This file is indexed.

/usr/share/gravit/spawn/functions.lua is in gravit-data 0.5.1+dfsg-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
function vadd(v1, v2)
	return v(v1.x + v2.x, v1.y + v2.y, v1.z + v2.z)
end

function vsub(v1, v2)
	return v(v1.x - v2.x, v1.y - v2.y, v1.z - v2.z)
end

function vmul(v1, f)
	return v(v1.x * f, v1.y * f, v1.z * f)
end

function v(_x, _y, _z)
	t = { x = _x, y = _y, z = _z };
	mt = { __add = vadd,  __sub = vsub, __mul = vmul }
	setmetatable(t, mt)
	return t
end

local random_firstuse=1
function seed_random()
       local r_seed = os.clock() * 1000 + os.time() + math.random(0,32676)
       -- improved seeding on some platforms, by throwing away the high part of time,
       -- then reversing the digits so the least significant part makes the biggest change
       -- see http://lua-users.org/wiki/MathLibraryTutorial
       r_seed = tonumber(tostring( r_seed ):reverse():sub(1,8))
       math.randomseed( r_seed )
       random_firstuse=0
end

function randomfloat(min,max)
        if random_firstuse == 1 then
	   seed_random();
        end
	return math.random() * (max-min) + min
end

-- returns an integer between min and max inclusive
function randomint(min,max)
        if random_firstuse == 1 then
	   seed_random();
        end
	return math.random(min,max)
end

-- scalar size of a vector
function vlength(v1)
	return math.sqrt((v1.x * v1.x) + (v1.y * v1.y) + (v1.z * v1.z))
end

-- scalar distance between two vectors
function distance(v1,v2)
	return math.sqrt((v1.x-v2.x)^2 + (v1.y-v2.y)^2 + (v1.z-v2.z)^2)
end

-- compute cross product of two vectors
-- returns a vector that is perpendicular to both input vectors
function vecproduct(vect1,vect2)
	local vect3=v(0,0,0)

	vect3.x = vect1.y * vect2.z - vect1.z * vect2.y
	vect3.y = vect1.z * vect2.x - vect1.x * vect2.z
	vect3.z = vect1.x * vect2.y - vect1.y * vect2.x
	return vect3
end

-- slow and buggy
-- function randomrange(radius)
--      ????
--	local bigrange = radius * math.pi
--	local origin = v(0,0,0)
--	local pos
--	local d
--	repeat
--		pos = v(randomfloat(-bigrange,bigrange),randomfloat(-bigrange,bigrange),randomfloat(-bigrange,bigrange))
--		d = distance(pos, origin)
--	until d < radius
--	return pos
-- end

-- randomly pick a point inside a ball
function randomrange(radius)
	local pos
	local d2
	repeat
	        -- pick random position from cube(-1,1)
		pos = v(randomfloat(-1,1), randomfloat(-1,1), randomfloat(-1,1))
		-- d2 = square distance to v(0,0,0)
		d2 = pos.x*pos.x + pos.y*pos.y + pos.z*pos.z
                -- repeat util pos is inside a ball of radius 1
	until d2 < 1
	-- scale to target radius
	return pos * radius
end

-- randomly pick a point on the surface of a ball
function randomshell(radius)
    local pos
    local d2
    local rscale

    -- pick random position inside unit sphere (radius = 1)
    repeat
        pos = v(randomfloat(-1,1), randomfloat(-1,1), randomfloat(-1,1))
	d2 = pos.x*pos.x + pos.y*pos.y + pos.z*pos.z
    until (d2 > 0) and (d2 <= 1)

    -- scale position vector to target radius (so the point is always on the surface of the sphere)
    rscale = radius / math.sqrt(d2)
    return pos * rscale
end



function rotatevector(pos, theta, around)

	local result = v(0,0,0)

	--  Quaternion rotation only works properly when "around" has scalar size 1
	around = around * (1.0 / vlength(around))

	local costheta = math.cos(theta)
	local sintheta = math.sin(theta)
	local tcostheta = 1 - costheta

	result.x = result.x + (tcostheta * around.x * around.x + costheta) * pos.x
	result.x = result.x + (tcostheta * around.x * around.y - around.z * sintheta) * pos.y
	result.x = result.x + (tcostheta * around.x * around.z + around.y * sintheta) * pos.z

	result.y = result.y + (tcostheta * around.x * around.y + around.z * sintheta) * pos.x
	result.y = result.y + (tcostheta * around.y * around.y + costheta) * pos.y
	result.y = result.y + (tcostheta * around.y * around.z - around.x * sintheta) * pos.z

	result.z = result.z + (tcostheta * around.x * around.z - around.y * sintheta) * pos.x
	result.z = result.z + (tcostheta * around.y * around.z + around.x * sintheta) * pos.y
	result.z = result.z + (tcostheta * around.z * around.z + costheta) * pos.z

	return result

end

-- returns a random vector that is orthogonal to the input vector
function randomortho(vector, radius)
	local vect1=v(0,0,0)
	local vect2=v(0,0,0)
	local vectresult=v(0,0,0)
	local a=randomfloat(-1, 1)
	local b=randomfloat(-1, 1)


	-- step 0 : special handling for zero size vector
	if (math.abs(vector.x) + math.abs(vector.y) + math.abs(vector.z) < 0.000001)  then
		return v(0,radius,0)
	end

	-- step one : choose one orthogonal vector
	-- see http://www.wer-weiss-was.de/theme50/article3103419.html
	if (math.abs(vector.z)>0.0001) then
	   vect1 = v(0, vector.z, -vector.y)
	else
	   vect1 = v(vector.y, -vector.x,0)
	end

	-- step two : compute vect2 othogonal to vector and vect2
	-- (using cross product), so 
	-- (vect1, vect2, vector are othogonal now)
	vect2 = vecproduct(vector,vect1)

	--step 3: normalize vectors (optional..)
	vect1=vect1 * (1/distance(vect1, v(0,0,0)))
	vect2=vect2 * (1/distance(vect2, v(0,0,0)))

	--step 4: vector3 = a*vect1 + b*vect2
	vectresult.x= a*vect1.x + b*vect2.x
	vectresult.y= a*vect1.y + b*vect2.y
	vectresult.z= a*vect1.z + b*vect2.z

	--step 4: normalize and scale
	vectresult = vectresult * (radius / distance(vectresult, v(0,0,0)))
	return vectresult
end



function makeball(org, vel, radius, massmin, massmax, firstparticle, particles)

	for i=firstparticle,firstparticle+particles-1 do
		local pos = org + randomrange(radius)
		local mass = randomfloat(massmin, massmax)
		particle(i, pos, vel, mass)
	end
	
end

function makespiral(galpos, galvel, galradius, massmin, massmax, firstparticle, particles)		

	local massrange = math.abs(massmin - massmax)
	local estmass = massrange / 2 * particles
	local speedbase = .0000001
	local galaxyrotation = randomrange(1)
    local galaxyangle = randomfloat(0, 2 * math.pi);
	local velocitychaos = randomfloat(0.00000001, 0.00001)
	local pos
	local vel
	local mass
	local radius
	local speed
	local angle

	for i=firstparticle,firstparticle+particles-1 do
        radius = randomfloat(0, galradius)
        speed = speedbase * radius * math.sqrt(estmass)
        angle = randomfloat(0,2*math.pi)
        pos = v(math.cos(angle)*radius, math.sin(angle)*radius, randomfloat(-1,1))
        vel = v(math.cos(angle+math.pi/2)*speed*radius, math.sin(angle+math.pi/2)*speed*radius, 0)
        mass = randomfloat(massmin,massmax)
		pos = rotatevector(pos, galaxyangle, galaxyrotation)
		vel = rotatevector(vel, galaxyangle, galaxyrotation)
        particle(i, galpos + pos, galvel + vel, mass)
	end

end

function makegalaxy(galpos, galvel, galradius, massmin, massmax, firstparticle, particles)

	if randomint(0, 2) == 0 then
		makeball(galpos, galvel, galradius, massmin, massmax, firstparticle, particles)		
	else
		makespiral(galpos, galvel, galradius, massmin, massmax, firstparticle, particles)		
	end

end