/etc/gbrowse/plugins/Spectrogram.pm is in gbrowse 2.54+dfsg-6build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 | # $Id: Spectrogram.pm,v 1.9 2009-01-08 16:42:29 lstein Exp $
# bioperl module for Bio::Graphics::Browser2::Plugin::Spectrogram
# cared for by Sheldon McKay mckays@cshl.edu
# Copyright (c) 2006 Cold Spring Harbor Laboratory.
=head1 NAME
Bio::Graphics::Browser2::Plugin::Spectrogram
=head1 SYNOPSIS
This module is not used directly. It is an 'annotator'
plugin for tehe Generic Genome Browser.
=head1 DESCRIPTION
The Spectrogram plugin builds up a spectrogram for
digitized DNA sequence using the short-time fourier
transform (STFT) method, adapted from classical digital signal
processing methods. A sliding window of variable size and overlap
is used to calculate each "column" of the spectrogram, where the column
width is equal to the step, or overlap between windows.
For each window, we:
1) digitize the DNA by creating four binary indicator
sequences:
G A T C C T C T G A T T C C A A
G 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
A 0 1 0 0 0 0 0 0 0 1 0 0 0 0 1 1
T 0 0 1 0 0 1 0 1 0 0 1 1 0 0 0 0
C 0 0 0 1 1 0 1 0 0 0 0 0 1 1 0 0
2) take the discrete fourier transform (DFT) for each of the
four indicator sequences and square the values to get
the magnitude.
3) create a Bio::Graphics::Feature object that contains
the spectrogram data as attributes. The features are passed
back to gbrowse as parts of a Bio::Graphics::Featurefile object.
The calculations for the real DFT are handled by
the xs module Math::FFT. The actual algorithm
used is the fast fourier transfrom (FFT), which is much
faster than the original DFT algorithm but is limited in that
only base2 numbers (128, 256, 512, etc) can be used for window
sizes. This is necessary to make the spectrogram calculation
fast enough for real-time use. It should be noted, however,
that calculating spectrograms dynamically is computationally
intensive and will increase latency when the spectrogram
track is turned on in gbrowse.
The graphical rendering of the spectrogram depends on the
glyph module Bio::Graphics::Glyph::spectrogram.
The plugin is discussed in more detail in the plugin's help
links.
=head1 FEEDBACK
See the GMOD website for information on bug submission http://www.gmod.org.
=head1 AUTHOR - Sheldon McKay
Email E<lt>mckays@cshl.eduE<gt>
=cut
;
package Bio::Graphics::Browser2::Plugin::Spectrogram;
use strict;
use Bio::Graphics::Browser2::Plugin;
use Bio::Graphics::Browser2::Util qw/error/;
use CGI ':standard';
use CGI::Carp 'fatalsToBrowser';
use CGI::Toggle;
use GD;
use Math::FFT;
use Statistics::Descriptive;
use List::Util qw/shuffle max/;
use Data::Dumper;
use vars qw/@ISA $CONFIG $VERSION/;
use constant IMAGE_DIR => '/gbrowse2/images/help';
use constant BUTTONS_DIR => '/gbrowse2/images/buttons';
$VERSION = 1.1;
@ISA = qw/ Bio::Graphics::Browser2::Plugin /;
sub init {
my $self = shift;
$CONFIG = $self->browser_config;
}
sub name {
'DNA spectrogram';
}
sub type {
'annotator';
}
sub verb {
'Draw';
}
sub mime_type {
'text/html';
}
sub config_defaults {
{ win => 512,
inc => 256,
binsize => 1,
y_unit => 1,
quantile => 99.99,
filter_01 => 1,
min => 2,
max => 4,
type => 'period'}
}
sub reconfigure {
my $self = shift;
my $conf = $self->configuration;
$conf->{win} = $self->config_param('win');
$conf->{inc} = $self->config_param('inc');
$conf->{min} = $self->config_param('min') || 0;
$conf->{max} = $self->config_param('max') || $conf->{win} - 1;
$conf->{type} = $self->config_param('measure');
$conf->{filter_01} = $self->config_param('filter_01');
$conf->{quantile} = $self->config_param('quantile') || 99.99;
$conf->{y_unit} = $self->config_param('y_unit') || 1;
$self->configuration($conf);
}
sub annotate {
my $self = shift;
my $segment = shift or die "No segment";
my $conf = $self->configuration;
my $win = $conf->{win};
my $inc = $conf->{inc};
my $ltype = $conf->{ltype};
# sanity check for window size
if ($inc >= $win) {
error("Spectrogram.pm error: window size must be greater than the overlap");
return;
}
# and for maximum period or frequency
if ($conf->{max} && $conf->{max} > $win) {
error("maximum $conf->{type} can not exceed ".
" the window size: resetting to $win.");
$conf->{max} = $win;
}
my $slide_offset = 0;
my $db = $segment->factory;
unless ($segment->start == 1) {
my $original_start = $segment->start;
($segment) = $db->segment( $segment->ref, ($segment->start - $win), ($segment->end + $win) );
$slide_offset = $original_start - $segment->start - $inc;
}
else {
($segment) = $db->segment( $segment->ref, $segment->start, ($segment->end + $win) );
}
my $seq_obj = $segment->seq;
my $seq;
if ($seq_obj && ref $seq_obj) {
$seq = lc eval{$seq_obj->seq};
}
elsif ($seq_obj) {
$seq = lc $seq_obj;
}
$seq || die "No sequence found for $segment $@";
my $offset = $segment->start;
my $end = $segment->length;
my (@g,@a,@t,@c,@offsets,@meta_array,@coords);
my ($min_f,$max_f);
if ( $conf->{min} || $conf->{max} ) {
my $max = $conf->{max} || $win;
my $min = $conf->{min} || 0;
my $type = $conf->{type};
if ($type eq 'period') {
$min_f = $min && $max && $max > 1 ? int(2*$win/($max)) - 1 : $win - 1;
$max_f = $min ? int(2*$win/($min)) - 1 : $win - 1;
}
else {
unless (int $min == $min) {
error("minimum frequency value should be an integer between",
"0 and ".($win-2));
return;
}
unless (int $max == $max) {
error("maximum frequency value should be an integer between",
"1 and ".($win-1));
return;
}
$min_f = $min;
$max_f = $max || $win-1;
}
}
else {
$min_f = 0;
$max_f = $win-1;
}
$min_f-- unless $min_f == 0;
$max_f++ unless $max_f == $win-1;
my $key = join('; ',"window size $win", "overlap $inc",
"saturation $conf->{quantile}th percentile");
if ($conf->{min}) {
$key .= "; $conf->{type} range $conf->{min}-$conf->{max}";
}
if ($conf->{filter_01}) {
$key .="; 0-1 Hz filter ON";
}
my $feature_list = $self->new_feature_list;
my $link = sub { shift->url || 0 };
$feature_list->add_type( spectrogram => { glyph => 'spectrogram',
bump => 0, # must be zero
height => $conf->{y_unit} * ($max_f - $min_f + 1),
key => $key,
win => $win,
link => $link } );
my $start = 0;
my $skipped;
until ( $start > ( $end - $win ) ) {
my $sub_seq = substr $seq, $start, $win;
# runs of N's will screw things up.
$sub_seq =~ s/[^gatcGATC]/N/g;
my $has_Ns = $sub_seq =~ tr/N/a/;
unless ( $has_Ns > $win/10 ) {
# Digitize the DNA
my ($g,$a,$t,$c) = make_numeric($sub_seq);
# take the magnitude of the DFT
dft(\$_) for ($g,$a,$t,$c);
# get rid of DC 'component'
if ($conf->{filter_01} ) {
for ($g,$a,$t,$c) {
$_->[0] = 0;
$_->[1] = 0;
}
}
push @g, [@{$g}[$min_f..$max_f]];
push @a, [@{$a}[$min_f..$max_f]];
push @t, [@{$t}[$min_f..$max_f]];
push @c, [@{$c}[$min_f..$max_f]];
push @coords, [$start + $offset + 1, $start + $offset + $inc];
}
else {
$skipped++;
}
$start += $inc;
}
# warn if there are a lot of 'N's
if ($skipped) {
error("Spectrogram: blank areas correspond to ambiguous sequence regions with > 10% 'N's");
}
# max out the intensity range at the nth
# percentile to avoid saturation of color intensity
my $stat = Statistics::Descriptive::Full->new;
my @data = grep {defined $_} map {@$_} @g,@a,@t,@c;
$stat->add_data(@data);
my $max = $stat->percentile($conf->{quantile});
my @labels = $min_f .. $max_f;
@labels = map {$_ ? 2*$win/$_ : $win} @labels if $conf->{type} eq 'period';
my $first = 1;
for my $coords (@coords) {
my ($start, $end) = @$coords;
# make a link for zooming in
(my $url = self_url) =~ s/\?.+//;;
my $pad = int $segment->length/20;
my $z_start = $start - $pad;
my $z_stop = $end + $pad;
my $name = $segment->ref .":$z_start..$z_stop";
$url .= "?name=$name";
my $G = shift @g;
my $A = shift @a;
my $T = shift @t;
my $C = shift @c;
my $atts = { g => $G,
a => $A,
t => $T,
c => $C,
max => $max };
# y-axis labels for first column
if ($first) {
$atts->{labels} = [$conf->{type},@labels];
$first = 0;
}
# create a column for the spectrogram. Offset the seuquence
# coordinates so that features in the specrogam are directly below
# the corresponding DNA
my $sf = Bio::Graphics::Feature->new( -type => 'spectrogram',
-source => 'calculated',
-start => $start + $slide_offset,
-end => $end + $slide_offset,
-ref => $segment->ref,
-url => $url,
-attributes => $atts );
$feature_list->add_feature($sf);
}
return $feature_list;
}
sub configure_form {
my $self = shift;
my $conf = $self->configuration;
my $segment = ($self->segments)[0];
my $state = { on => 0, override => 1 };
my $description = p(
$self->_help_message($state,
span({-class=>'searchtitle'},
'What is a DNA spectrogram?'),
$self->long_description)
);
my $form = $description;
my $msg = $self->_help_message( $state, 'Sliding window size', split "NL", <<'END;');
Window size is the number of bases to include in each calculation.NL
Overlap is the increment by which the window slides (amount of overlap).NL
<font color=red>Note: </font>larger window sizes and/or smaller
overlaps increase computation time.
END;
$form .= h4({-class => 'searchtitle'}, $msg) .
p( 'Window: size ',
popup_menu( -name => $self->config_name('win'),
-values => [8,16,32,64,128,256,512,1024,2048,4096,8192],
-default => $conf->{win} ),
' bp' . br. br . ' overlap ',
textfield( -name => $self->config_name('inc'),
-value => $conf->{inc},
-size => 4 ),
'bp' );
$msg = $self->_help_message( $state, 'Display options', split "NL", <<'END;');
The allowed range of periods or frequencies controls spectrogram height
and calculation time.NL
period = size (bp) of structure or repeat unit, calculated as
2*(window size)/frequency.NL
row height = the height (pixels) of each frequency row in the spectrogram.
END;
$form .= br . h4({-class => 'searchtitle'}, $msg) .
p( 'Restrict ',
popup_menu( -name => $self->config_name('measure'),
-values => [qw/period frequency/],
-default => $conf->{type} ),
' to between ',
textfield( -name => $self->config_name('min'),
-value => $conf->{min},
-size => 4 ),
' and ',
textfield( -name => $self->config_name('max'),
-value => $conf->{max},
-size => 4 ),
br . br . 'Row height',
textfield( -name => $self->config_name('y_unit'),
-value => $conf->{y_unit},
-size => 2 ),
' px ' );
$msg = $self->_help_message( $state, 'Image saturation', split "NL", <<'END;');
Lowering the saturation value will reduce the dominance of very bright
colors on the spectrogram by setting an arbitrary maximum value
(expressed as a percentile rank).NL
Setting a lower saturation will reduce the effects of very high
amplitude signals elsewhere in the spectrogram and help to
emphasize less intense features.NL
The higher the saturation value is set, the darker the "background"
of the spectrogram.NL
There is a very large amplitude signal at frequency 0 Hz
(the very top of the spectrogram), with some bleed over to 1 Hz.NL
Filtering out these frequencies will help make the fainter
spots more visible by decreasing the overall range of signal
magnitudes.
END;
$form .= br . h4({-class => 'searchtitle'}, $msg) .
p( 'Saturate color intensity at the ',
textfield( -name => $self->config_name('quantile'),
-value => $conf->{quantile},
-size => 5 ),
'th percentile' );
my @checked = (checked => 'checked') if $conf->{filter_01};
$form .= p( checkbox( -name => $self->config_name('filter_01'),
@checked,
-label => 'Filter out 0-1 Hz' ));
return $form;
}
sub _help_message {
my $self = shift;
my $state = shift;
my $section = shift;
my @items = map li($_).br, @_;
my $details = table( {-width => 800},
Tr( td( {-class => 'databody'}, ul(@items))));
$self->toggle( $state, $section, $details );
}
sub make_numeric {
my $seq = lc shift;
my @seq = split q{}, $seq;
my @G = map { $_ eq 'g' ? 1 : 0 } @seq;
my @A = map { $_ eq 'a' ? 1 : 0 } @seq;
my @T = map { $_ eq 't' ? 1 : 0 } @seq;
my @C = map { $_ eq 'c' ? 1 : 0 } @seq;
return (\@G,\@A,\@T,\@C);
}
sub dft {
# my $self = shift;
# my $conf = $self->configuration;
# my $remove_DC = $conf->{remove_DC};
my $array = shift;
my $fft = Math::FFT->new($$array);
# this is a call to the 'real' DFT (no imaginary numbers)
# algorithm, which is actually implented via the FFT
# algorithm
my $dft = $fft->rdft;
$dft = magnitude(@$dft);
$$array = $dft;
}
sub magnitude {
$_ = $_**2 for @_;
return \@_;
}
sub _process_msg {
my $msg = shift;
$msg =~ s/\\n|\n\n/BREAK/gm;
$msg =~ s/\n/ /gm;
$msg =~ s/BREAK/\\n/g;
$msg;
}
sub description {
my $self = shift;
return p(<<END);
The DNA Spectrogram plugin builds a spectrogram for digitized DNA sequence using
the short-time fourier transform (STFT) method. The plugin was written by
Sheldon McKay (mckays\@cshl.edu).
END
}
sub long_description {
my $image_dir = IMAGE_DIR;
return table( {-width => 800}, Tr( td({-class => 'databody'},
p(<<END) .
The Spectrogram plugin builds up a spectrogram for digitized DNA sequence using the short-time fourier transform (STFT) method,
adapted from classical digital signal processing.
Spectrogram analysis of DNA can help uncover non-random structures in DNA sequences, some examples of which are coding DNA
and repeats (For example, see <a href="http://www.hindawi.com/GetPDF.aspx?doi=10.1155/S1110865704310048"> this article</a>).
</p>
<h3>Coding DNA examples</h3>
<p>
This is an example of a spectrogram of a genic region of yeast chromosome I. Note the linear feature at period 3 (codon size).
<img border=1 src="$image_dir/yeast_I_genes_spec.png">
</p>
<br>
<p>
This is an example of a portion of <i>C. elegans</i> predicted gene Y38C1AB.4. Note the differences between exons and introns.
<img border=1 src="$image_dir/worm_exons_spec.png">
</p>
<h3>Repeats</h3>
<p>
Repeats cause a ladder-like series of horizontal lines. Short repeats, such as telomeric repeats, are most visible with small
window sizes. Longer repeats, such as minisatellites, are best seen with larger window sizes.
</p>
<p>
This is an example of telomeric repeats on <i>C. elegans</i> chromosome I.
<img border=1 src="$image_dir/worm_telomeric_spec.png">
</p>
END
p(<<END) .
<h3>How is the DNA spectrogram calculated?</h3>
<p>
A sliding window of variable size and overlap is used to calculate the spectrogram, which is displayed graphically as a track in the
genome browser. Each window is a subsegment of DNA and corresponds to a 'column' in the graphical display of the spectrogram. The
window slides along the sequence, from left to right, at a set increment, which corresponds to the column width.
</p>
<p>
The spectrogram refers collectively to all of the rows and columns seen in the graphical display.
</p>
<p>
The spectrogram has <i>n</i> rows, where <i>n</i> is the number of bases in the window. Each row corresponds
to a discrete 'frequency' from 0 -> <i>n</i>-1.
</p>
<p>
An arguably more intuitive way to relate this to DNA sequence to calculate the 'period' (<i>n</i>/frequency*2).
If we see a feature in the spectrogram at period <i>x</i>, there is a non-random structure
with a periodicity of <i>x</i> nucleotides. The chief example of this would be coding DNA at period 3.
</p>
<br>
The DNA sequence is converted from analog to digital by creating four binary indicator sequences:
<pre>
G A T C C T C T G A T T C C A A
G 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
A 0 1 0 0 0 0 0 0 0 1 0 0 0 0 1 1
T 0 0 1 0 0 1 0 1 0 0 1 1 0 0 0 0
C 0 0 0 1 1 0 1 0 0 0 0 0 1 1 0 0
</pre>
<br>
<p>
The magnitude of the discrete fourier transform (DFT) is calculated seperately for each of the four indicator sequences.
The algorithm used is the fast fourier transfrom (FFT; via Math::FFT), which is much faster than the original DFT algorithm
but is limited in that only base2 numbers (128, 256, 512, etc) can be used for window sizes. This is necessary to make the
spectrogram calculation fast enough for real-time use.
</p>
<p>
For graphical rendering, each transformed sequence is assigned a color (A=blue; T=red; C=green; G=yellow). The colors for each
base are superimposed on the image. In a given spot on the spectrogram, the brightness corresponds to the magnitide (signal intensity)
and the color corresponds to the dominant base at that frequency/period. If no single base predominates, an intermediate color
is calculated based on the relative magnitudes.
</p>
<p>
The spectrogram is visible as a track in the generic genome browser. Please note that the calculations and graphical rendering are computationally
intensive, so the image will take a while to load, especially with larger sequence regions and/or small increments for the sliding
window.
</p>
<p>
After you have launched this plugin, the spectrogram will continue to be calculated in the main gbrowse display until you turn off the 'Spectrogram' track.
</p>
END
p("The plugin was written by Sheldon McKay (mckays\@cshl.edu)"))));
}
sub toggle {
my $self = shift;
my ($state,$section_head,@body) = @_;
my $buttons_dir = $CONFIG->globals->button_url || BUTTONS_DIR;
$state ||= {};
$state->{plus_img} = "$buttons_dir/query.png";
$state->{minus_img} = "$buttons_dir/minus12.png";
my ($label) = $self->language->tr($section_head) || $section_head;
return toggle_section($state,$label,b($label),@body);
}
1;
|