This file is indexed.

/usr/share/doc/geographiclib/html/auxlat.html is in geographiclib-doc 1.45-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/xhtml;charset=UTF-8"/>
<meta http-equiv="X-UA-Compatible" content="IE=9"/>
<meta name="generator" content="Doxygen 1.8.9.1"/>
<title>GeographicLib: Auxiliary latitudes</title>
<link href="tabs.css" rel="stylesheet" type="text/css"/>
<script type="text/javascript" src="jquery.js"></script>
<script type="text/javascript" src="dynsections.js"></script>
<script type="text/x-mathjax-config">
  MathJax.Hub.Config({
    extensions: ["tex2jax.js"],
    jax: ["input/TeX","output/HTML-CSS"],
});
</script><script src="/usr/share/javascript/mathjax/MathJax.js/MathJax.js"></script>
<link href="doxygen.css" rel="stylesheet" type="text/css" />
</head>
<body>
<div id="top"><!-- do not remove this div, it is closed by doxygen! -->
<div id="titlearea">
<table cellspacing="0" cellpadding="0">
 <tbody>
 <tr style="height: 56px;">
  <td style="padding-left: 0.5em;">
   <div id="projectname">GeographicLib
   &#160;<span id="projectnumber">1.45</span>
   </div>
  </td>
 </tr>
 </tbody>
</table>
</div>
<!-- end header part -->
<!-- Generated by Doxygen 1.8.9.1 -->
  <div id="navrow1" class="tabs">
    <ul class="tablist">
      <li><a href="index.html"><span>Main&#160;Page</span></a></li>
      <li class="current"><a href="pages.html"><span>Related&#160;Pages</span></a></li>
      <li><a href="namespaces.html"><span>Namespaces</span></a></li>
      <li><a href="annotated.html"><span>Classes</span></a></li>
      <li><a href="files.html"><span>Files</span></a></li>
    </ul>
  </div>
</div><!-- top -->
<div class="header">
  <div class="headertitle">
<div class="title">Auxiliary latitudes </div>  </div>
</div><!--header-->
<div class="contents">
<div class="textblock"><center> Back to <a class="el" href="geocentric.html">Geocentric coordinates</a>. Forward to <a class="el" href="highprec.html">Support for high precision arithmetic</a>. Up to <a class="el" href="index.html#contents">Contents</a>. </center><p>Six latitudes are used by <a class="el" href="namespaceGeographicLib.html" title="Namespace for GeographicLib. ">GeographicLib</a>:</p><ul>
<li>&phi;, the (geographic) latitude;</li>
<li>&beta;, the parametric latitude;</li>
<li>&theta;, the geocentric latitude;</li>
<li>&mu;, the rectifying latitude;</li>
<li>&chi;, the conformal latitude;</li>
<li>&xi;, the authalic latitude.</li>
</ul>
<p>The last five of these are called <em>auxiliary latitudes</em>. These quantities are all defined in the <a href="https://en.wikipedia.org/wiki/Latitude#Auxiliary_latitudes">Wikipedia article on latitudes</a>. (In addition there's the isometric latitude, &psi; = sinh<sup>&minus;1</sup>&#160;tan&chi;; but this is not an angle-like variable and we don't consider it further here.) The relations between &phi;, &beta;, and &theta; are all simple elementary functions. The latitudes &chi; and &xi; can be expressed as elementary functions of &phi;; however, these functions can only be inverted iteratively. The rectifying latitude &mu; as a function of &phi; (or &beta;) involves the incomplete elliptic integral of the second kind (which is not an elementary function) and this needs to be inverted iteratively. The <a class="el" href="classGeographicLib_1_1Ellipsoid.html" title="Properties of an ellipsoid. ">Ellipsoid</a> class evaluates all the auxiliary latitudes (and the corresponding inverse relations) in terms of their basic definitions.</p>
<p>An alternative method of evaluating these auxiliary latitudes is in terms of trigonometric series. This offers some advantages:</p><ul>
<li>these series give a uniform way of expressing any latitude in terms of any other latitude;</li>
<li>the evaluation may be faster, particularly if Clenshaw summation is used;</li>
<li>provided that the flattening is sufficiently small, the result may be more accurate.</li>
</ul>
<p>Here we give the complete matrix of relations between all six latitudes; there are 30 (=&#160;6&#160;&times;&#160;5) such relations. The expansions are in terms of the third flattening <em>n</em> = (<em>a</em>&#160;&minus;&#160;<em>b</em>)/(<em>a</em>&#160;+&#160;<em>b</em>). This results in expansions in which half the coefficients vanish for all relations between &phi;, &beta;, &theta;, and &mu;. In addition, the expansions converge for <em>b</em>/<em>a</em> &isin; (0,&#160;&infin;). (Some authors use the eccentricity as the expansion parameter, but the resulting series only converge for <em>b</em>/<em>a</em> &isin; (0,&#160;&radic;2).) These expansions were obtained with the the maxima code, <a href="auxlat.mac">auxlat.mac</a>.</p>
<p>Here are the relations between &phi;, &beta;, &theta;, and &mu; carried out to 4th order in <em>n</em>: </p><p class="formulaDsp">
\[ \begin{align} \beta-\phi&amp;=\textstyle{} -n\sin 2\phi +\frac{1}{2}n^{2}\sin 4\phi -\frac{1}{3}n^{3}\sin 6\phi +\frac{1}{4}n^{4}\sin 8\phi -\ldots\\ \phi-\beta&amp;=\textstyle{} +n\sin 2\beta +\frac{1}{2}n^{2}\sin 4\beta +\frac{1}{3}n^{3}\sin 6\beta +\frac{1}{4}n^{4}\sin 8\beta +\ldots\\ \theta-\phi&amp;=\textstyle{} -\bigl(2n-2n^{3}\bigr)\sin 2\phi +\bigl(2n^{2}-4n^{4}\bigr)\sin 4\phi -\frac{8}{3}n^{3}\sin 6\phi +4n^{4}\sin 8\phi -\ldots\\ \phi-\theta&amp;=\textstyle{} +\bigl(2n-2n^{3}\bigr)\sin 2\theta +\bigl(2n^{2}-4n^{4}\bigr)\sin 4\theta +\frac{8}{3}n^{3}\sin 6\theta +4n^{4}\sin 8\theta +\ldots\\ \theta-\beta&amp;=\textstyle{} -n\sin 2\beta +\frac{1}{2}n^{2}\sin 4\beta -\frac{1}{3}n^{3}\sin 6\beta +\frac{1}{4}n^{4}\sin 8\beta -\ldots\\ \beta-\theta&amp;=\textstyle{} +n\sin 2\theta +\frac{1}{2}n^{2}\sin 4\theta +\frac{1}{3}n^{3}\sin 6\theta +\frac{1}{4}n^{4}\sin 8\theta +\ldots\\ \mu-\phi&amp;=\textstyle{} -\bigl(\frac{3}{2}n-\frac{9}{16}n^{3}\bigr)\sin 2\phi +\bigl(\frac{15}{16}n^{2}-\frac{15}{32}n^{4}\bigr)\sin 4\phi -\frac{35}{48}n^{3}\sin 6\phi +\frac{315}{512}n^{4}\sin 8\phi -\ldots\\ \phi-\mu&amp;=\textstyle{} +\bigl(\frac{3}{2}n-\frac{27}{32}n^{3}\bigr)\sin 2\mu +\bigl(\frac{21}{16}n^{2}-\frac{55}{32}n^{4}\bigr)\sin 4\mu +\frac{151}{96}n^{3}\sin 6\mu +\frac{1097}{512}n^{4}\sin 8\mu +\ldots\\ \mu-\beta&amp;=\textstyle{} -\bigl(\frac{1}{2}n-\frac{3}{16}n^{3}\bigr)\sin 2\beta -\bigl(\frac{1}{16}n^{2}-\frac{1}{32}n^{4}\bigr)\sin 4\beta -\frac{1}{48}n^{3}\sin 6\beta -\frac{5}{512}n^{4}\sin 8\beta -\ldots\\ \beta-\mu&amp;=\textstyle{} +\bigl(\frac{1}{2}n-\frac{9}{32}n^{3}\bigr)\sin 2\mu +\bigl(\frac{5}{16}n^{2}-\frac{37}{96}n^{4}\bigr)\sin 4\mu +\frac{29}{96}n^{3}\sin 6\mu +\frac{539}{1536}n^{4}\sin 8\mu +\ldots\\ \mu-\theta&amp;=\textstyle{} +\bigl(\frac{1}{2}n+\frac{13}{16}n^{3}\bigr)\sin 2\theta -\bigl(\frac{1}{16}n^{2}-\frac{33}{32}n^{4}\bigr)\sin 4\theta -\frac{5}{16}n^{3}\sin 6\theta -\frac{261}{512}n^{4}\sin 8\theta -\ldots\\ \theta-\mu&amp;=\textstyle{} -\bigl(\frac{1}{2}n+\frac{23}{32}n^{3}\bigr)\sin 2\mu +\bigl(\frac{5}{16}n^{2}-\frac{5}{96}n^{4}\bigr)\sin 4\mu +\frac{1}{32}n^{3}\sin 6\mu +\frac{283}{1536}n^{4}\sin 8\mu +\ldots\\ \end{align} \]
</p>
<p>Here are the remaining relations (including &chi; and &xi;) carried out to 3rd order in <em>n</em>: </p><p class="formulaDsp">
\[ \begin{align} \chi-\phi&amp;=\textstyle{} -\bigl(2n-\frac{2}{3}n^{2}-\frac{4}{3}n^{3}\bigr)\sin 2\phi +\bigl(\frac{5}{3}n^{2}-\frac{16}{15}n^{3}\bigr)\sin 4\phi -\frac{26}{15}n^{3}\sin 6\phi +\ldots\\ \phi-\chi&amp;=\textstyle{} +\bigl(2n-\frac{2}{3}n^{2}-2n^{3}\bigr)\sin 2\chi +\bigl(\frac{7}{3}n^{2}-\frac{8}{5}n^{3}\bigr)\sin 4\chi +\frac{56}{15}n^{3}\sin 6\chi +\ldots\\ \chi-\beta&amp;=\textstyle{} -\bigl(n-\frac{2}{3}n^{2}\bigr)\sin 2\beta +\bigl(\frac{1}{6}n^{2}-\frac{2}{5}n^{3}\bigr)\sin 4\beta -\frac{1}{15}n^{3}\sin 6\beta +\ldots\\ \beta-\chi&amp;=\textstyle{} +\bigl(n-\frac{2}{3}n^{2}-\frac{1}{3}n^{3}\bigr)\sin 2\chi +\bigl(\frac{5}{6}n^{2}-\frac{14}{15}n^{3}\bigr)\sin 4\chi +\frac{16}{15}n^{3}\sin 6\chi +\ldots\\ \chi-\theta&amp;=\textstyle{} +\bigl(\frac{2}{3}n^{2}+\frac{2}{3}n^{3}\bigr)\sin 2\theta -\bigl(\frac{1}{3}n^{2}-\frac{4}{15}n^{3}\bigr)\sin 4\theta -\frac{2}{5}n^{3}\sin 6\theta -\ldots\\ \theta-\chi&amp;=\textstyle{} -\bigl(\frac{2}{3}n^{2}+\frac{2}{3}n^{3}\bigr)\sin 2\chi +\bigl(\frac{1}{3}n^{2}-\frac{4}{15}n^{3}\bigr)\sin 4\chi +\frac{2}{5}n^{3}\sin 6\chi +\ldots\\ \chi-\mu&amp;=\textstyle{} -\bigl(\frac{1}{2}n-\frac{2}{3}n^{2}+\frac{37}{96}n^{3}\bigr)\sin 2\mu -\bigl(\frac{1}{48}n^{2}+\frac{1}{15}n^{3}\bigr)\sin 4\mu -\frac{17}{480}n^{3}\sin 6\mu -\ldots\\ \mu-\chi&amp;=\textstyle{} +\bigl(\frac{1}{2}n-\frac{2}{3}n^{2}+\frac{5}{16}n^{3}\bigr)\sin 2\chi +\bigl(\frac{13}{48}n^{2}-\frac{3}{5}n^{3}\bigr)\sin 4\chi +\frac{61}{240}n^{3}\sin 6\chi +\ldots\\ \xi-\phi&amp;=\textstyle{} -\bigl(\frac{4}{3}n+\frac{4}{45}n^{2}-\frac{88}{315}n^{3}\bigr)\sin 2\phi +\bigl(\frac{34}{45}n^{2}+\frac{8}{105}n^{3}\bigr)\sin 4\phi -\frac{1532}{2835}n^{3}\sin 6\phi +\ldots\\ \phi-\xi&amp;=\textstyle{} +\bigl(\frac{4}{3}n+\frac{4}{45}n^{2}-\frac{16}{35}n^{3}\bigr)\sin 2\xi +\bigl(\frac{46}{45}n^{2}+\frac{152}{945}n^{3}\bigr)\sin 4\xi +\frac{3044}{2835}n^{3}\sin 6\xi +\ldots\\ \xi-\beta&amp;=\textstyle{} -\bigl(\frac{1}{3}n+\frac{4}{45}n^{2}-\frac{32}{315}n^{3}\bigr)\sin 2\beta -\bigl(\frac{7}{90}n^{2}+\frac{4}{315}n^{3}\bigr)\sin 4\beta -\frac{83}{2835}n^{3}\sin 6\beta -\ldots\\ \beta-\xi&amp;=\textstyle{} +\bigl(\frac{1}{3}n+\frac{4}{45}n^{2}-\frac{46}{315}n^{3}\bigr)\sin 2\xi +\bigl(\frac{17}{90}n^{2}+\frac{68}{945}n^{3}\bigr)\sin 4\xi +\frac{461}{2835}n^{3}\sin 6\xi +\ldots\\ \xi-\theta&amp;=\textstyle{} +\bigl(\frac{2}{3}n-\frac{4}{45}n^{2}+\frac{62}{105}n^{3}\bigr)\sin 2\theta +\bigl(\frac{4}{45}n^{2}-\frac{32}{315}n^{3}\bigr)\sin 4\theta -\frac{524}{2835}n^{3}\sin 6\theta -\ldots\\ \theta-\xi&amp;=\textstyle{} -\bigl(\frac{2}{3}n-\frac{4}{45}n^{2}+\frac{158}{315}n^{3}\bigr)\sin 2\xi +\bigl(\frac{16}{45}n^{2}-\frac{16}{945}n^{3}\bigr)\sin 4\xi -\frac{232}{2835}n^{3}\sin 6\xi +\ldots\\ \xi-\mu&amp;=\textstyle{} +\bigl(\frac{1}{6}n-\frac{4}{45}n^{2}-\frac{817}{10080}n^{3}\bigr)\sin 2\mu +\bigl(\frac{49}{720}n^{2}-\frac{2}{35}n^{3}\bigr)\sin 4\mu +\frac{4463}{90720}n^{3}\sin 6\mu +\ldots\\ \mu-\xi&amp;=\textstyle{} -\bigl(\frac{1}{6}n-\frac{4}{45}n^{2}-\frac{121}{1680}n^{3}\bigr)\sin 2\xi -\bigl(\frac{29}{720}n^{2}-\frac{26}{945}n^{3}\bigr)\sin 4\xi -\frac{1003}{45360}n^{3}\sin 6\xi -\ldots\\ \xi-\chi&amp;=\textstyle{} +\bigl(\frac{2}{3}n-\frac{34}{45}n^{2}+\frac{46}{315}n^{3}\bigr)\sin 2\chi +\bigl(\frac{19}{45}n^{2}-\frac{256}{315}n^{3}\bigr)\sin 4\chi +\frac{248}{567}n^{3}\sin 6\chi +\ldots\\ \chi-\xi&amp;=\textstyle{} -\bigl(\frac{2}{3}n-\frac{34}{45}n^{2}+\frac{88}{315}n^{3}\bigr)\sin 2\xi +\bigl(\frac{1}{45}n^{2}-\frac{184}{945}n^{3}\bigr)\sin 4\xi -\frac{106}{2835}n^{3}\sin 6\xi -\ldots\\ \end{align} \]
</p>
<p>Finally, this is a listing of all the coefficients for the expansions carried out to 8th order in <em>n</em>. Here's how to interpret this data: the 5th line for &phi;&#160;&minus;&#160;&theta; is <code>[32/5, 0, -32, 0]</code>; this means that the coefficient of sin(10&theta;) is [(32/5)<em>n</em><sup>5</sup>&#160;&minus; 32<em>n</em><sup>7</sup>&#160;+&#160;<em>O</em>(<em>n</em><sup>9</sup>)]. </p>
<p>&beta;&#160;&minus;&#160;&phi;:<br />
<code><small> &#160;&#160;&#160;[-1, 0, 0, 0, 0, 0, 0, 0]<br />
 &#160;&#160;&#160;[1/2, 0, 0, 0, 0, 0, 0]<br />
 &#160;&#160;&#160;[-1/3, 0, 0, 0, 0, 0]<br />
 &#160;&#160;&#160;[1/4, 0, 0, 0, 0]<br />
 &#160;&#160;&#160;[-1/5, 0, 0, 0]<br />
 &#160;&#160;&#160;[1/6, 0, 0]<br />
 &#160;&#160;&#160;[-1/7, 0]<br />
 &#160;&#160;&#160;[1/8]<br />
 </small></code> </p>
<p>&phi;&#160;&minus;&#160;&beta;:<br />
<code><small> &#160;&#160;&#160;[1, 0, 0, 0, 0, 0, 0, 0]<br />
 &#160;&#160;&#160;[1/2, 0, 0, 0, 0, 0, 0]<br />
 &#160;&#160;&#160;[1/3, 0, 0, 0, 0, 0]<br />
 &#160;&#160;&#160;[1/4, 0, 0, 0, 0]<br />
 &#160;&#160;&#160;[1/5, 0, 0, 0]<br />
 &#160;&#160;&#160;[1/6, 0, 0]<br />
 &#160;&#160;&#160;[1/7, 0]<br />
 &#160;&#160;&#160;[1/8]<br />
 </small></code> </p>
<p>&theta;&#160;&minus;&#160;&phi;:<br />
<code><small> &#160;&#160;&#160;[-2, 0, 2, 0, -2, 0, 2, 0]<br />
 &#160;&#160;&#160;[2, 0, -4, 0, 6, 0, -8]<br />
 &#160;&#160;&#160;[-8/3, 0, 8, 0, -16, 0]<br />
 &#160;&#160;&#160;[4, 0, -16, 0, 40]<br />
 &#160;&#160;&#160;[-32/5, 0, 32, 0]<br />
 &#160;&#160;&#160;[32/3, 0, -64]<br />
 &#160;&#160;&#160;[-128/7, 0]<br />
 &#160;&#160;&#160;[32]<br />
 </small></code> </p>
<p>&phi;&#160;&minus;&#160;&theta;:<br />
<code><small> &#160;&#160;&#160;[2, 0, -2, 0, 2, 0, -2, 0]<br />
 &#160;&#160;&#160;[2, 0, -4, 0, 6, 0, -8]<br />
 &#160;&#160;&#160;[8/3, 0, -8, 0, 16, 0]<br />
 &#160;&#160;&#160;[4, 0, -16, 0, 40]<br />
 &#160;&#160;&#160;[32/5, 0, -32, 0]<br />
 &#160;&#160;&#160;[32/3, 0, -64]<br />
 &#160;&#160;&#160;[128/7, 0]<br />
 &#160;&#160;&#160;[32]<br />
 </small></code> </p>
<p>&theta;&#160;&minus;&#160;&beta;:<br />
<code><small> &#160;&#160;&#160;[-1, 0, 0, 0, 0, 0, 0, 0]<br />
 &#160;&#160;&#160;[1/2, 0, 0, 0, 0, 0, 0]<br />
 &#160;&#160;&#160;[-1/3, 0, 0, 0, 0, 0]<br />
 &#160;&#160;&#160;[1/4, 0, 0, 0, 0]<br />
 &#160;&#160;&#160;[-1/5, 0, 0, 0]<br />
 &#160;&#160;&#160;[1/6, 0, 0]<br />
 &#160;&#160;&#160;[-1/7, 0]<br />
 &#160;&#160;&#160;[1/8]<br />
 </small></code> </p>
<p>&beta;&#160;&minus;&#160;&theta;:<br />
<code><small> &#160;&#160;&#160;[1, 0, 0, 0, 0, 0, 0, 0]<br />
 &#160;&#160;&#160;[1/2, 0, 0, 0, 0, 0, 0]<br />
 &#160;&#160;&#160;[1/3, 0, 0, 0, 0, 0]<br />
 &#160;&#160;&#160;[1/4, 0, 0, 0, 0]<br />
 &#160;&#160;&#160;[1/5, 0, 0, 0]<br />
 &#160;&#160;&#160;[1/6, 0, 0]<br />
 &#160;&#160;&#160;[1/7, 0]<br />
 &#160;&#160;&#160;[1/8]<br />
 </small></code> </p>
<p>&mu;&#160;&minus;&#160;&phi;:<br />
<code><small> &#160;&#160;&#160;[-3/2, 0, 9/16, 0, -3/32, 0, 57/2048, 0]<br />
 &#160;&#160;&#160;[15/16, 0, -15/32, 0, 135/2048, 0, -105/4096]<br />
 &#160;&#160;&#160;[-35/48, 0, 105/256, 0, -105/2048, 0]<br />
 &#160;&#160;&#160;[315/512, 0, -189/512, 0, 693/16384]<br />
 &#160;&#160;&#160;[-693/1280, 0, 693/2048, 0]<br />
 &#160;&#160;&#160;[1001/2048, 0, -1287/4096]<br />
 &#160;&#160;&#160;[-6435/14336, 0]<br />
 &#160;&#160;&#160;[109395/262144]<br />
 </small></code> </p>
<p>&phi;&#160;&minus;&#160;&mu;:<br />
<code><small> &#160;&#160;&#160;[3/2, 0, -27/32, 0, 269/512, 0, -6607/24576, 0]<br />
 &#160;&#160;&#160;[21/16, 0, -55/32, 0, 6759/4096, 0, -155113/122880]<br />
 &#160;&#160;&#160;[151/96, 0, -417/128, 0, 87963/20480, 0]<br />
 &#160;&#160;&#160;[1097/512, 0, -15543/2560, 0, 2514467/245760]<br />
 &#160;&#160;&#160;[8011/2560, 0, -69119/6144, 0]<br />
 &#160;&#160;&#160;[293393/61440, 0, -5962461/286720]<br />
 &#160;&#160;&#160;[6459601/860160, 0]<br />
 &#160;&#160;&#160;[332287993/27525120]<br />
 </small></code> </p>
<p>&mu;&#160;&minus;&#160;&beta;:<br />
<code><small> &#160;&#160;&#160;[-1/2, 0, 3/16, 0, -1/32, 0, 19/2048, 0]<br />
 &#160;&#160;&#160;[-1/16, 0, 1/32, 0, -9/2048, 0, 7/4096]<br />
 &#160;&#160;&#160;[-1/48, 0, 3/256, 0, -3/2048, 0]<br />
 &#160;&#160;&#160;[-5/512, 0, 3/512, 0, -11/16384]<br />
 &#160;&#160;&#160;[-7/1280, 0, 7/2048, 0]<br />
 &#160;&#160;&#160;[-7/2048, 0, 9/4096]<br />
 &#160;&#160;&#160;[-33/14336, 0]<br />
 &#160;&#160;&#160;[-429/262144]<br />
 </small></code> </p>
<p>&beta;&#160;&minus;&#160;&mu;:<br />
<code><small> &#160;&#160;&#160;[1/2, 0, -9/32, 0, 205/1536, 0, -4879/73728, 0]<br />
 &#160;&#160;&#160;[5/16, 0, -37/96, 0, 1335/4096, 0, -86171/368640]<br />
 &#160;&#160;&#160;[29/96, 0, -75/128, 0, 2901/4096, 0]<br />
 &#160;&#160;&#160;[539/1536, 0, -2391/2560, 0, 1082857/737280]<br />
 &#160;&#160;&#160;[3467/7680, 0, -28223/18432, 0]<br />
 &#160;&#160;&#160;[38081/61440, 0, -733437/286720]<br />
 &#160;&#160;&#160;[459485/516096, 0]<br />
 &#160;&#160;&#160;[109167851/82575360]<br />
 </small></code> </p>
<p>&mu;&#160;&minus;&#160;&theta;:<br />
<code><small> &#160;&#160;&#160;[1/2, 0, 13/16, 0, -15/32, 0, 509/2048, 0]<br />
 &#160;&#160;&#160;[-1/16, 0, 33/32, 0, -1673/2048, 0, 2599/4096]<br />
 &#160;&#160;&#160;[-5/16, 0, 349/256, 0, -2989/2048, 0]<br />
 &#160;&#160;&#160;[-261/512, 0, 963/512, 0, -43531/16384]<br />
 &#160;&#160;&#160;[-921/1280, 0, 5545/2048, 0]<br />
 &#160;&#160;&#160;[-6037/6144, 0, 16617/4096]<br />
 &#160;&#160;&#160;[-19279/14336, 0]<br />
 &#160;&#160;&#160;[-490925/262144]<br />
 </small></code> </p>
<p>&theta;&#160;&minus;&#160;&mu;:<br />
<code><small> &#160;&#160;&#160;[-1/2, 0, -23/32, 0, 499/1536, 0, -14321/73728, 0]<br />
 &#160;&#160;&#160;[5/16, 0, -5/96, 0, 6565/12288, 0, -201467/368640]<br />
 &#160;&#160;&#160;[1/32, 0, -77/128, 0, 2939/4096, 0]<br />
 &#160;&#160;&#160;[283/1536, 0, -4037/7680, 0, 1155049/737280]<br />
 &#160;&#160;&#160;[1301/7680, 0, -19465/18432, 0]<br />
 &#160;&#160;&#160;[17089/61440, 0, -442269/286720]<br />
 &#160;&#160;&#160;[198115/516096, 0]<br />
 &#160;&#160;&#160;[48689387/82575360]<br />
 </small></code> </p>
<p>&chi;&#160;&minus;&#160;&phi;:<br />
<code><small> &#160;&#160;&#160;[-2, 2/3, 4/3, -82/45, 32/45, 4642/4725, -8384/4725, 1514/1323]<br />
 &#160;&#160;&#160;[5/3, -16/15, -13/9, 904/315, -1522/945, -2288/1575, 142607/42525]<br />
 &#160;&#160;&#160;[-26/15, 34/21, 8/5, -12686/2835, 44644/14175, 120202/51975]<br />
 &#160;&#160;&#160;[1237/630, -12/5, -24832/14175, 1077964/155925, -1097407/187110]<br />
 &#160;&#160;&#160;[-734/315, 109598/31185, 1040/567, -12870194/1216215]<br />
 &#160;&#160;&#160;[444337/155925, -941912/184275, -126463/72765]<br />
 &#160;&#160;&#160;[-2405834/675675, 3463678/467775]<br />
 &#160;&#160;&#160;[256663081/56756700]<br />
 </small></code> </p>
<p>&phi;&#160;&minus;&#160;&chi;:<br />
<code><small> &#160;&#160;&#160;[2, -2/3, -2, 116/45, 26/45, -2854/675, 16822/4725, 189416/99225]<br />
 &#160;&#160;&#160;[7/3, -8/5, -227/45, 2704/315, 2323/945, -31256/1575, 141514/8505]<br />
 &#160;&#160;&#160;[56/15, -136/35, -1262/105, 73814/2835, 98738/14175, -2363828/31185]<br />
 &#160;&#160;&#160;[4279/630, -332/35, -399572/14175, 11763988/155925, 14416399/935550]<br />
 &#160;&#160;&#160;[4174/315, -144838/6237, -2046082/31185, 258316372/1216215]<br />
 &#160;&#160;&#160;[601676/22275, -115444544/2027025, -2155215124/14189175]<br />
 &#160;&#160;&#160;[38341552/675675, -170079376/1216215]<br />
 &#160;&#160;&#160;[1383243703/11351340]<br />
 </small></code> </p>
<p>&chi;&#160;&minus;&#160;&beta;:<br />
<code><small> &#160;&#160;&#160;[-1, 2/3, 0, -16/45, 2/5, -998/4725, -34/4725, 1384/11025]<br />
 &#160;&#160;&#160;[1/6, -2/5, 19/45, -22/105, -2/27, 1268/4725, -12616/42525]<br />
 &#160;&#160;&#160;[-1/15, 16/105, -22/105, 116/567, -1858/14175, 1724/51975]<br />
 &#160;&#160;&#160;[17/1260, -8/105, 2123/14175, -26836/155925, 115249/935550]<br />
 &#160;&#160;&#160;[-1/105, 128/4455, -424/6237, 140836/1216215]<br />
 &#160;&#160;&#160;[149/311850, -31232/2027025, 210152/4729725]<br />
 &#160;&#160;&#160;[-499/225225, 30208/6081075]<br />
 &#160;&#160;&#160;[-68251/113513400]<br />
 </small></code> </p>
<p>&beta;&#160;&minus;&#160;&chi;:<br />
<code><small> &#160;&#160;&#160;[1, -2/3, -1/3, 38/45, -1/3, -3118/4725, 4769/4725, -25666/99225]<br />
 &#160;&#160;&#160;[5/6, -14/15, -7/9, 50/21, -247/270, -14404/4725, 193931/42525]<br />
 &#160;&#160;&#160;[16/15, -34/21, -5/3, 17564/2835, -36521/14175, -1709614/155925]<br />
 &#160;&#160;&#160;[2069/1260, -28/9, -49877/14175, 2454416/155925, -637699/85050]<br />
 &#160;&#160;&#160;[883/315, -28244/4455, -20989/2835, 48124558/1216215]<br />
 &#160;&#160;&#160;[797222/155925, -2471888/184275, -16969807/1091475]<br />
 &#160;&#160;&#160;[2199332/225225, -1238578/42525]<br />
 &#160;&#160;&#160;[87600385/4540536]<br />
 </small></code> </p>
<p>&chi;&#160;&minus;&#160;&theta;:<br />
<code><small> &#160;&#160;&#160;[0, 2/3, 2/3, -2/9, -14/45, 1042/4725, 18/175, -1738/11025]<br />
 &#160;&#160;&#160;[-1/3, 4/15, 43/45, -4/45, -712/945, 332/945, 23159/42525]<br />
 &#160;&#160;&#160;[-2/5, 2/105, 124/105, 274/2835, -1352/945, 13102/31185]<br />
 &#160;&#160;&#160;[-55/126, -16/105, 21068/14175, 1528/4725, -2414843/935550]<br />
 &#160;&#160;&#160;[-22/45, -9202/31185, 20704/10395, 60334/93555]<br />
 &#160;&#160;&#160;[-90263/155925, -299444/675675, 40458083/14189175]<br />
 &#160;&#160;&#160;[-8962/12285, -3818498/6081075]<br />
 &#160;&#160;&#160;[-4259027/4365900]<br />
 </small></code> </p>
<p>&theta;&#160;&minus;&#160;&chi;:<br />
<code><small> &#160;&#160;&#160;[0, -2/3, -2/3, 4/9, 2/9, -3658/4725, 76/225, 64424/99225]<br />
 &#160;&#160;&#160;[1/3, -4/15, -23/45, 68/45, 61/135, -2728/945, 2146/1215]<br />
 &#160;&#160;&#160;[2/5, -24/35, -46/35, 9446/2835, 428/945, -95948/10395]<br />
 &#160;&#160;&#160;[83/126, -80/63, -34712/14175, 4472/525, 29741/85050]<br />
 &#160;&#160;&#160;[52/45, -2362/891, -17432/3465, 280108/13365]<br />
 &#160;&#160;&#160;[335882/155925, -548752/96525, -48965632/4729725]<br />
 &#160;&#160;&#160;[51368/12285, -197456/15795]<br />
 &#160;&#160;&#160;[1461335/174636]<br />
 </small></code> </p>
<p>&chi;&#160;&minus;&#160;&mu;:<br />
<code><small> &#160;&#160;&#160;[-1/2, 2/3, -37/96, 1/360, 81/512, -96199/604800, 5406467/38707200, -7944359/67737600]<br />
 &#160;&#160;&#160;[-1/48, -1/15, 437/1440, -46/105, 1118711/3870720, -51841/1209600, -24749483/348364800]<br />
 &#160;&#160;&#160;[-17/480, 37/840, 209/4480, -5569/90720, -9261899/58060800, 6457463/17740800]<br />
 &#160;&#160;&#160;[-4397/161280, 11/504, 830251/7257600, -466511/2494800, -324154477/7664025600]<br />
 &#160;&#160;&#160;[-4583/161280, 108847/3991680, 8005831/63866880, -22894433/124540416]<br />
 &#160;&#160;&#160;[-20648693/638668800, 16363163/518918400, 2204645983/12915302400]<br />
 &#160;&#160;&#160;[-219941297/5535129600, 497323811/12454041600]<br />
 &#160;&#160;&#160;[-191773887257/3719607091200]<br />
 </small></code> </p>
<p>&mu;&#160;&minus;&#160;&chi;:<br />
<code><small> &#160;&#160;&#160;[1/2, -2/3, 5/16, 41/180, -127/288, 7891/37800, 72161/387072, -18975107/50803200]<br />
 &#160;&#160;&#160;[13/48, -3/5, 557/1440, 281/630, -1983433/1935360, 13769/28800, 148003883/174182400]<br />
 &#160;&#160;&#160;[61/240, -103/140, 15061/26880, 167603/181440, -67102379/29030400, 79682431/79833600]<br />
 &#160;&#160;&#160;[49561/161280, -179/168, 6601661/7257600, 97445/49896, -40176129013/7664025600]<br />
 &#160;&#160;&#160;[34729/80640, -3418889/1995840, 14644087/9123840, 2605413599/622702080]<br />
 &#160;&#160;&#160;[212378941/319334400, -30705481/10378368, 175214326799/58118860800]<br />
 &#160;&#160;&#160;[1522256789/1383782400, -16759934899/3113510400]<br />
 &#160;&#160;&#160;[1424729850961/743921418240]<br />
 </small></code> </p>
<p>&xi;&#160;&minus;&#160;&phi;:<br />
<code><small> &#160;&#160;&#160;[-4/3, -4/45, 88/315, 538/4725, 20824/467775, -44732/2837835, -86728/16372125, -88002076/13956067125]<br />
 &#160;&#160;&#160;[34/45, 8/105, -2482/14175, -37192/467775, -12467764/212837625, -895712/147349125, -2641983469/488462349375]<br />
 &#160;&#160;&#160;[-1532/2835, -898/14175, 54968/467775, 100320856/1915538625, 240616/4209975, 8457703444/488462349375]<br />
 &#160;&#160;&#160;[6007/14175, 24496/467775, -5884124/70945875, -4832848/147349125, -4910552477/97692469875]<br />
 &#160;&#160;&#160;[-23356/66825, -839792/19348875, 816824/13395375, 9393713176/488462349375]<br />
 &#160;&#160;&#160;[570284222/1915538625, 1980656/54729675, -4532926649/97692469875]<br />
 &#160;&#160;&#160;[-496894276/1915538625, -14848113968/488462349375]<br />
 &#160;&#160;&#160;[224557742191/976924698750]<br />
 </small></code> </p>
<p>&phi;&#160;&minus;&#160;&xi;:<br />
<code><small> &#160;&#160;&#160;[4/3, 4/45, -16/35, -2582/14175, 60136/467775, 28112932/212837625, 22947844/1915538625, -1683291094/37574026875]<br />
 &#160;&#160;&#160;[46/45, 152/945, -11966/14175, -21016/51975, 251310128/638512875, 1228352/3007125, -14351220203/488462349375]<br />
 &#160;&#160;&#160;[3044/2835, 3802/14175, -94388/66825, -8797648/10945935, 138128272/147349125, 505559334506/488462349375]<br />
 &#160;&#160;&#160;[6059/4725, 41072/93555, -1472637812/638512875, -45079184/29469825, 973080708361/488462349375]<br />
 &#160;&#160;&#160;[768272/467775, 455935736/638512875, -550000184/147349125, -1385645336626/488462349375]<br />
 &#160;&#160;&#160;[4210684958/1915538625, 443810768/383107725, -2939205114427/488462349375]<br />
 &#160;&#160;&#160;[387227992/127702575, 101885255158/54273594375]<br />
 &#160;&#160;&#160;[1392441148867/325641566250]<br />
 </small></code> </p>
<p>&xi;&#160;&minus;&#160;&beta;:<br />
<code><small> &#160;&#160;&#160;[-1/3, -4/45, 32/315, 34/675, 2476/467775, -70496/8513505, -18484/4343625, 29232878/97692469875]<br />
 &#160;&#160;&#160;[-7/90, -4/315, 74/2025, 3992/467775, 53836/212837625, -4160804/1915538625, -324943819/488462349375]<br />
 &#160;&#160;&#160;[-83/2835, 2/14175, 7052/467775, -661844/1915538625, 237052/383107725, -168643106/488462349375]<br />
 &#160;&#160;&#160;[-797/56700, 934/467775, 1425778/212837625, -2915326/1915538625, 113042383/97692469875]<br />
 &#160;&#160;&#160;[-3673/467775, 390088/212837625, 6064888/1915538625, -558526274/488462349375]<br />
 &#160;&#160;&#160;[-18623681/3831077250, 41288/29469825, 155665021/97692469875]<br />
 &#160;&#160;&#160;[-6205669/1915538625, 504234982/488462349375]<br />
 &#160;&#160;&#160;[-8913001661/3907698795000]<br />
 </small></code> </p>
<p>&beta;&#160;&minus;&#160;&xi;:<br />
<code><small> &#160;&#160;&#160;[1/3, 4/45, -46/315, -1082/14175, 11824/467775, 7947332/212837625, 9708931/1915538625, -5946082372/488462349375]<br />
 &#160;&#160;&#160;[17/90, 68/945, -338/2025, -16672/155925, 39946703/638512875, 164328266/1915538625, 190673521/69780335625]<br />
 &#160;&#160;&#160;[461/2835, 1102/14175, -101069/467775, -255454/1563705, 236067184/1915538625, 86402898356/488462349375]<br />
 &#160;&#160;&#160;[3161/18900, 1786/18711, -189032762/638512875, -98401826/383107725, 110123070361/488462349375]<br />
 &#160;&#160;&#160;[88868/467775, 80274086/638512875, -802887278/1915538625, -200020620676/488462349375]<br />
 &#160;&#160;&#160;[880980241/3831077250, 66263486/383107725, -296107325077/488462349375]<br />
 &#160;&#160;&#160;[37151038/127702575, 4433064236/18091198125]<br />
 &#160;&#160;&#160;[495248998393/1302566265000]<br />
 </small></code> </p>
<p>&xi;&#160;&minus;&#160;&theta;:<br />
<code><small> &#160;&#160;&#160;[2/3, -4/45, 62/105, 778/4725, -193082/467775, -4286228/42567525, 53702182/212837625, 182466964/8881133625]<br />
 &#160;&#160;&#160;[4/45, -32/315, 12338/14175, 92696/467775, -61623938/70945875, -32500616/273648375, 367082779691/488462349375]<br />
 &#160;&#160;&#160;[-524/2835, -1618/14175, 612536/467775, 427003576/1915538625, -663111728/383107725, -42668482796/488462349375]<br />
 &#160;&#160;&#160;[-5933/14175, -8324/66825, 427770788/212837625, 421877252/1915538625, -327791986997/97692469875]<br />
 &#160;&#160;&#160;[-320044/467775, -9153184/70945875, 6024982024/1915538625, 74612072536/488462349375]<br />
 &#160;&#160;&#160;[-1978771378/1915538625, -46140784/383107725, 489898512247/97692469875]<br />
 &#160;&#160;&#160;[-2926201612/1915538625, -42056042768/488462349375]<br />
 &#160;&#160;&#160;[-2209250801969/976924698750]<br />
 </small></code> </p>
<p>&theta;&#160;&minus;&#160;&xi;:<br />
<code><small> &#160;&#160;&#160;[-2/3, 4/45, -158/315, -2102/14175, 109042/467775, 216932/2627625, -189115382/1915538625, -230886326/6343666875]<br />
 &#160;&#160;&#160;[16/45, -16/945, 934/14175, -7256/155925, 117952358/638512875, 288456008/1915538625, -11696145869/69780335625]<br />
 &#160;&#160;&#160;[-232/2835, 922/14175, -25286/66825, -7391576/54729675, 478700902/1915538625, 91546732346/488462349375]<br />
 &#160;&#160;&#160;[719/4725, 268/18711, -67048172/638512875, -67330724/383107725, 218929662961/488462349375]<br />
 &#160;&#160;&#160;[14354/467775, 46774256/638512875, -117954842/273648375, -129039188386/488462349375]<br />
 &#160;&#160;&#160;[253129538/1915538625, 2114368/34827975, -178084928947/488462349375]<br />
 &#160;&#160;&#160;[13805944/127702575, 6489189398/54273594375]<br />
 &#160;&#160;&#160;[59983985827/325641566250]<br />
 </small></code> </p>
<p>&xi;&#160;&minus;&#160;&mu;:<br />
<code><small> &#160;&#160;&#160;[1/6, -4/45, -817/10080, 1297/18900, 7764059/239500800, -9292991/302702400, -25359310709/1743565824000, 39534358147/2858202547200]<br />
 &#160;&#160;&#160;[49/720, -2/35, -29609/453600, 35474/467775, 36019108271/871782912000, -14814966289/245188944000, -13216941177599/571640509440000]<br />
 &#160;&#160;&#160;[4463/90720, -2917/56700, -4306823/59875200, 3026004511/30648618000, 99871724539/1569209241600, -27782109847927/250092722880000]<br />
 &#160;&#160;&#160;[331799/7257600, -102293/1871100, -368661577/4036032000, 2123926699/15324309000, 168979300892599/1600593426432000]<br />
 &#160;&#160;&#160;[11744233/239500800, -875457073/13621608000, -493031379277/3923023104000, 1959350112697/9618950880000]<br />
 &#160;&#160;&#160;[453002260127/7846046208000, -793693009/9807557760, -145659994071373/800296713216000]<br />
 &#160;&#160;&#160;[103558761539/1426553856000, -53583096419057/500185445760000]<br />
 &#160;&#160;&#160;[12272105438887727/128047474114560000]<br />
 </small></code> </p>
<p>&mu;&#160;&minus;&#160;&xi;:<br />
<code><small> &#160;&#160;&#160;[-1/6, 4/45, 121/1680, -1609/28350, -384229/14968800, 12674323/851350500, 7183403063/560431872000, -375027460897/125046361440000]<br />
 &#160;&#160;&#160;[-29/720, 26/945, 16463/453600, -431/17325, -31621753811/1307674368000, 1117820213/122594472000, 30410873385097/2000741783040000]<br />
 &#160;&#160;&#160;[-1003/45360, 449/28350, 3746047/119750400, -32844781/1751349600, -116359346641/3923023104000, 151567502183/17863765920000]<br />
 &#160;&#160;&#160;[-40457/2419200, 629/53460, 10650637121/326918592000, -13060303/766215450, -317251099510901/8002967132160000]<br />
 &#160;&#160;&#160;[-1800439/119750400, 205072597/20432412000, 146875240637/3923023104000, -2105440822861/125046361440000]<br />
 &#160;&#160;&#160;[-59109051671/3923023104000, 228253559/24518894400, 91496147778023/2000741783040000]<br />
 &#160;&#160;&#160;[-4255034947/261534873600, 126430355893/13894040160000]<br />
 &#160;&#160;&#160;[-791820407649841/42682491371520000]<br />
 </small></code> </p>
<p>&xi;&#160;&minus;&#160;&chi;:<br />
<code><small> &#160;&#160;&#160;[2/3, -34/45, 46/315, 2458/4725, -55222/93555, 2706758/42567525, 16676974/30405375, -64724382148/97692469875]<br />
 &#160;&#160;&#160;[19/45, -256/315, 3413/14175, 516944/467775, -340492279/212837625, 158999572/1915538625, 85904355287/37574026875]<br />
 &#160;&#160;&#160;[248/567, -15958/14175, 206834/467775, 4430783356/1915538625, -7597644214/1915538625, 2986003168/37574026875]<br />
 &#160;&#160;&#160;[16049/28350, -832976/467775, 62016436/70945875, 851209552/174139875, -375566203/39037950]<br />
 &#160;&#160;&#160;[15602/18711, -651151712/212837625, 3475643362/1915538625, 5106181018156/488462349375]<br />
 &#160;&#160;&#160;[2561772812/1915538625, -10656173804/1915538625, 34581190223/8881133625]<br />
 &#160;&#160;&#160;[873037408/383107725, -5150169424688/488462349375]<br />
 &#160;&#160;&#160;[7939103697617/1953849397500]<br />
 </small></code> </p>
<p>&chi;&#160;&minus;&#160;&xi;:<br />
<code><small> &#160;&#160;&#160;[-2/3, 34/45, -88/315, -2312/14175, 27128/93555, -55271278/212837625, 308365186/1915538625, -17451293242/488462349375]<br />
 &#160;&#160;&#160;[1/45, -184/945, 6079/14175, -65864/155925, 106691108/638512875, 149984636/1915538625, -101520127208/488462349375]<br />
 &#160;&#160;&#160;[-106/2835, 772/14175, -14246/467775, 5921152/54729675, -99534832/383107725, 10010741462/37574026875]<br />
 &#160;&#160;&#160;[-167/9450, -5312/467775, 75594328/638512875, -35573728/273648375, 1615002539/75148053750]<br />
 &#160;&#160;&#160;[-248/13365, 2837636/638512875, 130601488/1915538625, -3358119706/488462349375]<br />
 &#160;&#160;&#160;[-34761247/1915538625, -3196/3553875, 46771947158/488462349375]<br />
 &#160;&#160;&#160;[-2530364/127702575, -18696014/18091198125]<br />
 &#160;&#160;&#160;[-14744861191/651283132500]<br />
 </small></code></p>
<center> Back to <a class="el" href="geocentric.html">Geocentric coordinates</a>. Forward to <a class="el" href="highprec.html">Support for high precision arithmetic</a>. Up to <a class="el" href="index.html#contents">Contents</a>.</center><center></center> </div></div><!-- contents -->
<!-- start footer part -->
<hr class="footer"/><address class="footer"><small>
Generated by &#160;<a href="http://www.doxygen.org/index.html">
<img class="footer" src="doxygen.png" alt="doxygen"/>
</a> 1.8.9.1
</small></address>
</body>
</html>