/usr/share/doc/gprolog-doc/gprolog.html/gprolog060.html is in gprolog-doc 1.3.0-6.1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 | <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN"
"http://www.w3.org/TR/REC-html40/loose.dtd">
<HTML>
<HEAD>
<META http-equiv="Content-Type" content="text/html; charset=US-ASCII">
<META name="GENERATOR" content="hevea 1.10">
<LINK rel="stylesheet" type="text/css" href="gprolog.css">
<TITLE>Arithmetic constraints</TITLE>
</HEAD>
<BODY TEXT=black BGCOLOR=white>
<A HREF="gprolog059.html"><IMG SRC="previous_motif.gif" ALT="Previous"></A>
<A HREF="gprolog054.html"><IMG SRC="contents_motif.gif" ALT="Up"></A>
<A HREF="gprolog061.html"><IMG SRC="next_motif.gif" ALT="Next"></A>
<HR>
<H3 CLASS="subsection"><A NAME="htoc321">8.6</A>  Arithmetic constraints</H3><UL>
<LI><A HREF="gprolog060.html#toc263">FD arithmetic expressions</A>
</LI><LI><A HREF="gprolog060.html#toc264">Partial AC: <TT>(#=)/2</TT> - constraint equal,
<TT>(#</TT><TT>\</TT><TT>=)/2</TT> - constraint not equal,<BR>
<TT>(#</TT><TT><</TT><TT>)/2</TT> - constraint less than,
<TT>(#=</TT><TT><</TT><TT>)/2</TT> - constraint less than or equal,<BR>
<TT>(#</TT><TT>></TT><TT>)/2</TT> - constraint greater than,
<TT>(#</TT><TT>></TT><TT>=)/2</TT> - constraint greater than or equal</A>
</LI><LI><A HREF="gprolog060.html#toc265">Full AC: <TT>(#=#)/2</TT> - constraint equal,
<TT>(#</TT><TT>\</TT><TT>=#)/2</TT> - constraint not equal,<BR>
<TT>(#</TT><TT><</TT><TT>#)/2</TT> - constraint less than,
<TT>(#=</TT><TT><</TT><TT>#)/2</TT> - constraint less than or equal,<BR>
<TT>(#</TT><TT>></TT><TT>#)/2</TT> - constraint greater than,
<TT>(#</TT><TT>></TT><TT>=#)/2</TT> - constraint greater than or equal</A>
</LI><LI><A HREF="gprolog060.html#toc266"><TT>fd_prime/1</TT>,
<TT>fd_not_prime/1</TT></A>
</LI></UL>
<H4 CLASS="subsubsection"><A NAME="toc263"></A><A NAME="htoc322">8.6.1</A>  FD arithmetic expressions</H4><P>
<A NAME="FD-arithmetic-expressions"></A>
An FD arithmetic expression is a Prolog term built from integers, variables
(Prolog or FD variables), and functors (or operators) that represent
arithmetic functions. The following table details the components of an FD
arithmetic expression:</P><TABLE BORDER=1 CELLSPACING=0 CELLPADDING=1><TR><TD VALIGN=top ALIGN=left NOWRAP>
FD Expression</TD><TD VALIGN=top ALIGN=left><DIV CLASS="flushleft">Result</DIV></TD></TR>
<TR><TD VALIGN=top ALIGN=left NOWRAP>
Prolog variable</TD><TD VALIGN=top ALIGN=left><DIV CLASS="flushleft">domain <TT>0..fd_max_integer</TT></DIV></TD></TR>
<TR><TD VALIGN=top ALIGN=left NOWRAP>
FD variable <TT>X</TT></TD><TD VALIGN=top ALIGN=left><DIV CLASS="flushleft">domain of <TT>X</TT></DIV></TD></TR>
<TR><TD VALIGN=top ALIGN=left NOWRAP>
integer number <TT>N</TT></TD><TD VALIGN=top ALIGN=left><DIV CLASS="flushleft">domain <TT>N..N</TT></DIV></TD></TR>
<TR><TD VALIGN=top ALIGN=left NOWRAP>
<TT>+ E</TT></TD><TD VALIGN=top ALIGN=left><DIV CLASS="flushleft">same as <TT>E</TT></DIV></TD></TR>
<TR><TD VALIGN=top ALIGN=left NOWRAP>
<TT>- E</TT></TD><TD VALIGN=top ALIGN=left><DIV CLASS="flushleft">opposite of <TT>E</TT></DIV></TD></TR>
<TR><TD VALIGN=top ALIGN=left NOWRAP>
<TT>E1 + E2</TT></TD><TD VALIGN=top ALIGN=left><DIV CLASS="flushleft">sum of <TT>E1</TT> and <TT>E2</TT></DIV></TD></TR>
<TR><TD VALIGN=top ALIGN=left NOWRAP>
<TT>E1 - E2</TT></TD><TD VALIGN=top ALIGN=left><DIV CLASS="flushleft">subtraction of <TT>E2</TT> from <TT>E1</TT></DIV></TD></TR>
<TR><TD VALIGN=top ALIGN=left NOWRAP>
<TT>E1 * E2</TT></TD><TD VALIGN=top ALIGN=left><DIV CLASS="flushleft">multiplication of <TT>E1</TT> by <TT>E2</TT></DIV></TD></TR>
<TR><TD VALIGN=top ALIGN=left NOWRAP>
<TT>E1 / E2</TT></TD><TD VALIGN=top ALIGN=left><DIV CLASS="flushleft">integer division of <TT>E1</TT> by <TT>E2</TT> (only
succeeds if the remainder is 0)</DIV></TD></TR>
<TR><TD VALIGN=top ALIGN=left NOWRAP>
<TT>E1 ** E2</TT></TD><TD VALIGN=top ALIGN=left><DIV CLASS="flushleft"><TT>E1</TT> raised to the power of <TT>E2
</TT>(<TT>E1</TT> or <TT>E2</TT> must be an integer)</DIV></TD></TR>
<TR><TD VALIGN=top ALIGN=left NOWRAP>
<TT>min(E1,E2)</TT></TD><TD VALIGN=top ALIGN=left><DIV CLASS="flushleft">minimum of <TT>E1</TT> and <TT>E2</TT></DIV></TD></TR>
<TR><TD VALIGN=top ALIGN=left NOWRAP>
<TT>max(E1,E2)</TT></TD><TD VALIGN=top ALIGN=left><DIV CLASS="flushleft">maximum of <TT>E1</TT> and <TT>E2</TT></DIV></TD></TR>
<TR><TD VALIGN=top ALIGN=left NOWRAP>
<TT>dist(E1,E2)</TT></TD><TD VALIGN=top ALIGN=left><DIV CLASS="flushleft">distance, i.e. |<TT>E1 - E2|</TT></DIV></TD></TR>
<TR><TD VALIGN=top ALIGN=left NOWRAP>
<TT>E1 // E2</TT></TD><TD VALIGN=top ALIGN=left><DIV CLASS="flushleft">quotient of the integer division of <TT>E1</TT> by
<TT>E2</TT></DIV></TD></TR>
<TR><TD VALIGN=top ALIGN=left NOWRAP>
<TT>E1 rem E2</TT></TD><TD VALIGN=top ALIGN=left><DIV CLASS="flushleft">remainder of the integer division of <TT>E1</TT> by
<TT>E2</TT></DIV></TD></TR>
<TR><TD VALIGN=top ALIGN=left NOWRAP>
<TT>quot_rem(E1,E2,R)</TT></TD><TD VALIGN=top ALIGN=left><DIV CLASS="flushleft">quotient of the integer division of
<TT>E1</TT> by <TT>E2</TT>
<BR>
(<TT>R</TT> is the remainder of the integer division of <TT>E1</TT> by
<TT>E2</TT>)</DIV></TD></TR>
</TABLE><P>FD expressions are not restricted to be linear. However non-linear
constraints usually yield less constraint propagation than linear
constraints.</P><P><TT>+</TT>, <TT>-</TT>, <TT>*</TT>, <TT>/</TT>, <TT>//</TT>, <TT>rem</TT>
and <TT>**</TT> are predefined infix operators. <TT>+</TT> and <TT>-</TT>
are predefined prefix operators (section <A HREF="gprolog037.html#op/3:(Term-input/output)">7.14.10</A>).</P><P><B>Errors</B></P><TABLE CELLSPACING=6 CELLPADDING=0><TR><TD CLASS="hbar" COLSPAN=3></TD></TR>
<TR><TD VALIGN=top ALIGN=left>
a sub-expression is of the form <TT>_ ** E</TT> and <TT>E</TT> is
a variable</TD><TD VALIGN=top ALIGN=center NOWRAP>  </TD><TD VALIGN=top ALIGN=left><TT>instantiation_error</TT></TD></TR>
<TR><TD CLASS="hbar" COLSPAN=3></TD></TR>
<TR><TD VALIGN=top ALIGN=left>
a sub-expression <TT>E</TT> is neither a variable nor an integer
nor an FD arithmetic functor</TD><TD VALIGN=top ALIGN=center NOWRAP>  </TD><TD VALIGN=top ALIGN=left><TT>type_error(fd_evaluable, E)</TT></TD></TR>
<TR><TD CLASS="hbar" COLSPAN=3></TD></TR>
<TR><TD VALIGN=top ALIGN=left>
an expression is too complex</TD><TD VALIGN=top ALIGN=center NOWRAP>  </TD><TD VALIGN=top ALIGN=left><TT>resource_error(too_big_fd_constraint)</TT></TD></TR>
<TR><TD CLASS="hbar" COLSPAN=3></TD></TR>
</TABLE><H4 CLASS="subsubsection"><A NAME="toc264"></A><A NAME="htoc323">8.6.2</A>  Partial AC: <TT>(#=)/2</TT> - constraint equal,
<TT>(#\=)/2</TT> - constraint not equal,<BR>
<TT>(#<)/2</TT> - constraint less than,
<TT>(#=<)/2</TT> - constraint less than or equal,<BR>
<TT>(#>)/2</TT> - constraint greater than,
<TT>(#>=)/2</TT> - constraint greater than or equal</H4><P>
<A NAME="Partial-AC:-(:=)/2"></A>
</P><P><B>Templates</B></P><DL CLASS="list"><DT CLASS="dt-list">
</DT><DD CLASS="dd-list"><TT>
#=(?fd_evaluable, ?fd_evaluable)<BR>
#\=(?fd_evaluable, ?fd_evaluable)<BR>
#<(?fd_evaluable, ?fd_evaluable)<BR>
#=<(?fd_evaluable, ?fd_evaluable)<BR>
#>(?fd_evaluable, ?fd_evaluable)<BR>
#>=(?fd_evaluable, ?fd_evaluable)</TT></DD></DL><P><B>Description</B></P><P><TT>FdExpr1 #= FdExpr2</TT> constrains <TT>FdExpr1</TT> to be
equal to <TT>FdExpr2</TT>.</P><P><TT>FdExpr1 #\= FdExpr2</TT> constrains <TT>FdExpr1</TT>
to be different from <TT>FdExpr2</TT>.</P><P><TT>FdExpr1 #< FdExpr2</TT> constrains <TT>FdExpr1</TT> to
be less than <TT>FdExpr2</TT>.</P><P><TT>FdExpr1 #=< FdExpr2</TT> constrains <TT>FdExpr1</TT>
to be less than or equal to <TT>FdExpr2</TT>.</P><P><TT>FdExpr1 #> FdExpr2</TT> constrains <TT>FdExpr1</TT> to
be greater than <TT>FdExpr2</TT>.</P><P><TT>FdExpr1 #>= FdExpr2</TT> constrains <TT>FdExpr1</TT>
to be greater than or equal to <TT>FdExpr2</TT>.</P><P><TT>FdExpr1</TT> and <TT>FdExpr2</TT> are arithmetic FD expressions
(section <A HREF="#FD-arithmetic-expressions">8.6.1</A>).</P><P><TT>#=</TT>, <TT>#\=</TT>, <TT>#<</TT>, <TT>#=<</TT>,
<TT>#></TT> and <TT>#>=</TT> are predefined infix operators
(section <A HREF="gprolog037.html#op/3:(Term-input/output)">7.14.10</A>).</P><P>These predicates post arithmetic constraints that are managed by the solver
using a partial arc-consistency algorithm to reduce the domain of involved
variables. In this scheme only the bounds of the domain of variables are
updated. This leads to less propagation than full arc-consistency techniques
(section <A HREF="#Full-AC:-(:=:)/2">8.6.3</A>) but is generally more efficient for
arithmetic. These arithmetic constraints can be reified (section <A HREF="gprolog061.html#Boolean-and-reified-constraints">8.7</A>).</P><P><B>Errors</B></P><P>Refer to the syntax of arithmetic FD expressions for possible errors
(section <A HREF="#FD-arithmetic-expressions">8.6.1</A>).</P><P><B>Portability</B></P><P>GNU Prolog predicates.</P><H4 CLASS="subsubsection"><A NAME="toc265"></A><A NAME="htoc324">8.6.3</A>  Full AC: <TT>(#=#)/2</TT> - constraint equal,
<TT>(#\=#)/2</TT> - constraint not equal,<BR>
<TT>(#<#)/2</TT> - constraint less than,
<TT>(#=<#)/2</TT> - constraint less than or equal,<BR>
<TT>(#>#)/2</TT> - constraint greater than,
<TT>(#>=#)/2</TT> - constraint greater than or equal</H4><P>
<A NAME="Full-AC:-(:=:)/2"></A>
</P><P><B>Templates</B></P><DL CLASS="list"><DT CLASS="dt-list">
</DT><DD CLASS="dd-list"><TT>
#=#(?fd_evaluable, ?fd_evaluable)<BR>
#\=#(?fd_evaluable, ?fd_evaluable)<BR>
#<#(?fd_evaluable, ?fd_evaluable)<BR>
#=<#(?fd_evaluable, ?fd_evaluable)<BR>
#>#(?fd_evaluable, ?fd_evaluable)<BR>
#>=#(?fd_evaluable, ?fd_evaluable)</TT></DD></DL><P><B>Description</B></P><P><TT>FdExpr1 #=# FdExpr2</TT> constrains <TT>FdExpr1</TT> to
be equal to <TT>FdExpr2</TT>.</P><P><TT>FdExpr1 #\=# FdExpr2</TT> constrains <TT>FdExpr1</TT> to be
different from <TT>FdExpr2</TT>.</P><P><TT>FdExpr1 #<# FdExpr2</TT> constrains <TT>FdExpr1</TT>
to be less than <TT>FdExpr2</TT>.</P><P><TT>FdExpr1 #=<# FdExpr2</TT> constrains <TT>FdExpr1</TT> to be
less than or equal to <TT>FdExpr2</TT>.</P><P><TT>FdExpr1 #># FdExpr2</TT> constrains <TT>FdExpr1</TT>
to be greater than <TT>FdExpr2</TT>.</P><P><TT>FdExpr1 #>=# FdExpr2</TT> constrains <TT>FdExpr1</TT> to be
greater than or equal to <TT>FdExpr2</TT>.</P><P><TT>FdExpr1</TT> and <TT>FdExpr2</TT> are arithmetic FD expressions
(section <A HREF="#FD-arithmetic-expressions">8.6.1</A>).</P><P><TT>#=#</TT>, <TT>#\=#</TT>, <TT>#<#</TT>,
<TT>#=<#</TT>, <TT>#>#</TT> and <TT>#>=#</TT> are
predefined infix operators (section <A HREF="gprolog037.html#op/3:(Term-input/output)">7.14.10</A>).</P><P>These predicates post arithmetic constraints that are managed by the solver
using a full arc-consistency algorithm to reduce the domain of involved
variables. In this scheme the full domain of variables is updated. This
leads to more propagation than partial arc-consistency techniques (section <A HREF="#FD-arithmetic-expressions">8.6.1</A>) but is generally less efficient for arithmetic.
These arithmetic constraints can be reified (section <A HREF="gprolog061.html#Boolean-FD-expressions">8.7.1</A>).</P><P><B>Errors</B></P><P>Refer to the syntax of arithmetic FD expressions for possible errors
(section <A HREF="#FD-arithmetic-expressions">8.6.1</A>).</P><P><B>Portability</B></P><P>GNU Prolog predicates.</P><H4 CLASS="subsubsection"><A NAME="toc266"></A><A NAME="htoc325">8.6.4</A>  <TT>fd_prime/1</TT>,
<TT>fd_not_prime/1</TT></H4><P><B>Templates</B></P><DL CLASS="list"><DT CLASS="dt-list">
</DT><DD CLASS="dd-list"><TT>
fd_prime(?fd_variable)<BR>
fd_not_prime(?fd_variable)</TT></DD></DL><P><B>Description</B></P><P><TT>fd_prime(X)</TT> constraints <TT>X</TT> to be a prime number between
<TT>0..vector_max</TT>.
This constraint enforces a sparse representation
for the domain of <TT>X</TT> (section <A HREF="gprolog055.html#Intro-FD">8.1</A>).</P><P><TT>fd_not_prime(X)</TT> constraints <TT>X</TT> to be a non prime number
between <TT>0..vector_max</TT>. This constraint enforces a sparse
representation for the domain of <TT>X</TT> (section <A HREF="gprolog055.html#Intro-FD">8.1</A>).</P><P><B>Errors</B></P><TABLE CELLSPACING=6 CELLPADDING=0><TR><TD CLASS="hbar" COLSPAN=3></TD></TR>
<TR><TD VALIGN=top ALIGN=left>
<TT>X</TT> is neither an FD variable nor an integer</TD><TD VALIGN=top ALIGN=center NOWRAP>  </TD><TD VALIGN=top ALIGN=left><TT>type_error(fd_variable, X)</TT></TD></TR>
<TR><TD CLASS="hbar" COLSPAN=3></TD></TR>
</TABLE><P><B>Portability</B></P><P>GNU Prolog predicates.</P>
<HR SIZE=2>
Copyright (C) 1999-2007 Daniel Diaz
Verbatim copying and distribution of this entire article is permitted in any
medium, provided this notice is preserved. <A HREF="index.html#copyright">More about the copyright</A>
<HR>
<A HREF="gprolog059.html"><IMG SRC="previous_motif.gif" ALT="Previous"></A>
<A HREF="gprolog054.html"><IMG SRC="contents_motif.gif" ALT="Up"></A>
<A HREF="gprolog061.html"><IMG SRC="next_motif.gif" ALT="Next"></A>
</BODY>
</HTML>
|