp;&nbsp;&nbsp;&nbsp;|&nbsp;x&nbsp;&gt;=&nbsp;0&nbsp;&nbsp;=&nbsp;x<br>
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;|&nbsp;x&nbsp;&lt;&nbsp;&nbsp;0&nbsp;&nbsp;=&nbsp;-x<br>
<br>
signum&nbsp;x&nbsp;|&nbsp;x&nbsp;&gt;&nbsp;&nbsp;0&nbsp;&nbsp;=&nbsp;1<br>
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;|&nbsp;x&nbsp;==&nbsp;0&nbsp;&nbsp;=&nbsp;0<br>
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;|&nbsp;x&nbsp;&lt;&nbsp;&nbsp;0&nbsp;&nbsp;=&nbsp;-1<br>

<br>
<p>
</tt><a name="sect6.4.5"></a>
<h4>6.4.5<tt>&nbsp;&nbsp;</tt>Trigonometric Functions</h4><p>
Class <tt>Floating</tt> provides the 
circular and hyperbolic sine, cosine,
and tangent functions and their inverses.
Default implementations of <tt>tan</tt>, <tt>tanh</tt>, <tt>logBase</tt>, <tt>**</tt>, and <tt>sqrt</tt> are
provided, but implementors are free to provide more accurate implementations.<p>
Class <tt>RealFloat</tt> provides a version of arctangent
taking two real floating-point arguments.
For real floating <I>x</I> and <I>y</I>, <tt>atan2</tt> <I>y</I> <I>x
</I>computes the angle (from the positive x-axis) of the vector from the origin
to the point <I>(x,y)</I>.  <tt>atan2</tt> <I>y</I> <I>x
</I>returns a value in the range <tt>[-pi,&nbsp;pi]</tt>.  It
follows the Common Lisp semantics for the origin when signed zeroes are
supported.  <tt>atan2</tt> <I>y</I> <tt>1</tt>, with <I>y</I> in a type that is <tt>RealFloat</tt>, should return the
same value as <tt>atan</tt> <I>y</I>.  A default definition of <tt>atan2</tt> is provided, but
implementors can provide a more accurate implementation. <p>
The precise definition of the above functions is as in Common Lisp,
which in turn follows Penfield's proposal for
APL [<a href="haskell.html#$penfield:complex-apl">9</a>].  See these references for discussions
of branch cuts, discontinuities, and implementation.<a name="coercion"></a><p>
<a name="sect6.4.6"></a>
<h4>6.4.6<tt>&nbsp;&nbsp;</tt>Coercions and Component Extraction</h4>
<p>
The <tt>ceiling</tt>, <tt>floor</tt>,
<tt>truncate</tt>, and <tt>round
</tt>functions each take a real fractional argument and return an integral
result.  <tt>ceiling</tt> <I>x</I> returns the least integer not less than <I>x</I>, and
<tt>floor</tt> <I>x</I>, the greatest integer not greater than <I>x</I>.  <tt>truncate</tt> <I>x
</I>yields the integer nearest <I>x</I> between <I>0</I> and <I>x</I>, inclusive.
<tt>round</tt> <I>x</I> returns the nearest integer to <I>x</I>, the even integer if
<I>x</I> is equidistant between two integers.<p>
The function <tt>properFraction</tt> takes a real
fractional number <I>x</I> and returns a pair <I>(n,f)</I> such that <I>x = n+f</I>, and:
<I>n</I> is an integral number with the same sign as <I>x</I>; and <I>f</I> is a
fraction <I>f</I> with the same type and sign as <I>x</I>, and with absolute
value less than 1.
The <tt>ceiling</tt>, <tt>floor</tt>, <tt>truncate</tt>, and <tt>round
</tt>functions can be defined in terms of <tt>properFraction</tt>.<p>
Two functions convert numbers to type <tt>Rational</tt>:
<tt>toRational</tt> returns the rational equivalent of
its real argument with full precision;
<tt>approxRational</tt> takes two real fractional arguments
<I>x</I> and <font face="symbol">e</font> and returns the simplest rational number within
<font face="symbol">e</font> of <I>x</I>, where a rational  p/q  in reduced form is
<I>simpler</I> than another  p<sup>'</sup> / q<sup>'</sup>  if 
 |p| &lt;=|p<sup>'</sup>|  and  q &lt;=q<sup>'</sup> .
Every real interval contains a unique simplest rational;
in particular, note that  0/1  is the simplest rational of all.<p>
The class methods of class <tt>RealFloat</tt> allow
efficient, machine-independent
access to the components of a floating-point number.
The functions <tt>floatRadix</tt>,
<tt>floatDigits</tt>, and
<tt>floatRange</tt> give the parameters of a
floating-point type:  the radix of the representation, the number of
digits of this radix in the significand, and the lowest and highest
values the exponent may assume, respectively.
The function <tt>decodeFloat
</tt>applied to a real floating-point number returns the significand
expressed as an <tt>Integer</tt> and an appropriately scaled exponent (an
<tt>Int</tt>).  If <tt>decodeFloat&nbsp;x</tt> yields <tt>(</tt><I>m</I><tt>,</tt><I>n</I><tt>)</tt>, then <tt>x</tt> is
equal in value to <I>mb</I><sup><I>n</I></sup>, where <I>b</I> is the floating-point radix, and
furthermore, either <I>m</I> and <I>n</I> are both zero or else
<I>b</I><sup><I>d-1</I></sup><I>&lt;=m&lt;b</I><sup><I>d</I></sup>, where <I>d</I> is the value of <tt>floatDigits&nbsp;x</tt>.
<tt>encodeFloat</tt> performs the inverse of this
transformation.  The functions <tt>significand
</tt>and <tt>exponent</tt> together provide the same
information as <tt>decodeFloat</tt>,  but rather than an <tt>Integer</tt>,
<tt>significand&nbsp;x</tt> yields a value of the same type as <tt>x</tt>, scaled to lie
in the open interval <I>(-1,1)</I>.  <tt>exponent&nbsp;0</tt> is zero.  <tt>scaleFloat
</tt>multiplies a floating-point number by an integer power of the radix.<p>
The functions <tt>isNaN</tt>, <tt>isInfinite</tt>, <tt>isDenormalized</tt>,
<tt>isNegativeZero</tt>, and <tt>isIEEE</tt> all support numbers represented using
the IEEE standard.  For non-IEEE floating point numbers, these may all
return false.<p>
Also available are the following coercion functions:
<tt><br>

<br>
fromIntegral&nbsp;::&nbsp;(Integral&nbsp;a,&nbsp;Num&nbsp;b)&nbsp;&nbsp;&nbsp;&nbsp;=&gt;&nbsp;a&nbsp;-&gt;&nbsp;b<br>
realToFrac&nbsp;&nbsp;&nbsp;::&nbsp;(Real&nbsp;a,&nbsp;Fractional&nbsp;b)&nbsp;=&gt;&nbsp;a&nbsp;-&gt;&nbsp;b<br>
<p>
<hr><i>The Haskell 98 Report</i><br><a href="index.html">top</a> | <a href="modules.html">back</a> | <a href="io-13.html">next</a> | <a href="index98.html">contents</a> | <a href="prelude-index.html">function index</a> <br><font size=2>December 2002</font>
<p>
</tt>