This file is indexed.

/usr/share/gretl/genrcli.hlp.pt is in gretl-common 2016a-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
## Acessores
# $ahat
Output:     series

Tem que ser acedido após a estimação de um modelo de dados de painel com
efeitos fixos. Retorna uma série contendo as estimativas dos efeitos fixos
individuais (interceptores unitários).

# $aic
Output:     scalar

Retorna o Critério de Informação de Akaike para o último modelo
estimado, se disponível. Consultar the Gretl User's Guide para detalhes
sobre o cálculo.

# $bic
Output:     scalar

Retorna o Critério de Informação Bayesiano de Schwarz para o último
modelo estimado, se disponível. Consultar the Gretl User's Guide para
detalhes sobre o cálculo.

# $chisq
Output:     scalar

Retorna a estatística qui-quadrado global para o último modelo estimado,
se disponível.

# $coeff
Output:     matrix or scalar
Argument:   s (name of coefficient, optional)

Sem argumentos, $coeff retorna um vector coluna contendo os coeficientes
estimados para o último modelo. Com o argumento opcional do tipo texto
retorna um escalar, designadamente o parâmetro estimado com o nome s. See
also "$stderr", "$vcv".

Exemplo:

	  open bjg
	  arima 0 1 1 ; 0 1 1 ; lg 
	  b = $coeff               # obtém um vector
	  macoef = $coeff(theta_1) # obtém um escalar

Se o "modelo" em questão é realmente um sistema, o resultado depende das
características do sistema: no caso de VARs e VECMs o valor retornado é
uma matriz com uma coluna por equação, senão é um vector coluna contendo
os coeficientes para a primeira equação seguidos pelos da segunda
equação, e por aí adiante.

# $command
Output:     string

Tem que ser acedido após a estimação de modelo; retorna o nome do
comando, por exemplo ols ou probit.

# $compan
Output:     matrix

Tem que ser acedido após a estimação de VAR ou VECM; retorna a matriz
companheira.

# $datatype
Output:     scalar

Retorna um valor inteiro representando o tipo de conjunto de dados que está
carregado: 0 = sem dados; 1 = dados de secção-cruzada (sem data); 2 =
dados de série temporal; 3 = dados de painel.

# $depvar
Output:     string

Tem que ser acedido após a estimação de um modelo de equação singular;
retorna o nome da variável dependente.

# $df
Output:     scalar

Retorna os graus de liberdade do último modelo estimado. Se o último
modelo era na realidade um sistema de equações, o valor retornado é o
grau de liberdade por equação; se este for diferente nas equações então
o valor é o número de observações menos o número médio de coeficientes
por equação (arredondado para o inteiro mais próximo).

# $dwpval
Output:     scalar

Retorna o valor p para a estatística Durbin-Watson para o último modelo
estimado, se disponível. Isto é determinado usando um procedimento Imhof.

# $ec
Output:     matrix

Tem que ser acedido após a estimação de VECM; retorna a matriz contendo
os termos de correção de erro. O número de linhas é igual ao número de
observações usadas e o número de colunas é igual ao nível de
cointegração do sistema.

# $error
Output:     scalar

Retorna o código de erro interno do programa, que será diferente de zero
no caso de ter acontecido um erro mas este tenha sido apanhado num bloco
"catch". Note que ao usar este acessor o código de erro interno ficará
reiniciado a zero. Consultar também "errmsg". Se você pretender uma
mensagem de erro associada a um certo $error então tem que guardar o valor
numa variável temporária, tal como em

	  errval = $error
	  if (errval) 
	    printf "Obtido o erro %d (%s)\n", errval, errmsg(errval);
	  endif

See also "catch", "errmsg".

# $ess
Output:     scalar

Retorna o erro de soma de quadrados do último modelo estimado, se
disponível.

# $evals
Output:     matrix

Tem que ser acedido após a estimação de VECM; retorna um vector contendo
os valores próprios que são utilizados no cálculo do teste traço da
cointegração.

# $fcast
Output:     matrix

Tem que ser acedido a seguir a um comando de predição "fcast"; retorna os
valores de predição numa matriz. Se o modelo em que a predição se baseou
é um sistema de equações a matriz retornada terá uma coluna por
equação, caso contrário será um vector coluna.

# $fcerr
Output:     matrix

Tem que ser acedido a seguir a um comando de predição "fcast"; retorna os
erros padrão de uma predição, se disponível, numa matriz. Se o modelo em
que a predição se baseou é um sistema de equações a matriz retornada
terá uma coluna por equação, caso contrário será um vector coluna.

# $fevd
Output:     matrix

Tem que ser acedido após a estimação de VAR. Retorna a matriz contendo a
decomposição de erro da predição. Esta matriz tem h linhas onde h é um
horizonte de predição, que pode ser escolhido com set horizon ou, caso
contrário, é determinado automaticamente baseado na frequência dos dados.
No caso de VAR com p variáveis, a matriz tem p^2 colunas. A fracção da
predição de erro para a variável i associável à inovação na variável
j encontra-se na coluna (i - 1)p + j.

# $Fstat
Output:     scalar

Retorna a estatística F global do último modelo estimado, se disponível.

# $gmmcrit
Output:     scalar

Tem que ser acedido a seguir a um bloco gmm. Retorna o valor da função
objetivo no seu mínimo.

# $h
Output:     series

Tem que ser acedido a seguir a um comando garch. Retorna a série da
variância condicional estimada.

# $hausman
Output:     row vector

Tem que ser acedido após a estimação de modelo tsls ou painel com a
opção de efeitos aleatórios. Retorna um vector 1 x 3 contendo o valor da
estatística de teste Hausmam, com os graus de liberdade correspondentes e o
valor p do teste, por essa ordem.

# $hqc
Output:     scalar

Retorna o Critério de Informação de Hannan-Quinn para o último modelo
estimado, se disponível. Consultar the Gretl User's Guide para detalhes
sobre o cálculo.

# $huge
Output:     scalar

Retorna um enorme número positivo. Por omissão isto é 1,0E100, mas o
valor pode ser moficado usando o comando "set".

# $jalpha
Output:     matrix

Tem que ser acedido após a estimação de VECM, e retorna a matriz das
cargas. Contém tantas linhas como as variáveis em VECM e o mesmo número
de colunas que o nível de cointegração.

# $jbeta
Output:     matrix

Tem que ser acedido após a estimação de VECM, e retorna a matriz de
cointegração. Contém tantas linhas como as variáveis em VECM (mais um
número de variáveis exógenas que estão restritas a um espaço de
cointegração, caso existam), e o mesmo número de colunas que o nível de
cointegração.

# $jvbeta
Output:     square matrix

Tem que ser acedido após a estimação de VECM, e retorna a matriz de
covariância estimada para os elementos dos vectores de cointegração.

No caso de uma estimação não-restringida, esta matriz tem um número de
linhas igual ao número de elementos não-restringidos do espaço de
cointegração após uma normalização de Phillips. Se, no entanto, um
sistema restringido for estimado por meio de um comando restrict com a
opção --full, será retornada uma matriz singular com (n+m)r linhas (onde
n é o número de variáveis endógenas, m é o número de variáveis
exógenas no espaço de cointegração, e r o nível de cointegração).

Exemplo: o código

	  open denmark.gdt
	  vecm 2 1 LRM LRY IBO IDE --rc --seasonals -q
	  s0 = $jvbeta

	  restrict --full
	  b[1,1] = 1
	  b[1,2] = -1
	  b[1,3] + b[1,4] = 0
	  end restrict
	  s1 = $jvbeta

	  print s0
	  print s1

produz o seguinte resultado.

	  s0 (4 x 4)

	    0.019751     0.029816  -0.00044837     -0.12227 
	    0.029816      0.31005     -0.45823     -0.18526 
	 -0.00044837     -0.45823       1.2169    -0.035437 
	    -0.12227     -0.18526    -0.035437      0.76062 

	  s1 (5 x 5)

	  0.0000       0.0000       0.0000       0.0000       0.0000 
	  0.0000       0.0000       0.0000       0.0000       0.0000 
	  0.0000       0.0000      0.27398     -0.27398    -0.019059 
	  0.0000       0.0000     -0.27398      0.27398     0.019059 
	  0.0000       0.0000    -0.019059     0.019059    0.0014180 

# $llt
Output:     series

Para certos modelos estimados por Máxima Verosimilhança, retorna uma
série de valores de log-verosimilhança por observação. Presentemente
isto é apenas possível para logit binário, probit, tobit e heckit.

# $lnl
Output:     scalar

Retorna o log-verosimilhança para último modelo estimado (quando
aplicável).

# $macheps
Output:     scalar

Retorna o valor do "épsilon de máquina", que dá um limite superior para o
erro relativo devido aos arredondamentos da aritmética de vírgula
flutuante de dupla-precisão.

# $mnlprobs
Output:     matrix

Deve seguir-se à estimação de um modelo logit multinomial (apenas),
obtém uma matriz que contém as probabilidades de cada possível resultado
em cada observação no intervalo da amostra do modelo. Cada linha
representa uma observação e cada coluna um resultado.

# $ncoeff
Output:     integer

Retorna o número total de coeficientes estimados no último modelo.

# $nobs
Output:     integer

Retorna o número de observações na amostra presentemente selecionada.

# $nvars
Output:     integer

Retorna o número de variáveis no conjunto de dados (incluindo a
constante).

# $obsdate
Output:     series

Applicable when the current dataset is time-series with annual, quarterly,
monthly or decennial frequency, or is dated daily or weekly, or when the
dataset is a panel with time-series information set appropriately (see the
"setobs" command). The returned series holds 8-digit numbers on the pattern
YYYYMMDD (ISO 8601 "basic" date format), which correspond to the day of the
observation, or the first day of the observation period in case of a
time-series frequency less than daily.

Such a series can be helpful when using the "join" command.

# $obsmajor
Output:     series

Applicable when the observations in the current dataset have a major:minor
structure, as in quarterly time series (year:quarter), monthly time series
(year:month), hourly data (day:hour) and panel data (individual:period).
Returns a series holding the major or low-frequency component of each
observation (for example, the year).

See also "$obsminor", "$obsmicro".

# $obsmicro
Output:     series

Applicable when the observations in the current dataset have a
major:minor:micro structure, as in dated daily time series (year:month:day).
Returns a series holding the micro or highest-frequency component of each
observation (for example, the day).

See also "$obsmajor", "$obsminor".

# $obsminor
Output:     series

Applicable when the observations in the current dataset have a major:minor
structure, as in quarterly time series (year:quarter), monthly time series
(year:month), hourly data (day:hour) and panel data (individual:period).
Returns a series holding the minor or high-frequency component of each
observation (for example, the month).

See also "$obsmajor", "$obsmicro".

# $pd
Output:     integer

Retorna a frequência ou periodicidade dos dados (por exemplo, 4 para dados
trimestrais). No caso de dados de painel, o valor retornado é o comprimento
da série temporal.

# $pi
Output:     scalar

Retorna o valor de pi com precisão dupla.

# $pvalue
Output:     scalar or matrix

Retorna o valor p da estatística de teste que foi determinada pelo último
comando com testes de hipóteses explícito (por exemplo, chow). Consultar
the Gretl User's Guide para detalhes.

Na maior parte dos casos, o valor retornado é um escalar, mas por vezes é
uma matriz (por exemplo, um traço e o max-lambda, ou valores p de um teste
de cointegração de Johansen); nesse caso os valores na matriz estão
dispostos de igual modo como nos resultados escritos.

See also "$test".

# $rho
Output:     scalar
Argument:   n (scalar, optional)

Sem argumentos, retorna o coeficiente autoregressivo de primeira ordem para
os resíduos do último modelo. Após se ter estimado um modelo com o
comando ar, a sintaxe $rho(n) retorna a estimativa correspondente de rho(n).

# $rsq
Output:     scalar

Retorna o R^2 não ajustado do último modelo estimado, se disponível.

# $sample
Output:     series

Tem que ser acedido após a estimação de um modelo com uma única
equação. Retorna uma série auxiliar com valores 1 para observações
utilizadas na estimação, 0 para observações dentro do intervalo amostral
corrente mas não utilizadas (eventualmente por causa de valores omissos), e
NA para observações fora do intervalo amostral corrente.

Se você desejar calcular estatísticas baseadas na amostra que foi
utilizada para um dado modelo, você pode fazer, por exemplo:

	  ols y 0 xlist
	  genr sdum = $sample
	  smpl sdum --dummy

# $sargan
Output:     row vector

Tem que ser acedido a seguir a um comando tsls. Retorna um vector 1 x 3,
contendo o valor do Sargan over-identification test estatística, a
corresponding graus de liberdade e valor p, por essa ordem.

# $sigma
Output:     scalar or matrix

Requer que tenha sido estimado um modelo. Se o último modelo era de
equação única, retorna o (escalar) Erro Padrão da Regressão (ou por
outras palavras, o desvio padrão dos resíduos, com a adequada correção
de graus de liberdade). Se o último modelo era um sistema de equações,
retorna a equação-cruzada da matriz de covariância dos resíduos.

# $stderr
Output:     matrix or scalar
Argument:   s (name of coefficient, optional)

Sem argumentos, $stderr retorna um vector coluna contendo o erro padrão dos
coeficientes para o último modelo. Com o argumento opcional de texto,
retorna um escalar, designadamente o erro padrão do parâmetro com o nome
s.

Se o "modelo" em questão é realmente um sistema, o resultado depende das
características do sistema: para VARs e VECMs o valor retornado é uma
matriz com uma coluna por equação, senão é um vector coluna contendo os
coeficientes para a primeira equação seguidos pelos da segunda equação,
e por aí adiante.

See also "$coeff", "$vcv".

# $stopwatch
Output:     scalar

Tem que ser precedido por set stopwatch, o que activa a medição do tempo
de CPU. O primeiro uso deste acessor contém os segundos de tempo de CPU que
passaram desde o comando set stopwatch. Em cada acesso o relógio é
reinicializado, por isso as chamadas subsequentes de $stopwatch obtêm os
segundos de tempo de CPU desde o último acesso.

# $sysA
Output:     matrix

Tem que ser acedido após a estimação simultânea de equações de
sistema. Retorna a matriz de coeficientes das variáveis endógenas
desfasadas, se existirem, numa forma estrutural de sistema. Consultar o
comando "system".

# $sysB
Output:     matrix

Tem que ser acedido após a estimação simultânea de equações de
sistema. Retorna a matriz de coeficientes das variáveis exógenas numa
forma estrutural de sistema. Consultar o comando "system".

# $sysGamma
Output:     matrix

Tem que ser acedido após a estimação simultânea de equações de
sistema. Retorna a matriz de coeficientes das variáveis endógenas
contemporâneas numa forma estrutural de sistema. Consultar o comando
"system".

# $sysinfo
Output:     bundle

Returns a bundle containing information on the capabilities of the gretl
build and the system on which gretl is running. The members of the bundle
are as follows:

  mpi: integer, equals 1 if the system supports MPI (Message Passing
  Interface), otherwise 0.

  omp: integer, equals 1 if gretl is built with support for Open MP,
  otherwise 0.

  nproc: integer, the number of processors available.

  mpimax: integer, the maximum number of MPI processes that can be run in
  parallel. This is zero if MPI is not supported, otherwise it equals the
  local nproc value unless an MPI hosts file has been specified, in which
  case it is the sum of the number of processors or "slots" across all the
  machines referenced in that file.

  wordlen: integer, either 32 or 64 for 32- and 64-bit systems respectively.

  os: string representing the operating system, either linux, osx, windows
  or other.

  hostname: the name of the host machine on which the current gretl process
  is running (with a fallback of localhost in case the name cannot be
  determined).

Note that individual elements in the bundle can be accessed using "dot"
notation without any need to copy the whole bundle under a user-specified
name. For example,

	  if $sysinfo.os == "linux"
	    # do something linux-specific
	  endif

# $T
Output:     integer

Retorna o número de observações utilizadas durante a estimação do
último modelo.

# $t1
Output:     integer

Retorna o índice de base 1 da primeira observação na amostra
correntemente selecionada.

# $t2
Output:     integer

Retorna o índice de base 1 da última observação na amostra correntemente
selecionada.

# $test
Output:     scalar or matrix

Retorna o valor da estatística de teste que foi determinado pelo último
comando com testes de hipóteses explícito, se algum (por exemplo, chow).
Consultar the Gretl User's Guide para detalhes.

Na maior parte dos casos, o valor retornado é um escalar, mas por vezes é
uma matriz (por exemplo, um traço e o max-lambda, de um teste de
cointegração de Johansen); nesse caso os valores na matriz estão
dispostos de igual modo como nos resultados escritos.

See also "dpvalue".

# $trsq
Output:     scalar

Retorna TR^2 (tamanho da amostra vezes R-quadrado) do último modelo, se
disponível.

# $uhat
Output:     series

Retorna os resíduos do último modelo. Isto pode ter significados
diferentes para diferentes estimadores. Por exemplo, depois de uma
estimação ARMA, $uhat conterá o erro de predição um-passo-à-frente;
depois de um modelo probit, conterá os resíduos generalizados.

Se o "modelo" em questão é realmente um sistema (VAR ou VECM, ou sistema
de equações simultâneas), $uhat sem parâmetros obtém uma matriz de
resíduos, uma coluna por equação.

# $unit
Output:     series

Apenas válido para conjunto de dados de painel. Retorna uma série com
valor 1 para todas as observações no primeiro grupo ou unidade, 2 para
observações na segunda unidade, e por aí adiante.

# $vcv
Output:     matrix or scalar
Arguments:  s1 (name of coefficient, optional)
            s2 (name of coefficient, optional)

Sem argumentos, $vcv retorna uma matriz quadrada contendo a matriz de
covariância estimada para os coeficientes do último modelo. Se o último
modelo é de equação única, então você pode fornecer nomes de dois
parâmetros em parênteses para obter a covariância estimada entre os dois
parâmetros chamados s1 e s2. See also "$coeff", "$stderr".

Este acessor não pode ser utilizado para modelos VARs ou VECMs; para
modelos deste tipo veja "$sigma" e "$xtxinv".

# $vecGamma
Output:     matrix

Tem que ser acedido após a estimação de VECM; retorna uma matriz onde as
matrizes Gama (coeficientes das diferenças desfasadas das variáveis
cointegradas) estão lado-a-lado. Cada linha representa uma equação; para
VECM com grau de desfasamento p existem p - 1 sub-matrizes.

# $version
Output:     scalar

Retorna um valor inteiro que representa a versão do programa. A versão de
gretl em texto tem a forma x.y.z (por exemplo, 1.7.6). O valor de retorno
deste acessor é formado por 10000*x + 100*y + z, sendo que 1.7.6 resulta em
10706.

# $vma
Output:     matrix

Tem que ser acedido após a estimação de VAR ou VECM; retorna a matriz
contendo a representação VMA até um grau definido com o comando set
horizon. Consultar the Gretl User's Guide para detalhes.

# $windows
Output:     integer

Retorna 1 se gretl estiver a correr em MS Windows, 0 caso contrário.
Condicionando pelo valor desta variável você pode escrever chamadas a
comandos de sistema que são portáveis entre diferentes sistemas
operativos.

Ver também o comando "shell".

# $xlist
Output:     list

Retorna a lista de regressores do último modelo (apenas para modelos com
uma única equação).

# $xtxinv
Output:     matrix

Seguindo a estimação de VAR ou VECM (apenas), retorna X'X^-1, onde X é a
matriz conjunta de regressores utilizados em cada uma das equações. Este
acessor não está disponível para VECM estimado com uma restrição
imposta sobre α, a matriz "cargas" .

# $yhat
Output:     series

Retorna os valores ajustados da última regressão.

# $ylist
Output:     list

Se o modelo anteriormente estimado foi um VAR, VECM ou sistema de equações
simultâneas, retorna a lista associada de variáveis endógenas. Se o
último modelo tem apenas uma equação, este acessor retorna uma lista com
um único elemento, a variável dependente. No caso especial do modelo
biprobit a lista contém dois elementos.

## Funções
# abs
Output:     same type as input
Argument:   x (scalar, series or matrix)

Retorna o valor absoluto de x.

# acos
Output:     same type as input
Argument:   x (scalar, series or matrix)

Retorna o arcoseno de x, ou seja, um valor de cujo cosseno é x. O resultado
é em radianos; o argumento deve variar de -1 a 1.

# acosh
Output:     same type as input
Argument:   x (scalar, series or matrix)

Returns the inverse hyperbolic cosine of x (positive solution). x should be
greater than 1; otherwise, NA is returned. See also "cosh".

# aggregate
Output:     matrix
Arguments:  x (series or list)
            byvar (series or list)
            funcname (string)

In the simplest version, both x and byvar are individual series. In that
case this function returns a matrix with three columns: the first holds the
distinct values of byvar, sorted in ascending order; the second holds the
count of observations at which byvar takes on each of these values; and the
third holds the values of the statistic specified by funcname calculated on
series x, using only those observations at which byvar takes on the value
given in the first column.

More generally, if byvar is a list with n members then the left-hand n
columns hold the combinations of the distinct values of each of the n series
and the count column holds the number of observations at which each
combination is realized. If x is a list with m members then the rightmost m
columns hold the values of the specified statistic for each of the x
variables, again calculated on the sub-sample indicated in the first
column(s).

The following values of funcname are supported "natively": "sum", "sumall",
"mean", "sd", "var", "sst", "skewness", "kurtosis", "min", "max", "median",
"nobs" and "gini". Each of these functions takes a series argument and
returns a scalar value, and in that sense can be said to "aggregate" the
series in some way. You may give the name of a user-defined function as the
aggregator; like the built-ins, such a function must take a single series
argument and return a scalar value.

Note that although a count of cases is provided automatically the nobs
function is not redundant as an aggregator, since it gives the number of
valid (non-missing) observations on x at each byvar combination.

For a simple example, suppose that region represents a coding of
geographical region using integer values 1 to n, and income represents
household income. Then the following would produce an n x 3 matrix holding
the region codes, the count of observations in each region, and mean
household income for each of the regions:

	  matrix m = aggregate(income, region, mean)

For an example using lists, let gender be a male/female dummy variable, let
race be a categorical variable with three values, and consider the
following:

	  list BY = gender race
	  list X = income age
	  matrix m = aggregate(X, BY, sd)

The aggregate call here will produce a 6 x 5 matrix. The first two columns
hold the 6 distinct combinations of gender and race values; the middle
column holds the count for each of these combinations; and the rightmost two
columns contain the sample standard deviations of income and age.

Note that if byvar is a list, some combinations of the byvar values may not
be present in the data (giving a count of zero). In that case the value of
the statistics for x are recorded as NaN (not a number). If you want to
ignore such cases you can use the "selifr" function to select only those
rows that have a non-zero count. The column to test is one place to the
right of the number of byvar variables, so we can do:

	  matrix m = aggregate(X, BY, sd)
	  scalar c = nelem(BY)
	  m = selifr(m, m[,c+1])

# argname
Output:     string
Argument:   s (string)

For s the name of a parameter to a user-defined function, returns the name
of the corresponding argument, or an empty string if the argument was
anonymous.

# asin
Output:     same type as input
Argument:   x (scalar, series or matrix)

Returns the arc sine of x, that is, the value whose sine is x. The result is
in radians; the input should be in the range -1 to 1.

# asinh
Output:     same type as input
Argument:   x (scalar, series or matrix)

Returns the inverse hyperbolic sine of x. See also "sinh".

# atan
Output:     same type as input
Argument:   x (scalar, series or matrix)

Returns the arc tangent of x, that is, the value whose tangent is x. The
result is in radians.

# atanh
Output:     same type as input
Argument:   x (scalar, series or matrix)

Returns the inverse hyperbolic tangent of x. See also "tanh".

# atof
Output:     scalar
Argument:   s (string)

Closely related to the C library function of the same name. Returns the
result of converting the string s (or the leading portion thereof, after
discarding any initial white space) to a floating-point number. Unlike C's
atof, however, the decimal character is always assumed (for reasons of
portability) to be ".". Any characters that follow the portion of s that
converts to a floating-point number under this assumption are ignored.

If none of s (following any discarded white space) is convertible under the
stated assumption, NA is returned.

	  # examples
	  x = atof("1.234") # gives x = 1.234 
	  x = atof("1,234") # gives x = 1
	  x = atof("1.2y")  # gives x = 1.2
	  x = atof("y")     # gives x = NA
	  x = atof(",234")  # gives x = NA

See also "sscanf" for more flexible string to numeric conversion.

# bessel
Output:     same type as input
Arguments:  type (character)
            v (scalar)
            x (scalar, series or matrix)

Computes one of the Bessel function variants for order v and argument x. The
return value is of the same type as x. The specific function is selected by
the first argument, which must be J, Y, I, or K. A good discussion of the
Bessel functions can be found on Wikipedia; here we give a brief account.

case J: Bessel function of the first kind. Resembles a damped sine wave.
Defined for real v and x, but if x is negative then v must be an integer.

case Y: Bessel function of the second kind. Defined for real v and x but has
a singularity at x = 0.

case I: Modified Bessel function of the first kind. An exponentially growing
function. Acceptable arguments are as for case J.

case K: Modified Bessel function of the second kind. An exponentially
decaying function. Diverges at x = 0 and is not defined for negative x.
Symmetric around v = 0.

# BFGSmax
Output:     scalar
Arguments:  b (vector)
            f (function call)
            g (function call, optional)

Numerical maximization via the method of Broyden, Fletcher, Goldfarb and
Shanno. The vector b should hold the initial values of a set of parameters,
and the argument f should specify a call to a function that calculates the
(scalar) criterion to be maximized, given the current parameter values and
any other relevant data. If the object is in fact minimization, this
function should return the negative of the criterion. On successful
completion, BFGSmax returns the maximized value of the criterion, and b
holds the parameter values which produce the maximum.

The optional third argument provides a means of supplying analytical
derivatives (otherwise the gradient is computed numerically). The gradient
function call g must have as its first argument a pre-defined matrix that is
of the correct size to contain the gradient, given in pointer form. It also
must take the parameter vector as an argument (in pointer form or
otherwise). Other arguments are optional.

For more details and examples see the chapter on numerical methods in the
Gretl User's Guide. See also "NRmax", "fdjac", "simann".

# bkfilt
Output:     series
Arguments:  y (series)
            f1 (integer, optional)
            f2 (integer, optional)
            k (integer, optional)

Returns the result from application of the Baxter-King bandpass filter to
the series y. The optional parameters f1 and f2 represent, respectively, the
lower and upper bounds of the range of frequencies to extract, while k is
the approximation order to be used. If these arguments are not supplied then
the following default values are used: f1 = 8, f1 = 32, k = 8. See also
"bwfilt", "hpfilt".

# boxcox
Output:     series
Arguments:  y (series)
            d (scalar)

Returns the Box-Cox transformation with parameter d for the positive series
y.

The transformed series is (y^d - 1)/d for d not equal to zero, or log(y) for
d = 0.

# bwfilt
Output:     series
Arguments:  y (series)
            n (integer)
            omega (scalar)

Returns the result from application of a low-pass Butterworth filter with
order n and frequency cutoff omega to the series y. The cutoff is expressed
in degrees and must be greater than 0 and less than 180. Smaller cutoff
values restrict the pass-band to lower frequencies and hence produce a
smoother trend. Higher values of n produce a sharper cutoff, at the cost of
possible numerical instability.

Inspecting the periodogram of the target series is a useful preliminary when
you wish to apply this function. See the Gretl User's Guide for details. See
also "bkfilt", "hpfilt".

# cdemean
Output:     matrix
Argument:   X (matrix)

Centers the columns of matrix X around their means.

# cdf
Output:     same type as input
Arguments:  c (character)
            ... (see below)
            x (scalar, series or matrix)
Examples:   p1 = cdf(N, -2.5)
            p2 = cdf(X, 3, 5.67)
            p3 = cdf(D, 0.25, -1, 1)

Cumulative distribution function calculator. Returns P(X <= x), where the
distribution X is determined by the character c. Between the arguments c and
x, zero or more additional scalar arguments are required to specify the
parameters of the distribution, as follows.

  Standard normal (c = z, n, or N): no extra arguments

  Bivariate normal (D): correlation coefficient

  Student's t (t): degrees of freedom

  Chi square (c, x, or X): degrees of freedom

  Snedecor's F (f or F): df (num.); df (den.)

  Gamma (g or G): shape; scale

  Binomial (b or B): probability; number of trials

  Poisson (p or P): Mean

  Weibull (w or W): shape; scale

  Generalized Error (E): shape

Note that most cases have aliases to help memorizing the codes. The
bivariate normal case is special: the syntax is x = cdf(D, rho, z1, z2)
where rho is the correlation between the variables z1 and z2.

See also "pdf", "critical", "invcdf", "pvalue".

# cdiv
Output:     matrix
Arguments:  X (matrix)
            Y (matrix)

Complex division. The two arguments must have the same number of rows, n,
and either one or two columns. The first column contains the real part and
the second (if present) the imaginary part. The return value is an n x 2
matrix or, if the result has no imaginary part, an n-vector. See also
"cmult".

# ceil
Output:     same type as input
Argument:   x (scalar, series or matrix)

Ceiling function: returns the smallest integer greater than or equal to x.
See also "floor", "int".

# cholesky
Output:     square matrix
Argument:   A (positive definite matrix)

Peforms a Cholesky decomposition of the matrix A, which is assumed to be
symmetric and positive definite. The result is a lower-triangular matrix L
which satisfies A = LL'. The function will fail if A is not symmetric or not
positive definite. See also "psdroot".

# chowlin
Output:     matrix
Arguments:  Y (matrix)
            xfac (integer)
            X (matrix, optional)

Expands the input data, Y, to a higher frequency, using the interpolation
method of Chow and Lin (1971). It is assumed that the columns of Y represent
data series; the returned matrix has as many columns as Y and xfac times as
many rows.

The second argument represents the expansion factor: it should be 3 for
expansion from quarterly to monthly or 4 for expansion from annual to
quarterly, these being the only supported factors. The optional third
argument may be used to provide a matrix of covariates at the higher
(target) frequency.

The regressors used by default are a constant and quadratic trend. If X is
provided, its columns are used as additional regressors; it is an error if
the number of rows in X does not equal xfac times the number of rows in Y.

# cmult
Output:     matrix
Arguments:  X (matrix)
            Y (matrix)

Complex multiplication. The two arguments must have the same number of rows,
n, and either one or two columns. The first column contains the real part
and the second (if present) the imaginary part. The return value is an n x 2
matrix, or, if the result has no imaginary part, an n-vector. See also
"cdiv".

# cnorm
Output:     same type as input
Argument:   x (scalar, series or matrix)

Returns the cumulative distribution function for a standard normal. See also
"dnorm", "qnorm".

# colname
Output:     string
Arguments:  M (matrix)
            col (integer)

Retrieves the name for column col of matrix M. If M has no column names
attached the value returned is an empty string; if col is out of bounds for
the given matrix an error is flagged. See also "colnames".

# colnames
Output:     scalar
Arguments:  M (matrix)
            s (named list or string)

Attaches names to the columns of the T x k matrix M. If s is a named list,
the column names are copied from the names of the variables; the list must
have k members. If s is a string, it should contain k space-separated
sub-strings. The return value is 0 on successful completion, non-zero on
error. See also "rownames".

Example:

	  matrix M = {1, 2; 2, 1; 4, 1}
	  colnames(M, "Col1 Col2")
	  print M

# cols
Output:     integer
Argument:   X (matrix)

Returns the number of columns of X. See also "mshape", "rows", "unvech",
"vec", "vech".

# corr
Output:     scalar
Arguments:  y1 (series or vector)
            y2 (series or vector)

Computes the correlation coefficient between y1 and y2. The arguments should
be either two series, or two vectors of the same length. See also "cov",
"mcov", "mcorr".

# corrgm
Output:     matrix
Arguments:  x (series, matrix or list)
            p (integer)
            y (series or vector, optional)

If only the first two arguments are given, computes the correlogram for x
for lags 1 to p. Let k represent the number of elements in x (1 if x is a
series, the number of columns if x is a matrix, or the number of
list-members is x is a list). The return value is a matrix with p rows and
2k columns, the first k columns holding the respective autocorrelations and
the remainder the respective partial autocorrelations.

If a third argument is given, this function computes the cross-correlogram
for each of the k elements in x and y, from lead p to lag p. The returned
matrix has 2p + 1 rows and k columns. If x is series or list and y is a
vector, the vector must have just as many rows as there are observations in
the current sample range.

# cos
Output:     same type as input
Argument:   x (scalar, series or matrix)

Returns the cosine of x.

# cosh
Output:     same type as input
Argument:   x (scalar, series or matrix)

Returns the hyperbolic cosine of x.

See also "acosh", "sinh", "tanh".

# cov
Output:     scalar
Arguments:  y1 (series or vector)
            y2 (series or vector)

Returns the covariance between y1 and y2. The arguments should be either two
series, or two vectors of the same length. See also "corr", "mcov", "mcorr".

# critical
Output:     same type as input
Arguments:  c (character)
            ... (see below)
            p (scalar, series or matrix)
Examples:   c1 = critical(t, 20, 0.025)
            c2 = critical(F, 4, 48, 0.05)

Critical value calculator. Returns x such that P(X > x) = p, where the
distribution X is determined by the character c. Between the arguments c and
p, zero or more additional scalar arguments are required to specify the
parameters of the distribution, as follows.

  Standard normal (c = z, n, or N): no extra arguments

  Student's t (t): degrees of freedom

  Chi square (c, x, or X): degrees of freedom

  Snedecor's F (f or F): df (num.); df (den.)

  Binomial (b or B): probability; trials

  Poisson (p or P): mean

See also "cdf", "invcdf", "pvalue".

# cum
Output:     same type as input
Argument:   x (series or matrix)

Cumulates x (that is, creates a running sum). When x is a series, produces a
series y each of whose elements is the sum of the values of x to date; the
starting point of the summation is the first non-missing observation in the
currently selected sample. When x is a matrix, its elements are cumulated by
columns.

See also "diff".

# deseas
Output:     series
Arguments:  x (series)
            c (character, optional)

Depends on having TRAMO/SEATS or X-12-ARIMA installed. Returns a
deseasonalized (seasonally adjusted) version of the input series x, which
must be a quarterly or monthly time series. To use X-12-ARIMA give X as the
second argument; to use TRAMO give T. If the second argument is omitted then
X-12-ARIMA is used.

Note that if the input series has no detectable seasonal component this
function will fail. Also note that both TRAMO/SEATS and X-12-ARIMA offer
numerous options; deseas calls them with all options at their default
settings. For both programs, the seasonal factors are calculated on the
basis of an automatically selected ARIMA model. One difference between the
programs which can sometimes make a substantial difference to the results is
that by default TRAMO performs a prior adjustment for outliers while
X-12-ARIMA does not.

# det
Output:     scalar
Argument:   A (square matrix)

Returns the determinant of A, computed via the LU factorization. See also
"ldet", "rcond".

# diag
Output:     matrix
Argument:   X (matrix)

Returns the principal diagonal of X in a column vector. Note: if X is an m x
n matrix, the number of elements of the output vector is min(m, n). See also
"tr".

# diagcat
Output:     matrix
Arguments:  A (matrix)
            B (matrix)

Returns the direct sum of A and B, that is a matrix holding A in its
north-west corner and B in its south-east corner. If both A and B are
square, the resulting matrix is block-diagonal.

# diff
Output:     same type as input
Argument:   y (series, matrix or list)

Computes first differences. If y is a series, or a list of series, starting
values are set to NA. If y is a matrix, differencing is done by columns and
starting values are set to 0.

When a list is returned, the individual variables are automatically named
according to the template d_varname where varname is the name of the
original series. The name is truncated if necessary, and may be adjusted in
case of non-uniqueness in the set of names thus constructed.

See also "cum", "ldiff", "sdiff".

# digamma
Output:     same type as input
Argument:   x (scalar, series or matrix)

Returns the digamma (or Psi) function of x, that is the derivative of the
log of the Gamma function.

# dnorm
Output:     same type as input
Argument:   x (scalar, series or matrix)

Returns the density of the standard normal distribution at x. To get the
density for a non-standard normal distribution at x, pass the z-score of x
to the dnorm function and multiply the result by the Jacobian of the z
transformation, namely 1 over sigma, as illustrated below:

	  mu = 100
	  sigma = 5
	  x = 109
	  fx = (1/sigma) * dnorm((x-mu)/sigma)

See also "cnorm", "qnorm".

# dsort
Output:     same type as input
Argument:   x (series or vector)

Sorts x in descending order, skipping observations with missing values when
x is a series. See also "sort", "values".

# dummify
Output:     list
Arguments:  x (series)
            omitval (scalar, optional)

The argument x should be a discrete series. This function creates a set of
dummy variables coding for the distinct values in the series. By default the
smallest value is taken as the omitted category and is not explicitly
represented.

The optional second argument represents the value of x which should be
treated as the omitted category. The effect when a single argument is given
is equivalent to dummify(x, min(x)). To produce a full set of dummies, with
no omitted category, use dummify(x, NA).

The generated variables are automatically named according to the template
Dvarname_i where varname is the name of the original series and i is a
1-based index. The original portion of the name is truncated if necessary,
and may be adjusted in case of non-uniqueness in the set of names thus
constructed.

# easterday
Output:     same type as input
Argument:   x (scalar, series or matrix)

Given the year in argument x, returns the date of Easter in the Gregorian
calendar as month + day/100. Note that April the 10th, is, under this
convention, 4.1; hence, 4.2 is April the 20th, not April the 2nd (which
would be 4.02).

	  scalar e = easterday(2014)
	  scalar m = floor(e)
	  scalar d = 100*(e-m)

# eigengen
Output:     matrix
Arguments:  A (square matrix)
            &U (reference to matrix, or null)

Computes the eigenvalues, and optionally the right eigenvectors, of the n x
n matrix A. If all the eigenvalues are real an n x 1 matrix is returned;
otherwise the result is an n x 2 matrix, the first column holding the real
components and the second column the imaginary components.

The second argument must be either the name of an existing matrix preceded
by & (to indicate the "address" of the matrix in question), in which case an
auxiliary result is written to that matrix, or the keyword null, in which
case the auxiliary result is not produced.

If a non-null second argument is given, the specified matrix will be
over-written with the auxiliary result. (It is not required that the
existing matrix be of the right dimensions to receive the result.) It will
be organized as follows:

  If the i-th eigenvalue is real, the i-th column of U will contain the
  corresponding eigenvector;

  If the i-th eigenvalue is complex, the i-th column of U will contain the
  real part of the corresponding eigenvector and the next column the
  imaginary part. The eigenvector for the conjugate eigenvalue is the
  conjugate of the eigenvector.

In other words, the eigenvectors are stored in the same order as the
eigenvalues, but the real eigenvectors occupy one column, whereas complex
eigenvectors take two (the real part comes first); the total number of
columns is still n, because the conjugate eigenvector is skipped.

See also "eigensym", "eigsolve", "qrdecomp", "svd".

# eigensym
Output:     matrix
Arguments:  A (symmetric matrix)
            &U (reference to matrix, or null)

Works just as "eigengen", but the argument A must be symmetric (in which
case the calculations can be reduced). The eigenvalues are returned in
ascending order.

# eigsolve
Output:     matrix
Arguments:  A (symmetric matrix)
            B (symmetric matrix)
            &U (reference to matrix, or null)

Solves the generalized eigenvalue problem |A - lambdaB| = 0, where both A
and B are symmetric and B is positive definite. The eigenvalues are returned
directly, arranged in ascending order. If the optional third argument is
given it should be the name of an existing matrix preceded by &; in that
case the generalized eigenvectors are written to the named matrix.

# epochday
Output:     scalar or series
Arguments:  year (scalar or series)
            month (scalar or series)
            day (scalar or series)

Returns the number of the day in the current epoch specified by year, month
and day. The epoch day equals 1 for the first of January in the year 1 AD;
it stood at 733786 on 2010-01-01. If any of the arguments are given as
series the value returned is a series, otherwise it is a scalar.

For the inverse function, see "isodate".

# errmsg
Output:     string
Argument:   errno (integer)

Retrieves the gretl error message associated with errno. See also "$error".

# exp
Output:     same type as input
Argument:   x (scalar, series or matrix)

Returns e^x. Note that in case of matrices the function acts element by
element. For the matrix exponential function, see "mexp".

# fcstats
Output:     matrix
Arguments:  y (series or vector)
            f (series or vector)

Produces a column vector holding several statistics which may be used for
evaluating the series f as a forecast of the series y over the current
sample range. Two vectors of the same length may be given in place of two
series arguments.

The layout of the returned vector is as follows:

	  1  Mean Error (ME)
	  2  Mean Squared Error (MSE)
	  3  Mean Absolute Error (MAE)
	  4  Mean Percentage Error (MPE)
	  5  Mean Absolute Percentage Error (MAPE)
	  6  Theil's U 
	  7  Bias proportion, UM
	  8  Regression proportion, UR
	  9  Disturbance proportion, UD

For details on the calculation of these statistics, and the interpretation
of the U values, please see the Gretl User's Guide.

# fdjac
Output:     matrix
Arguments:  b (column vector)
            fcall (function call)

Calculates a numerical approximation to the Jacobian associated with the
n-vector b and the transformation function specified by the argument fcall.
The function call should take b as its first argument (either straight or in
pointer form), followed by any additional arguments that may be needed, and
it should return an m x 1 matrix. On successful completion fdjac returns an
m x n matrix holding the Jacobian. Example:

	  matrix J = fdjac(theta, myfunc(&theta, X))

The function can use three different methods: simple forward-difference,
bilateral difference or 4-nodes Richardson extrapolation. Respectively:

J_0 = (f(x+h) - f(x))/h

J_1 = (f(x+h) - f(x-h))/2h

J_2 = [8 (f(x+h) - f(x-h)) - (f(x+2h) - f(x-2h))] /12h

The three alternatives above provide, generally, a trade-off between
accuracy and speed. You can choose among methods by using the "set" command
and specify the value 0, 1 or 2 for the fdjac_quality variable.

For more details and examples see the chapter on numerical methods in the
Gretl User's Guide.

See also "BFGSmax", "set".

# fft
Output:     matrix
Argument:   X (matrix)

Discrete real Fourier transform. If the input matrix X has n columns, the
output has 2n columns, where the real parts are stored in the odd columns
and the complex parts in the even ones.

Should it be necessary to compute the Fourier transform on several vectors
with the same number of elements, it is numerically more efficient to group
them into a matrix rather than invoking fft for each vector separately. See
also "ffti".

# ffti
Output:     matrix
Argument:   X (matrix)

Inverse discrete real Fourier transform. It is assumed that X contains n
complex column vectors, with the real part in the odd columns and the
imaginary part in the even ones, so the total number of columns should be
2n. A matrix with n columns is returned.

Should it be necessary to compute the inverse Fourier transform on several
vectors with the same number of elements, it is numerically more efficient
to group them into a matrix rather than invoking ffti for each vector
separately. See also "fft".

# filter
Output:     series
Arguments:  x (series or matrix)
            a (scalar or vector, optional)
            b (scalar or vector, optional)
            y0 (scalar, optional)

Computes an ARMA-like filtering of the argument x. The transformation can be
written as

y_t = a_0 x_t + a_1 x_t-1 + ... a_q x_t-q + b_1 y_t-1 + ... b_p y_t-p

If argument x is a series, the result will be itself a series. Otherwise, if
x is a matrix with T rows and k columns, the result will be a matrix of the
same size, in which the filtering is performed column by column.

The two arguments a and b are optional. They may be scalars, vectors or the
keyword null.

If a is a scalar, this is used as a_0 and implies q=0; if it is a vector of
q+1 elements, they contain the coefficients from a_0 to a_q. If a is null or
omitted, this is equivalent to setting a_0=1 and q=0.

If b is a scalar, this is used as b_1 and implies p=1; if it is a vector of
p elements, they contain the coefficients from b_1 to b_p. If b is null or
omitted, this is equivalent to setting B(L)=1.

The optional scalar argument y0 is taken to represent all values of y prior
to the beginning of sample (used only when p>0). If omitted, it is
understood to be 0. Pre-sample values of x are always assumed zero.

See also "bkfilt", "bwfilt", "fracdiff", "hpfilt", "movavg", "varsimul".

Example:

	  nulldata 5
	  y = filter(index, 0.5, -0.9, 1)
	  print index y --byobs
	  x = seq(1,5)' ~ (1 | zeros(4,1))
	  w = filter(x, 0.5, -0.9, 1)
	  print x w

produces

                   index            y   

          1            1     -0.40000   
          2            2      1.36000   
          3            3      0.27600   
          4            4      1.75160   
          5            5      0.92356   

          x (5 x 2)

            1   1 
            2   0 
            3   0 
            4   0 
            5   0 

          w (5 x 2)

              -0.40000     -0.40000 
                1.3600      0.36000 
               0.27600     -0.32400 
                1.7516      0.29160 
               0.92356     -0.26244 

# firstobs
Output:     integer
Argument:   y (series)

Returns the 1-based index of the first non-missing observation for the
series y. Note that if some form of subsampling is in effect, the value
returned may be smaller than the dollar variable "$t1". See also "lastobs".

# fixname
Output:     string
Argument:   rawname (string)

Intended for use in connection with the "join" command. Returns the result
of converting rawname to a valid gretl identifier, which must start with a
letter, contain nothing but (ASCII) letters, digits and the underscore
character, and must not exceed 31 characters. The rules used in conversion
are:

1. Skip any leading non-letters.

2. Until the 31-character limit is reached or the input is exhausted:
transcribe "legal" characters; skip "illegal" characters apart from spaces;
and replace one or more consecutive spaces with an underscore, unless the
previous character transcribed is an underscore in which case space is
skipped.

# floor
Output:     same type as input
Argument:   y (scalar, series or matrix)

Floor function: returns the greatest integer less than or equal to x. Note:
"int" and floor differ in their effect for negative arguments: int(-3.5)
gives -3, while floor(-3.5) gives -4.

# fracdiff
Output:     series
Arguments:  y (series)
            d (scalar)

Returns the fractional difference of order d for the series y.

Note that in theory fractional differentiation is an infinitely long filter.
In practice, presample values of y_t are assumed to be zero.

# gammafun
Output:     same type as input
Argument:   x (scalar, series or matrix)

Returns the gamma function of x.

# getenv
Output:     string
Argument:   s (string)

If an environment variable by the name of s is defined, returns the string
value of that variable, otherwise returns an empty string. See also
"ngetenv".

# getline
Output:     scalar
Arguments:  source (string)
            target (string)

This function is used to read successive lines from source, which should be
a named string variable. On each call a line from the source is written to
target (which must also be a named string variable), with the newline
character stripped off. The valued returned is 1 if there was anything to be
read (including blank lines), 0 if the source has been exhausted.

Here is an example in which the content of a text file is broken into lines:

	  string s = readfile("data.txt")
	  string line
	  scalar i = 1
	  loop while getline(s, line)
	    printf "line %d = '%s'\n", i++, line
	  endloop

In this example we can be sure that the source is exhausted when the loop
terminates. If the source might not be exhausted you should follow your
regular call(s) to getline with a "clean up" call, in which target is
replaced by null (or omitted altogether) as in

	  getline(s, line)
	  getline(s, null)

Note that although the reading position advances at each call to getline,
source is not modified by this function, only target.

# ghk
Output:     matrix
Arguments:  C (matrix)
            A (matrix)
            B (matrix)
            U (matrix)

Computes the GHK (Geweke, Hajivassiliou, Keane) approximation to the
multivariate normal distribution function; see for example Geweke (1991).
The value returned is an n x 1 vector of probabilities.

The argument C (m x m) should give the Cholesky factor (lower triangular) of
the covariance matrix of the m normal variates. The arguments A and B should
both be n x m, giving respectively the lower and upper bounds applying to
the variates at each of n observations. Where variates are unbounded, this
should be indicated using the built-in constant "$huge" or its negative.

The matrix U should be m x r, with r the number of pseudo-random draws from
the uniform distribution; suitable functions for creating U are "muniform"
and "halton".

In the following example, the series P and Q should be numerically very
similar to one another, P being the "true" probability and Q its GHK
approximation:

	  nulldata 20
	  series inf1 = -2*uniform()
	  series sup1 = 2*uniform()
	  series inf2 = -2*uniform()
	  series sup2 = 2*uniform()

	  scalar rho = 0.25
	  matrix V = {1, rho; rho, 1}

	  series P = cdf(D, rho, inf1, inf2) - cdf(D, rho, sup1, inf2) \
	  - cdf(D, rho, inf1, sup2) + cdf(D, rho, sup1, sup2)

	  C = cholesky(V)
	  U = muniform(2, 100)

	  series Q = ghk(C, {inf1, inf2}, {sup1, sup2}, U)

# gini
Output:     scalar
Argument:   y (series)

Returns Gini's inequality index for the series y.

# ginv
Output:     matrix
Argument:   A (matrix)

Returns A^+, the Moore-Penrose or generalized inverse of A, computed via the
singular value decomposition.

This matrix has the properties A A^+ A = A and A^+ A A^+ = A^+ . Moreover,
the products A A^+ and A^+ A are symmetric by construction.

See also "inv", "svd".

# halton
Output:     matrix
Arguments:  m (integer)
            r (integer)
            offset (integer, optional)

Returns an m x r matrix containing m Halton sequences of length r; m is
limited to a maximum of 40. The sequences are contructed using the first m
primes. By default the first 10 elements of each sequence are discarded, but
this figure can be adjusted via the optional offset argument, which should
be a non-negative integer. See Halton and Smith (1964).

# hdprod
Output:     matrix
Arguments:  X (matrix)
            Y (matrix)

Horizontal direct product. The two arguments must have the same number of
rows, r. The return value is a matrix with r rows, in which the i-th row is
the Kronecker product of the corresponding rows of X and Y.

As far as we know, there isn't an established name for this operation in
matrix algebra. "Horizontal direct product" is the way this operation is
called in the GAUSS programming language.

Example: the code

	  A = {1,2,3; 4,5,6}
	  B = {0,1; -1,1}
	  C = hdprod(A, B)

produces the following matrix:

         0    1    0    2    0    3 
        -4    4   -5    5   -6    6 

# hpfilt
Output:     series
Arguments:  y (series)
            lambda (scalar, optional)

Returns the cycle component from application of the Hodrick-Prescott filter
to series y. If the smoothing parameter, lambda, is not supplied then a
data-based default is used, namely 100 times the square of the periodicity
(100 for annual data, 1600 for quarterly data, and so on). See also
"bkfilt", "bwfilt".

# I
Output:     square matrix
Argument:   n (integer)

Returns an identity matrix with n rows and columns.

# imaxc
Output:     row vector
Argument:   X (matrix)

Returns the row indices of the maxima of the columns of X.

See also "imaxr", "iminc", "maxc".

# imaxr
Output:     column vector
Argument:   X (matrix)

Returns the column indices of the maxima of the rows of X.

See also "imaxc", "iminr", "maxr".

# imhof
Output:     scalar
Arguments:  M (matrix)
            x (scalar)

Computes Prob(u'Au < x) for a quadratic form in standard normal variates, u,
using the procedure developed by Imhof (1961).

If the first argument, M, is a square matrix it is taken to specify A,
otherwise if it's a column vector it is taken to be the precomputed
eigenvalues of A, otherwise an error is flagged.

See also "pvalue".

# iminc
Output:     row vector
Argument:   X (matrix)

Returns the row indices of the minima of the columns of X.

See also "iminr", "imaxc", "minc".

# iminr
Output:     column vector
Argument:   X (matrix)

Returns the column indices of the mimima of the rows of X.

See also "iminc", "imaxr", "minr".

# inbundle
Output:     integer
Arguments:  b (bundle)
            key (string)

Checks whether bundle b contains a data-item with name key. The value
returned is an integer code for the type of the item: 0 for no match, 1 for
scalar, 2 for series, 3 for matrix, 4 for string and 5 for bundle. The
function "typestr" may be used to get the string corresponding to this code.

# infnorm
Output:     scalar
Argument:   X (matrix)

Returns the infinity-norm of X, that is, the maximum across the rows of X of
the sum of absolute values of the row elements.

See also "onenorm".

# inlist
Output:     integer
Arguments:  L (list)
            y (series)

Returns the (1-based) position of y in list L, or 0 if y is not present in
L. The second argument may be given as the name of a series or alternatively
as an integer ID number.

# int
Output:     same type as input
Argument:   x (scalar, series or matrix)

Returns the integer part of x, truncating the fractional part. Note: int and
"floor" differ in their effect for negative arguments: int(-3.5) gives -3,
while floor(-3.5) gives -4. See also "ceil".

# inv
Output:     matrix
Argument:   A (square matrix)

Returns the inverse of A. If A is singular or not square, an error message
is produced and nothing is returned. Note that gretl checks automatically
the structure of A and uses the most efficient numerical procedure to
perform the inversion.

The matrix types gretl checks for are: identity; diagonal; symmetric and
positive definite; symmetric but not positive definite; and triangular.

See also "ginv", "invpd".

# invcdf
Output:     same type as input
Arguments:  c (character)
            ... (see below)
            p (scalar, series or matrix)

Inverse cumulative distribution function calculator. Returns x such that P(X
<= x) = p, where the distribution X is determined by the character c;
Between the arguments c and p, zero or more additional scalar arguments are
required to specify the parameters of the distribution, as follows.

  Standard normal (c = z, n, or N): no extra arguments

  Gamma (g or G): shape; scale

  Student's t (t): degrees of freedom

  Chi square (c, x, or X): degrees of freedom

  Snedecor's F (f or F): df (num.); df (den.)

  Binomial (b or B): probability; trials

  Poisson (p or P): mean

  Standardized GED (E): shape

See also "cdf", "critical", "pvalue".

# invmills
Output:     same type as input
Argument:   x (scalar, series or matrix)

Returns the inverse Mills ratio at x, that is the ratio between the standard
normal density and the complement to the standard normal distribution
function, both evaluated at x.

This function uses a dedicated algorithm which yields greater accuracy
compared to calculation using "dnorm" and "cnorm", but the difference
between the two methods is appreciable only for very large negative values
of x.

See also "cdf", "cnorm", "dnorm".

# invpd
Output:     square matrix
Argument:   A (positive definite matrix)

Returns the inverse of the symmetric, positive definite matrix A. This
function is slightly faster than "inv" for large matrices, since no check
for symmetry is performed; for that reason it should be used with care.

# irf
Output:     matrix
Arguments:  target (integer)
            shock (integer)
            alpha (scalar between 0 and 1, optional)

This function is available only when the last model estimated was a VAR or
VECM. It returns a matrix containing the estimated response of the target
variable to an impulse of one standard deviation in the shock variable.
These variables are identified by their position in the VAR specification:
for example, if target and shock are given as 1 and 3 respectively, the
returned matrix gives the response of the first variable in the VAR for a
shock to the third variable.

If the optional alpha argument is given, the returned matrix has three
columns: the point estimate of the responses, followed by the lower and
upper limits of a 1 - α confidence interval obtained via bootstrapping. (So
alpha = 0.1 corresponds to 90 percent confidence.) If alpha is omitted or
set to zero, only the point estimate is provided.

The number of periods (rows) over which the response is traced is determined
automatically based on the frequency of the data, but this can be overridden
via the "set" command, as in set horizon 10.

# irr
Output:     scalar
Argument:   x (series or vector)

Returns the Internal Rate of Return for x, considered as a sequence of
payments (negative) and receipts (positive). See also "npv".

# isconst
Output:     integer
Arguments:  y (series or vector)
            panel-code (integer, optional)

Without the optional second argument, returns 1 if y has a constant value
over the current sample range (or over its entire length if y is a vector),
otherwise 0.

The second argument is accepted only if the current dataset is a panel and y
is a series. In that case a panel-code value of 0 calls for a check for
time-invariance, while a value of 1 means check for cross-sectional
invariance (that is, in each time period the value of y is the same for all
groups).

If y is a series, missing values are ignored in checking for constancy.

# isnan
Output:     same type as input
Argument:   x (scalar or matrix)

Given a scalar argument, returns 1 if x is "Not a Number" (NaN), otherwise
0. Given a matrix argument, returns a matrix of the same dimensions with 1s
in positions where the corresponding element of the input is NaN and 0s
elsewhere.

# isnull
Output:     integer
Argument:   name (string)

Returns 0 if name is the identifier for a currently defined object, be it a
scalar, a series, a matrix, list, string or bundle; otherwise returns 1.

# isoconv
Output:     scalar
Arguments:  date (series)
            &year (reference to series)
            &month (reference to series)
            &day (reference to series, optional)

Given a series date holding dates in ISO 8601 "basic" format (YYYYMMDD),
this function writes the year, month and (optionally) day components into
the series named by the second and subsequent arguments. An example call,
assuming the series dates contains suitable 8-digit values:

	  series y, m, d
	  isoconv(dates, &y, &m, &d)

The return value from this function is 0 on successful completion, non-zero
on error.

# isodate
Output:     see below
Arguments:  ed (scalar or series)
            as-string (boolean, optional)

The argument ed is interpreted as an epoch day (which equals 1 for the first
of January in the year 1 AD). The default return value -- of the same type
as ed -- is an 8-digit number, or a series of such numbers, on the pattern
YYYYMMDD (ISO 8601 "basic" format), giving the calendar date corresponding
to the epoch day.

If ed is a scalar (only) and the optional second argument as-string is
non-zero, the return value is not numeric but rather a string on the pattern
YYYY-MM-DD (ISO 8601 "extended" format).

For the inverse function, see "epochday".

# iwishart
Output:     matrix
Arguments:  S (symmetric matrix)
            v (integer)

Given S (a positive definite p x p scale matrix), returns a drawing from the
Inverse Wishart distribution with v degrees of freedom. The returned matrix
is also p x p. The algorithm of Odell and Feiveson (1966) is used.

# kdensity
Output:     matrix
Arguments:  x (series)
            scale (scalar, optional)
            control (boolean, optional)

Computes a kernel density estimate for the series x. The returned matrix has
two columns, the first holding a set of evenly spaced abscissae and the
second the estimated density at each of these points.

The optional scale parameter can be used to adjust the degree of smoothing
relative to the default of 1.0 (higher values produce a smoother result).
The control parameter acts as a boolean: 0 (the default) means that the
Gaussian kernel is used; a non-zero value switches to the Epanechnikov
kernel.

A plot of the results may be obtained using the "gnuplot" command, as in

	  matrix d = kdensity(x)
	  gnuplot 2 1 --matrix=d --with-lines --suppress-fitted

# kfilter
Output:     scalar
Arguments:  &E (reference to matrix, or null)
            &V (reference to matrix, or null)
            &S (reference to matrix, or null)
            &P (reference to matrix, or null)
            &G (reference to matrix, or null)

Requires that a Kalman filter be set up. Performs a forward, filtering pass
and returns 0 on successful completion or 1 if numerical problems are
encountered.

The optional matrix arguments can be used to retrieve the following
information: E gets the matrix of one-step ahead prediction errors and V
gets the variance matrix for these errors; S gets the matrix of estimated
values of the state vector and P the variance matrix of these estimates; G
gets the Kalman gain. All of these matrices have T rows, corresponding to T
observations. For the column dimensions and further details see the Gretl
User's Guide.

See also "kalman", "ksmooth", "ksimul".

# ksimul
Output:     matrix
Arguments:  v (matrix)
            w (matrix)
            &S (reference to matrix, or null)

Requires that a Kalman filter be set up. Performs a simulation and returns a
matrix holding simulated values of the observable variables.

The argument v supplies artificial disturbances for the state transition
equation and w supplies disturbances for the observation equation, if
applicable. The optional argument S may be used to retrieve the simulated
state vector. For details see the Gretl User's Guide.

See also "kalman", "kfilter", "ksmooth".

# ksmooth
Output:     matrix
Argument:   &P (reference to matrix, or null)

Requires that a Kalman filter be set up. Performs a backward, smoothing pass
and returns a matrix holding smoothed estimates of the state vector. The
optional argument P may be used to retrieve the MSE of the smoothed state.
For details see the Gretl User's Guide.

See also "kalman", "kfilter", "ksimul".

# kurtosis
Output:     scalar
Argument:   x (series)

Returns the excess kurtosis of the series x, skipping any missing
observations.

# lags
Output:     list
Arguments:  p (integer)
            y (series or list)
            bylag (boolean, optional)

Generates lags 1 to p of the series y, or if y is a list, of all series in
the list. If p = 0, the maximum lag defaults to the periodicity of the data;
otherwise p must be positive.

The generated variables are automatically named according to the template
varname_i where varname is the name of the original series and i is the
specific lag. The original portion of the name is truncated if necessary,
and may be adjusted in case of non-uniqueness in the set of names thus
constructed.

When y is a list and the lag order is greater than 1, the default ordering
of the terms in the returned list is by variable: all lags of the first
series in the input list followed by all lags of the second series, and so
on. The optional third argument can be used to change this: if bylag is
non-zero then the terms are ordered by lag: lag 1 of all the input series,
then lag 2 of all the series, and so on.

# lastobs
Output:     integer
Argument:   y (series)

Returns the 1-based index of the last non-missing observation for the series
y. Note that if some form of subsampling is in effect, the value returned
may be larger than the dollar variable "$t2". See also "firstobs".

# ldet
Output:     scalar
Argument:   A (square matrix)

Returns the natural log of the determinant of A, computed via the LU
factorization. See also "det", "rcond".

# ldiff
Output:     same type as input
Argument:   y (series or list)

Computes log differences; starting values are set to NA.

When a list is returned, the individual variables are automatically named
according to the template ld_varname where varname is the name of the
original series. The name is truncated if necessary, and may be adjusted in
case of non-uniqueness in the set of names thus constructed.

See also "diff", "sdiff".

# lincomb
Output:     series
Arguments:  L (list)
            b (vector)

Computes a new series as a linear combination of the series in the list L.
The coefficients are given by the vector b, which must have length equal to
the number of series in L.

See also "wmean".

# ljungbox
Output:     scalar
Arguments:  y (series)
            p (integer)

Computes the Ljung-Box Q' statistic for the series y using lag order p, over
the currently defined sample range. The lag order must be greater than or
equal to 1 and less than the number of available observations.

This statistic may be referred to the chi-square distribution with p degrees
of freedom as a test of the null hypothesis that the series y is not
serially correlated. See also "pvalue".

# lngamma
Output:     same type as input
Argument:   x (scalar, series or matrix)

Returns the log of the gamma function of x.

# log
Output:     same type as input
Argument:   x (scalar, series, matrix or list)

Returns the natural logarithm of x; produces NA for non-positive values.
Note: ln is an acceptable alias for log.

When a list is returned, the individual variables are automatically named
according to the template l_varname where varname is the name of the
original series. The name is truncated if necessary, and may be adjusted in
case of non-uniqueness in the set of names thus constructed.

# log10
Output:     same type as input
Argument:   x (scalar, series or matrix)

Returns the base-10 logarithm of x; produces NA for non-positive values.

# log2
Output:     same type as input
Argument:   x (scalar, series or matrix)

Returns the base-2 logarithm of x; produces NA for non-positive values.

# loess
Output:     series
Arguments:  y (series)
            x (series)
            d (integer, optional)
            q (scalar, optional)
            robust (boolean, optional)

Performs locally-weighted polynomial regression and returns a series holding
predicted values of y for each non-missing value of x. The method is as
described by William Cleveland (1979).

The optional arguments d and q specify the order of the polynomial in x and
the proportion of the data points to be used in local estimation,
respectively. The default values are d = 1 and q = 0.5. The other acceptable
values for d are 0 and 2. Setting d = 0 reduces the local regression to a
form of moving average. The value of q must be greater than 0 and cannot
exceed 1; larger values produce a smoother outcome.

If a non-zero value is given for the robust argument the local regressions
are iterated twice, with the weights being modified based on the residuals
from the previous iteration so as to give less influence to outliers.

See also "nadarwat", and in addition see the Gretl User's Guide for details
on nonparametric methods.

# logistic
Output:     same type as input
Argument:   x (scalar, series or matrix)

Returns the logistic function of the argument x, that is, e^x/(1 + e^x). If
x is a matrix, the function is applied element by element.

# lower
Output:     square matrix
Argument:   A (matrix)

Returns an n x n lower triangular matrix: the elements on and below the
diagonal are equal to the corresponding elements of A; the remaining
elements are zero.

See also "upper".

# lrvar
Output:     scalar
Arguments:  y (series or vector)
            k (integer)

Returns the long-run variance of y, calculated using a Bartlett kernel with
window size k. If k is negative, int(T^(1/3)) is used.

# max
Output:     scalar or series
Argument:   y (series or list)

If the argument y is a series, returns the (scalar) maximum of the
non-missing observations in the series. If the argument is a list, returns a
series each of whose elements is the maximum of the values of the listed
variables at the given observation.

See also "min", "xmax", "xmin".

# maxc
Output:     row vector
Argument:   X (matrix)

Returns a row vector containing the maxima of the columns of X.

See also "imaxc", "maxr", "minc".

# maxr
Output:     column vector
Argument:   X (matrix)

Returns a column vector containing the maxima of the rows of X.

See also "imaxc", "maxc", "minr".

# mcorr
Output:     matrix
Argument:   X (matrix)

Computes a correlation matrix treating each column of X as a variable. See
also "corr", "cov", "mcov".

# mcov
Output:     matrix
Argument:   X (matrix)

Computes a covariance matrix treating each column of X as a variable. See
also "corr", "cov", "mcorr".

# mcovg
Output:     matrix
Arguments:  X (matrix)
            u (vector, optional)
            w (vector, optional)
            p (integer)

Returns the matrix covariogram for a T x k matrix X (typically containing
regressors), an (optional) T-vector u (typically containing residuals), an
(optional) (p+1)-vector of weights w, and a lag order p, which must be
greater than or equal to 0.

The returned matrix is given by

sum_{j=-p}^p sum_j w_{|j|} (X_t' u_t u_{t-j} X_{t-j})

If u is given as null the u terms are omitted, and if w is given as null all
the weights are taken to be 1.0.

# mean
Output:     scalar or series
Argument:   x (series or list)

If x is a series, returns the (scalar) sample mean, skipping any missing
observations.

If x is a list, returns a series y such that y_t is the mean of the values
of the variables in the list at observation t, or NA if there are any
missing values at t.

# meanc
Output:     row vector
Argument:   X (matrix)

Returns the means of the columns of X. See also "meanr", "sumc", "sdc".

# meanr
Output:     column vector
Argument:   X (matrix)

Returns the means of the rows of X. See also "meanc", "sumr".

# median
Output:     scalar
Argument:   y (series)

The median of the non-missing observations in series y. See also "quantile".

# mexp
Output:     square matrix
Argument:   A (square matrix)

Computes the matrix exponential of A, using algorithm 11.3.1 from Golub and
Van Loan (1996).

# min
Output:     scalar or series
Argument:   y (series or list)

If the argument y is a series, returns the (scalar) minimum of the
non-missing observations in the series. If the argument is a list, returns a
series each of whose elements is the minimum of the values of the listed
variables at the given observation.

See also "max", "xmax", "xmin".

# minc
Output:     row vector
Argument:   X (matrix)

Returns the minima of the columns of X.

See also "iminc", "maxc", "minr".

# minr
Output:     column vector
Argument:   X (matrix)

Returns the minima of the rows of X.

See also "iminr", "maxr", "minc".

# missing
Output:     same type as input
Argument:   x (scalar, series or list)

Returns a binary variable holding 1 if x is NA. If x is a series, the
comparison is done element by element; if x is a list of series, the output
is a series with 1 at observations for which at least one series in the list
has a missing value, and 0 otherwise.

See also "misszero", "ok", "zeromiss".

# misszero
Output:     same type as input
Argument:   x (scalar or series)

Converts NAs to zeros. If x is a series, the conversion is done element by
element. See also "missing", "ok", "zeromiss".

# mlag
Output:     matrix
Arguments:  X (matrix)
            p (scalar or vector)
            m (scalar, optional)

Shifts up or down the rows of X. If p is a positive scalar, returns a matrix
in which the columns of X are shifted down by p rows and the first p rows
are filled with the value m. If p is a negative number, X is shifted up and
the last rows are filled with the value m. If m is omitted, it is understood
to be zero.

If p is a vector, the above operation is carried out for each element in p,
joining the resulting matrices horizontally.

# mnormal
Output:     matrix
Arguments:  r (integer)
            c (integer)

Returns a matrix with r rows and c columns, filled with standard normal
pseudo-random variates. See also "normal", "muniform".

# mols
Output:     matrix
Arguments:  Y (matrix)
            X (matrix)
            &U (reference to matrix, or null)
            &V (reference to matrix, or null)

Returns a k x n matrix of parameter estimates obtained by OLS regression of
the T x n matrix Y on the T x k matrix X.

If the third argument is not null, the T x n matrix U will contain the
residuals. If the final argument is given and is not null then the k x k
matrix V will contain (a) the covariance matrix of the parameter estimates,
if Y has just one column, or (b) X'X^-1 if Y has multiple columns.

By default, estimates are obtained via Cholesky decomposition, with a
fallback to QR decomposition if the columns of X are highly collinear. The
use of SVD can be forced via the command set svd on.

See also "mpols", "mrls".

# monthlen
Output:     integer
Arguments:  month (integer)
            year (integer)
            weeklen (integer)

Returns the number of (relevant) days in the specified month in the
specified year; weeklen, which must equal 5, 6 or 7, gives the number of
days in the week that should be counted (a value of 6 omits Sundays, and a
value of 5 omits both Saturdays and Sundays).

# movavg
Output:     series
Arguments:  x (series)
            p (scalar)
            control (integer, optional)

Depending on the value of the parameter p, returns either a simple or an
exponentially weighted moving average of the input series x.

If p > 1, a simple p-term moving average is computed, that is, the
arithmetic mean of x(t) to x(t-p+1). If a non-zero value is supplied for the
optional control parameter the MA is centered, otherwise it is "trailing".

If p is a positive fraction, an exponential moving average is computed: y(t)
= p*x(t) + (1-p)*y(t-1). By default the output series, y, is initialized
using the first valid value of x, but the control parameter may be used to
specify the number of initial observations that should be averaged to
produce y(0). A zero value for control indicates that all the observations
should be used.

# mpols
Output:     matrix
Arguments:  Y (matrix)
            X (matrix)
            &U (reference to matrix, or null)

Works exactly as "mols", except that the calculations are done in multiple
precision using the GMP library.

By default GMP uses 256 bits for each floating point number, but you can
adjust this using the environment variable GRETL_MP_BITS, e.g.
GRETL_MP_BITS=1024.

# mrandgen
Output:     matrix
Arguments:  d (string)
            p1 (scalar)
            p2 (scalar, conditional)
            p3 (scalar, conditional)
            rows (integer)
            cols (integer)
Examples:   matrix mx = mrandgen(u, 0, 100, 50, 1)
            matrix mt14 = mrandgen(t, 14, 20, 20)

Works like "randgen" except that the return value is a matrix rather than a
series. The initial arguments to this function (the number of which depends
on the selected distribution) are as described for randgen, but they must be
followed by two integers to specify the number of rows and columns of the
desired random matrix.

The first example above calls for a uniform random column vector of length
50, while the second example specifies a 20 x 20 random matrix with drawings
from the t distribution with 14 degrees of freedom.

See also "mnormal", "muniform".

# mread
Output:     matrix
Arguments:  fname (string)
            import (boolean, optional)

Reads a matrix from a text file. The string fname must contain the name of
the file from which the matrix is to be read. If this name has the suffix
".gz" it is assumed that gzip compression has been applied in writing the
file.

The file in question may start with any number of comment lines, defined as
lines that start with the hash mark, #; such lines are ignored. Beyond that,
the content must conform to the following rules:

  The first non-comment line must contain two integers, separated by a space
  or a tab, indicating the number of rows and columns, respectively.

  The columns must be separated by spaces or tab characters.

  The decimal separator must be the dot character, ".".

If a non-zero value is given for the optional import argument, the input
file is looked for in the user's "dot" directory. This is intended for use
with the matrix-exporting functions offered in the context of the "foreign"
command. In this case the fname argument should be a plain filename, without
any path component.

Should an error occur (such as the file being badly formatted or
inaccessible), an empty matrix is returned.

See also "mwrite".

# mreverse
Output:     matrix
Argument:   X (matrix)

Returns a matrix containing the rows of X in reverse order. If you wish to
obtain a matrix in which the columns of X appear in reverse order you can
do:

	  matrix Y = mreverse(X')'

# mrls
Output:     matrix
Arguments:  Y (matrix)
            X (matrix)
            R (matrix)
            q (column vector)
            &U (reference to matrix, or null)
            &V (reference to matrix, or null)

Restricted least squares: returns a k x n matrix of parameter estimates
obtained by least-squares regression of the T x n matrix Y on the T x k
matrix X subject to the linear restriction RB = q, where B denotes the
stacked coefficient vector. R must have k * n columns; each row of this
matrix represents a linear restriction. The number of rows in q must match
the number of rows in R.

If the fifth argument is not null, the T x n matrix U will contain the
residuals. If the final argument is given and is not null then the k x k
matrix V will hold the restricted counterpart to the matrix X'X^-1. The
variance matrix of the estimates for equation i can be constructed by
multiplying the appropriate sub-matrix of V by an estimate of the error
variance for that equation.

# mshape
Output:     matrix
Arguments:  X (matrix)
            r (integer)
            c (integer)

Rearranges the elements of X into a matrix with r rows and c columns.
Elements are read from X and written to the target in column-major order. If
X contains fewer than k = rc elements, the elements are repeated cyclically;
otherwise, if X has more elements, only the first k are used.

See also "cols", "rows", "unvech", "vec", "vech".

# msortby
Output:     matrix
Arguments:  X (matrix)
            j (integer)

Returns a matrix in which the rows of X are reordered by increasing value of
the elements in column j. This is a stable sort: rows that share the same
value in column j will not be interchanged.

# muniform
Output:     matrix
Arguments:  r (integer)
            c (integer)

Returns a matrix with r rows and c columns, filled with uniform (0,1)
pseudo-random variates. Note: the preferred method for generating a scalar
uniform r.v. is to use the "randgen1" function.

See also "mnormal", "uniform".

# mwrite
Output:     integer
Arguments:  X (matrix)
            fname (string)
            export (boolean, optional)

Writes the matrix X to a plain text file named fname. The file will contain
on the first line two integers, separated by a tab character, with the
number of rows and columns; on the next lines, the matrix elements in
scientific notation, separated by tabs (one line per row).

If file fname already exists, it will be overwritten. The return value is 0
on successful completion; if an error occurs, such as the file being
unwritable, the return value will be non-zero.

If a non-zero value is given for the export argument, the output file will
be written into the user's "dot" directory, where it is accessible by
default via the matrix-loading functions offered in the context of the
"foreign" command. In this case a plain filename, without any path
component, should be given for the second argument.

Matrices stored via the mwrite command can be easily read by other programs;
see the Gretl User's Guide for details.

An extension to the basic behavior of this function is available: if fname
has the suffix ".gz" then the file is written with gzip compression.

See also "mread".

# mxtab
Output:     matrix
Arguments:  x (series or vector)
            y (series or vector)

Returns a matrix holding the cross tabulation of the values contained in x
(by row) and y (by column). The two arguments should be of the same type
(both series or both column vectors), and because of the typical usage of
this function, are assumed to contain integer values only.

See also "values".

# nadarwat
Output:     series
Arguments:  y (series)
            x (series)
            h (scalar)

Returns the Nadaraya-Watson nonparametric estimator of the conditional mean
of y given x. It returns a series holding the nonparametric estimate of
E(y_i|x_i) for each nonmissing element of the series x.

The kernel function K is given by K = exp(-x^2 / 2h) for |x| < T and zero
otherwise.

The argument h, known as the bandwidth, is a parameter (a positive real
number) given by the user. This is usually a small number: larger values of
h make m(x) smoother; a popular choice is n^-0.2. More details are given in
the Gretl User's Guide.

The scalar T is used to prevent numerical problems when the kernel function
is evaluated too far away from zero and is called the trim parameter.

The trim parameter can be adjusted via the nadarwat_trim setting, as a
multiple of h. The default value is 4.

The user may provide a negative value for the bandwidth: this is interpreted
as conventional syntax to obtain the leave-one-out estimator, that is a
variant of the estimator that does not use the i-th observation for
evaluating m(x_i). This makes the Nadaraya-Watson estimator more robust
numerically and its usage is normally advised when the estimator is computed
for inference purposes. Of course, the bandwidth actually used is the
absolute value of h.

# nelem
Output:     integer
Argument:   L (list)

Returns the number of members in the list L.

# ngetenv
Output:     scalar
Argument:   s (string)

If an environment variable by the name of s is defined and has a numerical
value, returns that value; otherwise returns NA. See also "getenv".

# nobs
Output:     integer
Argument:   y (series)

Returns the number of non-missing observations for the variable y in the
currently selected sample.

# normal
Output:     series
Arguments:  mu (scalar)
            sigma (scalar)

Generates a series of Gaussian pseudo-random variates with mean mu and
standard deviation sigma. If no arguments are supplied, standard normal
variates N(0,1) are produced. The values are produced using the Ziggurat
method (Marsaglia and Tsang, 2000).

See also "randgen", "mnormal", "muniform".

# npv
Output:     scalar
Arguments:  x (series or vector)
            r (scalar)

Returns the Net Present Value of x, considered as a sequence of payments
(negative) and receipts (positive), evaluated at annual discount rate r; r
must be expressed as a number, not a percentage (5% = 0.05). The first value
is taken as dated "now" and is not discounted. To emulate an NPV function in
which the first value is discounted, prepend zero to the input sequence.

Supported data frequencies are annual, quarterly, monthly, and undated
(undated data are treated as if annual).

See also "irr".

# NRmax
Output:     scalar
Arguments:  b (vector)
            f (function call)
            g (function call, optional)
            h (function call, optional)

Numerical maximization via the Newton-Raphson method. The vector b should
hold the initial values of a set of parameters, and the argument f should
specify a call to a function that calculates the (scalar) criterion to be
maximized, given the current parameter values and any other relevant data.
If the object is in fact minimization, this function should return the
negative of the criterion. On successful completion, NRmax returns the
maximized value of the criterion, and b holds the parameter values which
produce the maximum.

The optional third and fourth arguments provide means of supplying
analytical derivatives and an analytical (negative) Hessian, respectively.
The functions referenced by g and h must take as their first argument a
pre-defined matrix that is of the correct size to contain the gradient or
Hessian, respectively, given in pointer form. They also must take the
parameter vector as an argument (in pointer form or otherwise). Other
arguments are optional. If either or both of the optional arguments are
omitted, a numerical approximation is used.

For more details and examples see the chapter on numerical methods in the
Gretl User's Guide. See also "BFGSmax", "fdjac".

# nullspace
Output:     matrix
Argument:   A (matrix)

Computes the right nullspace of A, via the singular value decomposition: the
result is a matrix B such that the product AB is a zero matrix, except when
A has full column rank, in which case an empty matrix is returned.
Otherwise, if A is m x n, B will be n by (n - r), where r is the rank of A.

See also "rank", "svd".

# obs
Output:     series

Returns a series of consecutive integers, setting 1 at the start of the
dataset. Note that the result is invariant to subsampling. This function is
especially useful with time-series datasets. Note: you can write t instead
of obs with the same effect.

See also "obsnum".

# obslabel
Output:     string
Argument:   t (integer)

Returns the observation label for observation t, where t is a 1-based index.
The inverse function is provided by "obsnum".

# obsnum
Output:     integer
Argument:   s (string)

Returns an integer corresponding to the observation specified by the string
s. Note that the result is invariant to subsampling. This function is
especially useful with time-series datasets. For example, the following code

	  open denmark 
	  k = obsnum(1980:1)

yields k = 25, indicating that the first quarter of 1980 is the 25th
observation in the denmark dataset.

See also "obs", "obslabel".

# ok
Output:     see below
Argument:   x (scalar, series, matrix or list)

If x is a scalar, returns 1 if x is not NA, otherwise 0. If x is a series,
returns a series with value 1 at observations with non-missing values and
zeros elsewhere. If x is a list, the output is a series with 0 at
observations for which at least one series in the list has a missing value,
and 1 otherwise.

If x is a matrix the behavior is a little different, since matrices cannot
contain NAs: the function returns a matrix of the same dimensions as x, with
1s in positions corresponding to finite elements of x and 0s in positions
where the elements are non-finite (either infinities or not-a-number, as per
the IEEE 754 standard).

See also "missing", "misszero", "zeromiss". But note that these functions
are not applicable to matrices.

# onenorm
Output:     scalar
Argument:   X (matrix)

Returns the 1-norm of the matrix X, that is, the maximum across the columns
of X of the sum of absolute values of the column elements.

See also "infnorm", "rcond".

# ones
Output:     matrix
Arguments:  r (integer)
            c (integer)

Outputs a matrix with r rows and c columns, filled with ones.

See also "seq", "zeros".

# orthdev
Output:     series
Argument:   y (series)

Only applicable if the currently open dataset has a panel structure.
Computes the forward orthogonal deviations for variable y.

This transformation is sometimes used instead of differencing to remove
individual effects from panel data. For compatibility with first
differences, the deviations are stored one step ahead of their true temporal
location (that is, the value at observation t is the deviation that,
strictly speaking, belongs at t - 1). That way one loses the first
observation in each time series, not the last.

See also "diff".

# pdf
Output:     same type as input
Arguments:  c (character)
            ... (see below)
            x (scalar, series or matrix)
Examples:   f1 = pdf(N, -2.5)
            f2 = pdf(X, 3, y)
            f3 = pdf(W, shape, scale, y)

Probability density function calculator. Returns the density at x of the
distribution identified by the code c. See "cdf" for details of the required
(scalar) arguments. The distributions supported by the pdf function are the
normal, Student's t, chi-square, F, Gamma, Weibull, Generalized Error,
Binomial and Poisson. Note that for the Binomial and the Poisson what's
calculated is in fact the probability mass at the specified point.

For the normal distribution, see also "dnorm".

# pergm
Output:     matrix
Arguments:  x (series or vector)
            bandwidth (scalar, optional)

If only the first argument is given, computes the sample periodogram for the
given series or vector. If the second argument is given, computes an
estimate of the spectrum of x using a Bartlett lag window of the given
bandwidth, up to a maximum of half the number of observations (T/2).

Returns a matrix with two columns and T/2 rows: the first column holds the
frequency, omega, from 2pi/T to pi, and the second the corresponding
spectral density.

# pmax
Output:     series
Arguments:  y (series)
            mask (series, optional)

Only applicable if the currently open dataset has a panel structure. Returns
a series holding the maxima of variable y for each cross-sectional unit
(repeated for each time period).

If the optional second argument is provided then observations for which the
value of mask is zero are ignored.

See also "pmin", "pmean", "pnobs", "psd", "pxsum", "pshrink", "psum".

# pmean
Output:     series
Arguments:  y (series)
            mask (series, optional)

Only applicable if the currently open dataset has a panel structure. Returns
a series holding the time-mean of variable y for each cross-sectional unit,
the values being repeated for each period. Missing observations are skipped
in calculating the means.

If the optional second argument is provided then observations for which the
value of mask is zero are ignored.

See also "pmax", "pmin", "pnobs", "psd", "pxsum", "pshrink", "psum".

# pmin
Output:     series
Arguments:  y (series)
            mask (series, optional)

Only applicable if the currently open dataset has a panel structure. Returns
a series holding the minima of variable y for each cross-sectional unit
(repeated for each time period).

If the optional second argument is provided then observations for which the
value of mask is zero are ignored.

See also "pmax", "pmean", "pnobs", "psd", "pshrink", "psum".

# pnobs
Output:     series
Arguments:  y (series)
            mask (series, optional)

Only applicable if the currently open dataset has a panel structure. Returns
a series holding the number of valid observations of variable y for each
cross-sectional unit (repeated for each time period).

If the optional second argument is provided then observations for which the
value of mask is zero are ignored.

See also "pmax", "pmin", "pmean", "psd", "pshrink", "psum".

# polroots
Output:     matrix
Argument:   a (vector)

Finds the roots of a polynomial. If the polynomial is of degree p, the
vector a should contain p + 1 coefficients in ascending order, i.e. starting
with the constant and ending with the coefficient on x^p.

If all the roots are real they are returned in a column vector of length p,
otherwise a p x 2 matrix is returned, the real parts in the first column and
the imaginary parts in the second.

# polyfit
Output:     series
Arguments:  y (series)
            q (integer)

Fits a polynomial trend of order q to the input series y using the method of
orthogonal polynomials. The series returned holds the fitted values.

# princomp
Output:     matrix
Arguments:  X (matrix)
            p (integer)
            covmat (boolean, optional)

Let the matrix X be T x k, containing T observations on k variables. The
argument p must be a positive integer less than or equal to k. This function
returns a T x p matrix, P, holding the first p principal components of X.

The optional third argument acts as a boolean switch: if it is non-zero the
principal components are computed on the basis of the covariance matrix of
the columns of X (the default is to use the correlation matrix).

The elements of P are computed as the sum from i to k of Z_ti times v_ji,
where Z_ti is the standardized value of variable i at observation t and v_ji
is the jth eigenvector of the correlation (or covariance) matrix of the
X_is, with the eigenvectors ordered by decreasing value of the corresponding
eigenvalues.

See also "eigensym".

# prodc
Output:     row vector
Argument:   X (matrix)

Returns the product of the elements of X, by column. See also "prodr",
"meanc", "sdc", "sumc".

# prodr
Output:     column vector
Argument:   X (matrix)

Returns the product of the elements of X, by row. See also "prodc", "meanr",
"sumr".

# psd
Output:     series
Arguments:  y (series)
            mask (series, optional)

Only applicable if the currently open dataset has a panel structure. Returns
a series holding the sample standard deviation of variable y for each
cross-sectional unit (with the values repeated for each time period). The
denominator used is the sample size for each unit minus 1, unless the number
of valid observations for the given unit is 1 (in which case 0 is returned)
or 0 (in which case NA is returned).

If the optional second argument is provided then observations for which the
value of mask is zero are ignored.

Note: this function makes it possible to check whether a given variable
(say, X) is time-invariant via the condition max(psd(X)) = 0.

See also "pmax", "pmin", "pmean", "pnobs", "pshrink", "psum".

# psdroot
Output:     square matrix
Argument:   A (symmetric matrix)

Performs a generalized variant of the Cholesky decomposition of the matrix
A, which must be positive semidefinite (but which may be singular). If the
input matrix is not square an error is flagged, but symmetry is assumed and
not tested; only the lower triangle of A is read. The result is a
lower-triangular matrix L which satisfies A = LL'. Indeterminate elements in
the solution are set to zero.

For the case where A is positive definite, see "cholesky".

# pshrink
Output:     matrix
Argument:   y (series)

Only applicable if the currently open dataset has a panel structure. Returns
a column vector holding the first valid observation for the series y for
each cross-sectional unit in the panel, over the current sample range. If a
unit has no valid observations for the input series it is skipped.

This function provides a means of compacting the series returned by
functions such as "pmax" and "pmean", in which a value pertaining to each
cross-sectional unit is repeated for each time period.

# psum
Output:     series
Arguments:  y (series)
            mask (series, optional)

Only applicable if the currently open dataset has a panel structure. Returns
a series holding the sum over time of variable y for each cross-sectional
unit, the values being repeated for each period. Missing observations are
skipped in calculating the sums.

If the optional second argument is provided then observations for which the
value of mask is zero are ignored.

See also "pmax", "pmean", "pmin", "pnobs", "psd", "pxsum", "pshrink".

# pvalue
Output:     same type as input
Arguments:  c (character)
            ... (see below)
            x (scalar, series or matrix)
Examples:   p1 = pvalue(z, 2.2)
            p2 = pvalue(X, 3, 5.67)
            p2 = pvalue(F, 3, 30, 5.67)

P-value calculator. Returns P(X > x), where the distribution X is determined
by the character c. Between the arguments c and x, zero or more additional
arguments are required to specify the parameters of the distribution; see
"cdf" for details. The distributions supported by the pval function are the
standard normal, t, Chi square, F, gamma, binomial, Poisson, Weibull and
Generalized Error.

See also "critical", "invcdf", "urcpval", "imhof".

# pxsum
Output:     series
Arguments:  y (series)
            mask (series, optional)

Only applicable if the currently open dataset has a panel structure. Returns
a series holding the sum of the values of y for each cross-sectional unit in
each period (the values being repeated for each unit).

If the optional second argument is provided then observations for which the
value of mask is zero are ignored.

Note that this function works in a different dimension from the "pmean"
function.

# qform
Output:     matrix
Arguments:  x (matrix)
            A (symmetric matrix)

Computes the quadratic form Y = xAx'. Using this function instead of
ordinary matrix multiplication guarantees more speed and better accuracy. If
x and A are not conformable, or A is not symmetric, an error is returned.

# qnorm
Output:     same type as input
Argument:   x (scalar, series or matrix)

Returns quantiles for the standard normal distribution. If x is not between
0 and 1, NA is returned. See also "cnorm", "dnorm".

# qrdecomp
Output:     matrix
Arguments:  X (matrix)
            &R (reference to matrix, or null)

Computes the QR decomposition of an m x n matrix X, that is X = QR where Q
is an m x n orthogonal matrix and R is an n x n upper triangular matrix. The
matrix Q is returned directly, while R can be retrieved via the optional
second argument.

See also "eigengen", "eigensym", "svd".

# quadtable
Output:     matrix
Arguments:  n (integer)
            type (integer, optional)
            a (scalar, optional)
            b (scalar, optional)

Returns an n x 2 matrix for use with Gaussian quadrature (numerical
integration). The first column holds the nodes or abscissae, the second the
weights.

The first argument specifies the number of points (rows) to compute. The
second argument codes for the type of quadrature: use 1 for Gauss-Hermite
(the default); 2 for Gauss-Legendre; or 3 for Gauss-Laguerre. The
significance of the optional parameters a and b depends on the selected
type, as explained below.

Gaussian quadrature is a method of approximating numerically the definite
integral of some function of interest. Let the function be represented as
the product f(x)W(x). The types of quadrature differ in the specification of
the component W(x): in the Hermite case this is exp(-x^2); in the Laguerre
case, exp(-x); and in the Legendre case simply W(x) = 1.

For each specification of W, one can compute a set of nodes, x_i, and
weights, w_i, such that the sum from i=1 to n of w_if(x_i) approximates the
desired integral. The method of Golub and Welsch (1969) is used.

When the Gauss-Legendre type is selected, the optional arguments a and b can
be used to control the lower and upper limits of integration, the default
values being -1 and 1. (In Hermite quadrature the limits are fixed at minus
and plus infinity, while in the Laguerre case they are fixed at 0 and
infinity.)

In the Hermite case a and b play a different role: they can be used to
replace the default form of W(x) with the (closely related) normal
distribution with mean a and standard deviation b. Supplying values of 0 and
1 for these parameters, for example, has the effect of making W(x) into the
standard normal pdf, which is equivalent to multiplying the default nodes by
the square root of two and dividing the weights by the square root of pi.

# quantile
Output:     scalar or matrix
Arguments:  y (series or matrix)
            p (scalar between 0 and 1)

If y is a series, returns the p-quantile for the series. For example, when p
= 0.5, the median is returned.

If y is a matrix, returns a row vector containing the p-quantiles for the
columns of y; that is, each column is treated as a series.

In addition, for matrix y an alternate form of the second argument is
supported: p may be given as a vector. In that case the return value is an m
x n matrix, where m is the number of elements in p and n is the number of
columns in y.

# randgen
Output:     series
Arguments:  d (string)
            p1 (scalar or series)
            p2 (scalar or series, conditional)
            p3 (scalar, conditional)
Examples:   series x = randgen(u, 0, 100)
            series t14 = randgen(t, 14)
            series y = randgen(B, 0.6, 30)
            series g = randgen(G, 1, 1)
            series P = randgen(P, mu)

All-purpose random number generator. The argument d is a string (in most
cases just a single character) which specifies the distribution from which
the pseudo-random numbers should be drawn. The arguments p1 to p3 specify
the parameters of the selected distribution; the number of such parameters
depends on the distribution. For distributions other than the beta-binomial,
the parameters p1 and (if applicable) p2 may be given as either scalars or
series: if they are given as scalars the output series is identically
distributed, while if a series is given for p1 or p2 the distribution is
conditional on the parameter value at each observation. In the case of the
beta-binomial all the parameters must be scalars.

Specifics are given below: the string code for each distribution is shown in
parentheses, followed by the interpretation of the argument p1 and, where
applicable, p2 and p3.

  Uniform (continuous) (u or U): minimum, maximum

  Uniform (discrete) (i): minimum, maximum

  Normal (z, n, or N): mean, standard deviation

  Student's t (t): degrees of freedom

  Chi square (c, x, or X): degrees of freedom

  Snedecor's F (f or F): df (num.), df (den.)

  Gamma (g or G): shape, scale

  Binomial (b or B): probability, number of trials

  Poisson (p or P): mean

  Weibull (w or W): shape, scale

  Generalized Error (E): shape

  Beta (beta): shape1, shape2

  Beta-Binomial (bb): trials, shape1, shape2

See also "normal", "uniform", "mrandgen", "randgen1".

# randgen1
Output:     scalar
Arguments:  d (character)
            p1 (scalar)
            p2 (scalar, conditional)
Examples:   scalar x = randgen1(z, 0, 1)
            scalar g = randgen1(g, 3, 2.5)

Works like "randgen" except that the return value is a scalar rather than a
series.

The first example above calls for a value from the standard normal
distribution, while the second specifies a drawing from the Gamma
distribution with shape 3 and scale 2.5.

See also "mrandgen".

# randint
Output:     integer
Arguments:  min (integer)
            max (integer)

Returns a pseudo-random integer in the closed interval [min, max]. See also
"randgen".

# rank
Output:     integer
Argument:   X (matrix)

Returns the rank of X, numerically computed via the singular value
decomposition. See also "svd".

# ranking
Output:     same type as input
Argument:   y (series or vector)

Returns a series or vector with the ranks of y. The rank for observation i
is the number of elements that are less than y_i plus one half the number of
elements that are equal to y_i. (Intuitively, you may think of chess points,
where victory gives you one point and a draw gives you half a point.) One is
added so the lowest rank is 1 instead of 0.

See also "sort", "sortby".

# rcond
Output:     scalar
Argument:   A (square matrix)

Returns the reciprocal condition number for A with respect to the 1-norm. In
many circumstances, this is a better measure of the sensitivity of A to
numerical operations such as inversion than the determinant.

The value is computed as the reciprocal of the product, 1-norm of A times
1-norm of A-inverse.

See also "det", "ldet", "onenorm".

# readfile
Output:     string
Arguments:  fname (string)
            codeset (string, optional)

If a file by the name of fname exists and is readable, returns a string
containing the content of this file, otherwise flags an error.

In the case where fname starts with the indentifier of a supported internet
protocol (http://, ftp://, https://), libcurl is invoked to download the
resource.

If the text to be read is not encoded in UTF-8, gretl will try recoding it
from the current locale codeset if that is not UTF-8, or from ISO-8859-15
otherwise. If this simple default does not meet your needs you can use the
optional second argument to specify a codeset. For example, if you want to
read text in Microsoft codepage 1251 and that is not your locale codeset,
you should give a second argument of "cp1251".

Also see the "sscanf" and "getline" functions.

# regsub
Output:     string
Arguments:  s (string)
            match (string)
            repl (string)

Returns a copy of s in which all occurrences of the pattern match are
replaced using repl. The arguments match and repl are interpreted as
Perl-style regular expressions.

See also "strsub" for simple substitution of literal strings.

# remove
Output:     integer
Argument:   fname (string)

If a file by the name of fname exists and is writable by the user, removes
(deletes) the named file. Returns 0 on successful completion, non-zero if
there is no such file or the file cannot be removed.

# replace
Output:     same type as input
Arguments:  x (series or matrix)
            find (scalar or vector)
            subst (scalar or vector)

Replaces each element of x equal to the i-th element of find with the
corresponding element of subst.

If find is a scalar, subst must also be a scalar. If find and subst are both
vectors, they must have the same number of elements. But if find is a vector
and subst a scalar, then all matches will be replaced by subst.

Example:

	  a = {1,2,3;3,4,5}
	  find = {1,3,4}
	  subst = {-1,-8, 0}
	  b = replace(a, find, subst)
	  print a b

produces

          a (2 x 3)

            1   2   3 
            3   4   5 

          b (2 x 3)

            -1    2   -8 
            -8    0    5 

# resample
Output:     same type as input
Arguments:  x (series or matrix)
            b (integer, optional)

Resamples from x with replacement. In the case of a series argument, each
value of the returned series, y_t, is drawn from among all the values of x_t
with equal probability. When a matrix argument is given, each row of the
returned matrix is drawn from the rows of x with equal probability.

The optional argument b represents the block length for resampling by moving
blocks. If this argument is given it should be a positive integer greater
than or equal to 2. The effect is that the output is composed by random
selection with replacement from among all the possible contiguous sequences
of length b in the input. (In the case of matrix input, this means
contiguous rows.) If the length of the data is not an integer multiple of
the block length, the last selected block is truncated to fit.

# round
Output:     same type as input
Argument:   x (scalar, series or matrix)

Rounds to the nearest integer. Note that when x lies halfway between two
integers, rounding is done "away from zero", so for example 2.5 rounds to 3,
but round(-3.5) gives -4. This is a common convention in spreadsheet
programs, but other software may yield different results. See also "ceil",
"floor", "int".

# rownames
Output:     integer
Arguments:  M (matrix)
            s (named list or string)

Attaches names to the rows of the m x n matrix M. If s is a named list, the
row names are copied from the names of the variables; the list must have m
members. If s is a string, it should contain m space-separated sub-strings.
The return value is 0 on successful completion, non-zero on error. See also
"colnames".

Example:

      matrix M = {1,2;2,1;4,1} 
      rownames(M, "Row1 Row2 Row3")
      print M      

# rows
Output:     integer
Argument:   X (matrix)

Returns the number of rows of the matrix X. See also "cols", "mshape",
"unvech", "vec", "vech".

# sd
Output:     scalar or series
Argument:   x (series or list)

If x is a series, returns the (scalar) sample standard deviation, skipping
any missing observations.

If x is a list, returns a series y such that y_t is the sample standard
deviation of the values of the variables in the list at observation t, or NA
if there are any missing values at t.

See also "var".

# sdc
Output:     row vector
Arguments:  X (matrix)
            df (scalar, optional)

Returns the standard deviations of the columns of X. If df is positive it is
used as the divisor for the column variances, otherwise the divisor is the
number of rows in X (that is, no degrees of freedom correction is applied).
See also "meanc", "sumc".

# sdiff
Output:     same type as input
Argument:   y (series or list)

Computes seasonal differences: y(t) - y(t-k), where k is the periodicity of
the current dataset (see "$pd"). Starting values are set to NA.

When a list is returned, the individual variables are automatically named
according to the template sd_varname where varname is the name of the
original series. The name is truncated if necessary, and may be adjusted in
case of non-uniqueness in the set of names thus constructed.

See also "diff", "ldiff".

# selifc
Output:     matrix
Arguments:  A (matrix)
            b (row vector)

Selects from A only the columns for which the corresponding element of b is
non-zero. b must be a row vector with the same number of columns as A.

See also "selifr".

# selifr
Output:     matrix
Arguments:  A (matrix)
            b (column vector)

Selects from A only the rows for which the corresponding element of b is
non-zero. b must be a column vector with the same number of rows as A.

See also "selifc", "trimr".

# seq
Output:     row vector
Arguments:  a (integer)
            b (integer)
            k (integer, optional)

Given only two arguments, returns a row vector filled with consecutive
integers, with a as first element and b last. If a is greater than b the
sequence will be decreasing. If either argument is not integral its
fractional part is discarded.

If the third argument is given, returns a row vector containing a sequence
of integers starting with a and incremented (or decremented, if a is greater
than b) by k at each step. The final value is the largest member of the
sequence that is less than or equal to b (or mutatis mutandis for a greater
than b). The argument k must be positive; if it is not integral its
fractional part is discarded.

See also "ones", "zeros".

# setnote
Output:     integer
Arguments:  b (bundle)
            key (string)
            note (string)

Sets a descriptive note for the object identified by key in the bundle b.
This note will be shown when the print command is used on the bundle. This
function returns 0 on success or non-zero on failure (for example, if there
is no object in b under the given key).

# simann
Output:     scalar
Arguments:  b (vector)
            f (function call)
            maxit (integer, optional)

Implements simulated annealing, which may be helpful in improving the
initialization for a numerical optimization problem.

The first argument holds the intial value of a parameter vector and the
second argument specifies a function call which returns the (scalar) value
of the maximand. The optional third argument specifies the maximum number of
iterations (which defaults to 1024). On successful completion, simann
returns the final value of the maximand.

For more details and an example see the chapter on numerical methods in the
Gretl User's Guide. See also "BFGSmax", "NRmax".

# sin
Output:     same type as input
Argument:   x (scalar, series or matrix)

Returns the sine of x. See also "cos", "tan", "atan".

# sinh
Output:     same type as input
Argument:   x (scalar, series or matrix)

Returns the hyperbolic sine of x.

See also "asinh", "cosh", "tanh".

# skewness
Output:     scalar
Argument:   x (series)

Returns the skewness value for the series x, skipping any missing
observations.

# sort
Output:     same type as input
Argument:   x (series or vector)

Sorts x in ascending order, skipping observations with missing values when x
is a series. See also "dsort", "values". For matrices specifically, see
"msortby".

# sortby
Output:     series
Arguments:  y1 (series)
            y2 (series)

Returns a series containing the elements of y2 sorted by increasing value of
the first argument, y1. See also "sort", "ranking".

# sqrt
Output:     same type as input
Argument:   x (scalar, series or matrix)

Returns the positive square root of x; produces NA for negative values.

Note that if the argument is a matrix the operation is performed element by
element and, since matrices cannot contain NA, negative values generate an
error. For the "matrix square root" see "cholesky".

# sscanf
Output:     integer
Arguments:  src (string)
            format (string)
            ... (see below)

Reads values from src under the control of format and assigns these values
to one or more trailing arguments, indicated by the dots above. Returns the
number of values assigned. This is a simplifed version of the sscanf
function in the C programming language.

src may be either a literal string, enclosed in double quotes, or the name
of a predefined string variable. format is defined similarly to the format
string in "printf" (more on this below). args should be a comma-separated
list containing the names of pre-defined variables: these are the targets of
conversion from src. (For those used to C: one can prefix the names of
numerical variables with & but this is not required.)

Literal text in format is matched against src. Conversion specifiers start
with %, and recognized conversions include %f, %g or %lf for floating-point
numbers; %d for integers; %s for strings; and %m for matrices. You may
insert a positive integer after the percent sign: this sets the maximum
number of characters to read for the given conversion (or the maximum number
of rows in the case of matrix conversion). Alternatively, you can insert a
literal * after the percent to suppress the conversion (thereby skipping any
characters that would otherwise have been converted for the given type). For
example, %3d converts the next 3 characters in source to an integer, if
possible; %*g skips as many characters in source as could be converted to a
single floating-point number.

Matrix conversion works thus: the scanner reads a line of input and counts
the (space- or tab-separated) number of numeric fields. This defines the
number of columns in the matrix. By default, reading then proceeds for as
many lines (rows) as contain the same number of numeric columns, but the
maximum number of rows to read can be limited as described above.

In addition to %s conversion for strings, a simplified version of the C
format %N[chars] is available. In this format N is the maximum number of
characters to read and chars is a set of acceptable characters, enclosed in
square brackets: reading stops if N is reached or if a character not in
chars is encountered. The function of chars can be reversed by giving a
circumflex, ^, as the first character; in that case reading stops if a
character in the given set is found. (Unlike C, the hyphen does not play a
special role in the chars set.)

If the source string does not (fully) match the format, the number of
conversions may fall short of the number of arguments given. This is not in
itself an error so far as gretl is concerned. However, you may wish to check
the number of conversions performed; this is given by the return value.

Some examples follow:

	  scalar x
	  scalar y
	  sscanf("123456", "%3d%3d", x, y)

	  sprintf S, "1 2 3 4\n5 6 7 8"
	  S
	  matrix m
	  sscanf(S, "%m", m)
	  print m

# sst
Output:     scalar
Argument:   y (series)

Returns the sum of squared deviations from the mean for the non-missing
observations in series y. See also "var".

# strlen
Output:     integer
Argument:   s (string)

Returns the number of characters in the string s. Note that this does not
necessarily equal the number of bytes if some characters are outside of the
printable-ASCII range.

# strncmp
Output:     integer
Arguments:  s1 (string)
            s2 (string)
            n (integer, optional)

Compares the two string arguments and returns an integer less than, equal
to, or greater than zero if s1 is found, respectively, to be less than, to
match, or be greater than s2, up to the first n characters. If n is omitted
the comparison proceeds as far as possible.

Note that if you just want to compare two strings for equality, that can be
done without using a function, as in if (s1 == s2) ...

# strsplit
Output:     string
Arguments:  s (string)
            i (integer)

Returns space-separated element i from the string s. The index i is 1-based,
and it is an error if i is less than 1. In case s contains no spaces and i
equals 1, a copy of the entire input string is returned; otherwise, in case
i exceeds the number of space-separated elements an empty string is
returned.

# strstr
Output:     string
Arguments:  s1 (string)
            s2 (string)

Searches s1 for an occurrence of the string s2. If a match is found, returns
a copy of the portion of s1 that starts with s2, otherwise returns an empty
string.

# strstrip
Output:     string
Argument:   s (string)

Returns a copy of the argument s from which leading and trailing white space
have been removed.

# strsub
Output:     string
Arguments:  s (string)
            find (string)
            subst (string)

Returns a copy of s in which all occurrences of find are replaced by subst.
See also "regsub" for more complex string replacement via regular
expressions.

# substr
Output:     string
Arguments:  s (string)
            start (integer)
            end (integer)

Returns a substring of s, from the character with (1-based) index start to
that with index end, inclusive.

# sum
Output:     scalar or series
Argument:   x (series, matrix or list)

If x is a series, returns the (scalar) sum of the non-missing observations
in x. See also "sumall".

If x is a matrix, returns the sum of the elements of the matrix.

If x is a list, returns a series y such that y_t is the sum of the values of
the variables in the list at observation t, or NA if there are any missing
values at t.

# sumall
Output:     scalar
Argument:   x (series)

Returns the sum of the observations of x over the current sample range, or
NA if there are any missing values.

# sumc
Output:     row vector
Argument:   X (matrix)

Returns the sums of the columns of X. See also "meanc", "sumr".

# sumr
Output:     column vector
Argument:   X (matrix)

Returns the sums of the rows of X. See also "meanr", "sumc".

# svd
Output:     row vector
Arguments:  X (matrix)
            &U (reference to matrix, or null)
            &V (reference to matrix, or null)

Performs the singular values decomposition of the matrix X.

The singular values are returned in a row vector. The left and/or right
singular vectors U and V may be obtained by supplying non-null values for
arguments 2 and 3, respectively. For any matrix A, the code

	  s = svd(A, &U, &V) 
	  B = (U .* s) * V

should yield B identical to A (apart from machine precision).

See also "eigengen", "eigensym", "qrdecomp".

# tan
Output:     same type as input
Argument:   x (scalar, series or matrix)

Returns the tangent of x.

# tanh
Output:     same type as input
Argument:   x (scalar, series or matrix)

Returns the hyperbolic tangent of x.

See also "atanh", "cosh", "sinh".

# toepsolv
Output:     column vector
Arguments:  c (vector)
            r (vector)
            b (vector)

Solves a Toeplitz system of linear equations, that is Tx = b where T is a
square matrix whose element T_i,j equals c_i-j for i>=j and r_j-i for i<=j.
Note that the first elements of c and r must be equal, otherwise an error is
returned. Upon successful completion, the function returns the vector x.

The algorithm used here takes advantage of the special structure of the
matrix T, which makes it much more efficient than other unspecialized
algorithms, especially for large problems. Warning: in certain cases, the
function may spuriously issue a singularity error when in fact the matrix T
is nonsingular; this problem, however, cannot arise when T is positive
definite.

# tolower
Output:     string
Argument:   s (string)

Returns a copy of s in which any upper-case characters are converted to
lower case.

# toupper
Output:     string
Argument:   s (string)

Returns a copy of s in which any lower-case characters are converted to
upper case.

# tr
Output:     scalar
Argument:   A (square matrix)

Returns the trace of the square matrix A, that is, the sum of its diagonal
elements. See also "diag".

# transp
Output:     matrix
Argument:   X (matrix)

Returns the transpose of X. Note: this is rarely used; in order to get the
transpose of a matrix, in most cases you can just use the prime operator:
X'.

# trimr
Output:     matrix
Arguments:  X (matrix)
            ttop (integer)
            tbot (integer)

Returns a matrix that is a copy of X with ttop rows trimmed at the top and
tbot rows trimmed at the bottom. The latter two arguments must be
non-negative, and must sum to less than the total rows of X.

See also "selifr".

# typestr
Output:     string
Argument:   typecode (integer)

Returns the name of the gretl data-type corresponding to typecode. This is
intended for use in conjunction with the function "inbundle". The value
returned is one of "scalar", "series", "matrix", "string", "bundle" or
"null".

# uniform
Output:     series
Arguments:  a (scalar)
            b (scalar)

Generates a series of uniform pseudo-random variates in the interval (a, b),
or, if no arguments are supplied, in the interval (0,1). The algorithm used
by default is the SIMD-oriented Fast Mersenne Twister developed by Saito and
Matsumoto (2008).

See also "randgen", "normal", "mnormal", "muniform".

# uniq
Output:     column vector
Argument:   x (series or vector)

Returns a vector containing the distinct elements of x, not sorted but in
their order of appearance. See "values" for a variant that sorts the
elements.

# unvech
Output:     square matrix
Argument:   v (vector)

Returns an n x n symmetric matrix obtained by rearranging the elements of v.
The number of elements in v must be a triangular integer -- i.e., a number k
such that an integer n exists with the property k = n(n+1)/2. This is the
inverse of the function "vech".

See also "mshape", "vech".

# upper
Output:     square matrix
Argument:   A (square matrix)

Returns an n x n upper triangular matrix: the elements on and above the
diagonal are equal to the corresponding elements of A; the remaining
elements are zero.

See also "lower".

# urcpval
Output:     scalar
Arguments:  tau (scalar)
            n (integer)
            niv (integer)
            itv (integer)

P-values for the test statistic from the Dickey-Fuller unit-root test and
the Engle-Granger cointegration test, as per James MacKinnon (1996).

The arguments are as follows: tau denotes the test statistic; n is the
number of observations (or 0 for an asymptotic result); niv is the number of
potentially cointegrated variables when testing for cointegration (or 1 for
a univariate unit-root test); and itv is a code for the model specification:
1 for no constant, 2 for constant included, 3 for constant and linear trend,
4 for constant and quadratic trend.

Note that if the test regression is "augmented" with lags of the dependent
variable, then you should give an n value of 0 to get an asymptotic result.

See also "pvalue".

# values
Output:     column vector
Argument:   x (series or vector)

Returns a vector containing the distinct elements of x sorted in ascending
order. If you wish to truncate the values to integers before applying this
function, use the expression values(int(x)).

See also "uniq", "dsort", "sort".

# var
Output:     scalar or series
Argument:   x (series or list)

If x is a series, returns the (scalar) sample variance, skipping any missing
observations.

If x is a list, returns a series y such that y_t is the sample variance of
the values of the variables in the list at observation t, or NA if there are
any missing values at t.

In each case the sum of squared deviations from the mean is divided by (n -
1) for n > 1. Otherwise the variance is given as zero if n = 1, or as NA if
n = 0.

See also "sd".

# varname
Output:     string
Argument:   v (integer or list)

If given an integer argument, returns the name of the variable with ID
number v, or generates an error if there is no such variable.

If given a list argument, returns a string containing the names of the
variables in the list, separated by commas. If the supplied list is empty,
so is the returned string.

# varnum
Output:     integer
Argument:   varname (string)

Returns the ID number of the variable called varname, or NA is there is no
such variable.

# varsimul
Output:     matrix
Arguments:  A (matrix)
            U (matrix)
            y0 (matrix)

Simulates a p-order n-variable VAR, that is y(t) = A1 y(t-1) + ... + Ap
y(t-p) + u(t). The coefficient matrix A is composed by horizontal stacking
of the A_i matrices; it is n x np, with one row per equation. This
corresponds to the first n rows of the matrix $compan provided by gretl's
var and vecm commands.

The u_t vectors are contained (as rows) in U (T x n). Initial values are in
y0 (p x n).

If the VAR contains deterministic terms and/or exogenous regressors, these
can be handled by folding them into the U matrix: each row of U then becomes
u(t) = B' x(t) + e(t).

The output matrix has T + p rows and n columns; it holds the initial p
values of the endogenous variables plus T simulated values.

See also "$compan", "var", "vecm".

# vec
Output:     column vector
Argument:   X (matrix)

Stacks the columns of X as a column vector. See also "mshape", "unvech",
"vech".

# vech
Output:     column vector
Argument:   A (square matrix)

Returns in a column vector the elements of A on and above the diagonal.
Typically, this function is used on symmetric matrices; in this case, it can
be undone by the function "unvech". See also "vec".

# weekday
Output:     integer
Arguments:  year (integer)
            month (integer)
            day (integer)

Returns the day of the week (Sunday = 0, Monday = 1, etc.) for the date
specified by the three arguments, or NA if the date is invalid.

# wmean
Output:     series
Arguments:  Y (list)
            W (list)

Returns a series y such that y_t is the weighted mean of the values of the
variables in list Y at observation t, the respective weights given by the
values of the variables in list W at t. The weights can therefore be
time-varying. The lists Y and W must be of the same length and the weights
must be non-negative.

See also "wsd", "wvar".

# wsd
Output:     series
Arguments:  Y (list)
            W (list)

Returns a series y such that y_t is the weighted sample standard deviation
of the values of the variables in list Y at observation t, the respective
weights given by the values of the variables in list W at t. The weights can
therefore be time-varying. The lists Y and W must be of the same length and
the weights must be non-negative.

See also "wmean", "wvar".

# wvar
Output:     series
Arguments:  X (list)
            W (list)

Returns a series y such that y_t is the weighted sample variance of the
values of the variables in list X at observation t, the respective weights
given by the values of the variables in list W at t. The weights can
therefore be time-varying. The lists Y and W must be of the same length and
the weights must be non-negative.

See also "wmean", "wsd".

# xmax
Output:     scalar
Arguments:  x (scalar)
            y (scalar)

Returns the greater of x and y, or NA if either value is missing.

See also "xmin", "max", "min".

# xmin
Output:     scalar
Arguments:  x (scalar)
            y (scalar)

Returns the lesser of x and y, or NA if either value is missing.

See also "xmax", "max", "min".

# xpx
Output:     list
Argument:   L (list)

Returns a list that references the squares and cross-products of the
variables in list L. Squares are named on the pattern sq_varname and
cross-products on the pattern var1_var2. The input variable names are
truncated if need be, and the output names may be adjusted in case of
duplication of names in the returned list.

# zeromiss
Output:     same type as input
Argument:   x (scalar or series)

Converts zeros to NAs. If x is a series, the conversion is done element by
element. See also "missing", "misszero", "ok".

# zeros
Output:     matrix
Arguments:  r (integer)
            c (integer)

Outputs a zero matrix with r rows and c columns. See also "ones", "seq".