This file is indexed.

/usr/share/gap/small/small.gd is in gap-small-groups 4r7p8-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
#############################################################################
##
#W  small.gd                 GAP group library             Hans Ulrich Besche
##                                               Bettina Eick, Eamonn O'Brien
##

#############################################################################
##
## tell GAP about the component
##
DeclareComponent("small","2.1");

InfoIdgroup := NewInfoClass( "InfoIdgroup" );

UnbindGlobal( "SMALL_AVAILABLE" );

#############################################################################
##
#F  SMALL_AVAILABLE( <order> )
##
##  <ManSection>
##  <Func Name="SMALL_AVAILABLE" Arg='order'/>
##
##  <Description>
##  returns fail if the library of groups of <A>order</A> is not installed. 
##  Otherwise a record with some information about the construction of the 
##  groups of <A>order</A> is returned.
##  </Description>
##  </ManSection>
##
DeclareGlobalFunction( "SMALL_AVAILABLE" );

UnbindGlobal( "SmallGroup" );

#############################################################################
##
#F  SmallGroup( <order>, <i> )
#F  SmallGroup( [<order>, <i>] )
##
##  <#GAPDoc Label="SmallGroup">
##  <ManSection>
##  <Func Name="SmallGroup" Arg='order, i'
##   Label="for group order and index"/>
##  <Func Name="SmallGroup" Arg='pair' Label="for a pair [ order, index ]"/>
##
##  <Description>
##  returns the <A>i</A>-th group of order <A>order</A> in the catalogue.
##  If the group is solvable, it will be given as a PcGroup;
##  otherwise it will be given as a permutation group.
##  If the groups of order <A>order</A> are not installed,
##  the function reports an error and enters a break loop.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "SmallGroup" );

#############################################################################
##
#F  SelectSmallGroups( <argl>, <all>, <id> )
##
##  <ManSection>
##  <Func Name="SelectSmallGroups" Arg='argl, all, id'/>
##
##  <Description>
##  universal function for 'AllGroups', 'OneGroup' and 'IdsOfAllGroups'.
##  </Description>
##  </ManSection>
##
DeclareGlobalFunction( "SelectSmallGroups" );

UnbindGlobal( "AllGroups" );

#############################################################################
##
#F  AllSmallGroups( <arg> )
##
##  <#GAPDoc Label="AllSmallGroups">
##  <ManSection>
##  <Func Name="AllSmallGroups" Arg='arg'/>
##
##  <Description>
##  returns all groups with certain properties as specified by <A>arg</A>.
##  If <A>arg</A> is a number <M>n</M>, then this function returns all groups
##  of order <M>n</M>.
##  However, the function can also take several arguments which then
##  must be organized in pairs <C>function</C> and <C>value</C>.
##  In this case the first function must be <Ref Func="Size"/>
##  and the first value an order or a range of orders.
##  If value is a list then it is considered a list of possible function
##  values to include. 
##  The function returns those groups of the specified orders having those
##  properties specified by the remaining functions and their values.
##  <P/>
##  Precomputed information is stored for the properties
##  <Ref Func="IsAbelian"/>, <Ref Func="IsNilpotentGroup"/>,
##  <Ref Func="IsSupersolvableGroup"/>, <Ref Func="IsSolvableGroup"/>, 
##  <Ref Func="RankPGroup"/>, <Ref Func="PClassPGroup"/>,
##  <Ref Func="LGLength"/>, <C>FrattinifactorSize</C> and 
##  <C>FrattinifactorId</C> for the groups of order at most
##  <M>2000</M> which have  more than three prime factors,
##  except those of order <M>512</M>, <M>768</M>, 
##  <M>1024</M>, <M>1152</M>, <M>1536</M>, <M>1920</M> and those of order
##  <M>p^n \cdot q > 1000</M> 
##  with <M>n > 2</M>. 
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
AllSmallGroups := function( arg )
    return SelectSmallGroups( arg, true, false );
end;
DeclareSynonym( "AllGroups", AllSmallGroups );

UnbindGlobal( "OneGroup" );

#############################################################################
##
#F  OneSmallGroup( <arg> )
##
##  <#GAPDoc Label="OneSmallGroup">
##  <ManSection>
##  <Func Name="OneSmallGroup" Arg='arg'/>
##
##  <Description>
##  returns one group with certain properties as specified by <A>arg</A>.
##  The permitted arguments are those supported by
##  <Ref Func="AllSmallGroups"/>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
OneSmallGroup := function( arg )
    return SelectSmallGroups( arg, false, false );
end;
DeclareSynonym( "OneGroup", OneSmallGroup );

UnbindGlobal( "IdsOfAllGroups" );

#############################################################################
##
#F  IdsOfAllSmallGroups( <arg> )
##
##  <#GAPDoc Label="IdsOfAllSmallGroups">
##  <ManSection>
##  <Func Name="IdsOfAllSmallGroups" Arg='arg'/>
##
##  <Description>
##  similar to <C>AllSmallGroups</C> but returns ids instead of groups. This may
##  prevent workspace overflows, if a large number of groups are expected in 
##  the output.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
IdsOfAllGroups := function( arg )
    return SelectSmallGroups( arg, true, true );
end;

DeclareSynonym( "IdsOfAllSmallGroups", IdsOfAllGroups );

UnbindGlobal( "NumberSmallGroups" );

#############################################################################
##
#F  NumberSmallGroups( <order> )
##
##  <#GAPDoc Label="NumberSmallGroups">
##  <ManSection>
##  <Func Name="NumberSmallGroups" Arg='order'/>
##
##  <Description>
##  returns the number of groups of order <A>order</A>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "NumberSmallGroups" );
DeclareSynonym( "NrSmallGroups",NumberSmallGroups );

#############################################################################
##
#F  UnloadSmallGroupsData( )
##
##  <#GAPDoc Label="UnloadSmallGroupsData">
##  <ManSection>
##  <Func Name="UnloadSmallGroupsData" Arg=''/>
##
##  <Description>
##  &GAP; loads all necessary data from the library automatically,
##  but it does not delete the data from the workspace again.
##  Usually, this will be not necessary, since the data is stored in a
##  compressed format. However, if 
##  a large number of groups from the library have been loaded, then the user 
##  might wish to remove the data from the workspace and this can be done by 
##  the above function call.
##  <Example><![CDATA[
##  gap> G := SmallGroup( 768, 1000000 );
##  <pc group of size 768 with 9 generators>
##  gap> G := SmallGroup( [768, 1000000] );
##  <pc group of size 768 with 9 generators>
##  gap> AllSmallGroups( 6 );
##  [ <pc group of size 6 with 2 generators>, 
##    <pc group of size 6 with 2 generators> ]
##  gap> AllSmallGroups( Size, 120, IsSolvableGroup, false );
##  [ Group(
##      [ (1,2,4,8)(3,6,9,5)(7,12,13,17)(10,14,11,15)(16,20,21,24)(18,22,
##          19,23), (1,3,7)(2,5,10)(4,9,13)(6,11,8)(12,16,20)(14,18,
##          22)(15,19,23)(17,21,24) ]), Group([ (1,2,3,4,5), (1,2) ]), 
##    Group([ (1,2,3,5,4), (1,3)(2,4)(6,7) ]) ]
##  gap> G := OneSmallGroup( 120, IsNilpotentGroup, false );
##  <pc group of size 120 with 5 generators>
##  gap> IdSmallGroup(G);
##  [ 120, 1 ]
##  gap> G := OneSmallGroup( Size, [1..1000], IsSolvableGroup, false );
##  Group([ (1,2,3,4,5), (1,2,3) ])
##  gap> IdSmallGroup(G);
##  [ 60, 5 ]
##  gap> UnloadSmallGroupsData();
##  gap> IdSmallGroup( GL( 2,3 ) );
##  [ 48, 29 ]
##  gap> IdSmallGroup( Group( (1,2,3,4),(4,5) ) );
##  [ 120, 34 ]
##  gap> IdsOfAllSmallGroups( Size, 60, IsSupersolvableGroup, true );
##  [ [ 60, 1 ], [ 60, 2 ], [ 60, 3 ], [ 60, 4 ], [ 60, 6 ], [ 60, 7 ], 
##    [ 60, 8 ], [ 60, 10 ], [ 60, 11 ], [ 60, 12 ], [ 60, 13 ] ]
##  gap> NumberSmallGroups( 512 );
##  10494213
##  gap> NumberSmallGroups( 2^8 * 23 );
##  1083472
##  ]]></Example>
##  <P/>
##  <Log><![CDATA[
##  gap> NumberSmallGroups( 2^9 * 23 );
##  Error, the library of groups of size 11776 is not available called from
##  <function>( <arguments> ) called from read-eval-loop
##  Entering break read-eval-print loop ...
##  you can 'quit;' to quit to outer loop, or
##  you can 'return;' to continue
##  brk> quit;
##  gap>
##  ]]></Log>
##  <P/>
##  <Example><![CDATA[
##  gap> SmallGroupsInformation( 32 );
##  
##    There are 51 groups of order 32.
##    They are sorted by their ranks. 
##       1 is cyclic. 
##       2 - 20 have rank 2.
##       21 - 44 have rank 3.
##       45 - 50 have rank 4.
##       51 is elementary abelian. 
##  
##    For the selection functions the values of the following attributes 
##    are precomputed and stored:
##       IsAbelian, PClassPGroup, RankPGroup, FrattinifactorSize and 
##       FrattinifactorId. 
##  
##    This size belongs to layer 2 of the SmallGroups library. 
##    IdSmallGroup is available for this size. 
##   
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "UnloadSmallGroupsData" );

UnbindGlobal( "ID_AVAILABLE" );
#############################################################################
##
#F  ID_AVAILABLE( <order> )
##
##  <ManSection>
##  <Func Name="ID_AVAILABLE" Arg='order'/>
##
##  <Description>
##  returns false, if the identification routines for of groups of <A>order</A> is
##  not installed. Otherwise a record with some information about the 
##  identification of groups of <A>order</A> is returned.
##  </Description>
##  </ManSection>
##
DeclareGlobalFunction( "ID_AVAILABLE" );

UnbindGlobal( "IdGroup" );

#############################################################################
##
#A  IdSmallGroup( <G> )
#A  IdGroup( <G> )
##
##  <#GAPDoc Label="IdSmallGroup">
##  <ManSection>
##  <Attr Name="IdSmallGroup" Arg='G'/>
##  <Attr Name="IdGroup" Arg='G'/>
##
##  <Description>
##  returns the library number of <A>G</A>; that is, the function returns a pair
##  <C>[<A>order</A>, <A>i</A>]</C> where <A>G</A> is isomorphic to <C>SmallGroup( <A>order</A>, <A>i</A> )</C>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "IdGroup", IsGroup );
DeclareSynonym( "IdSmallGroup",IdGroup );

UnbindGlobal( "IdStandardPresented512Group" );

#############################################################################
##
#F  IdStandardPresented512Group( <G> )
#F  IdStandardPresented512Group( <pcgs> )
##
##  <ManSection>
##  <Func Name="IdStandardPresented512Group" Arg='G'/>
##  <Func Name="IdStandardPresented512Group" Arg='pcgs'/>
##
##  <Description>
##  returns the catalogue number of a group <A>G</A> of order 512 if <C>Pcgs(<A>G</A>)</C> 
##  or <C>pcgs</C> is a pcgs corresponding to a power-commutator presentation 
##  which forms an ANUPQ-standard presentation of <A>G</A>. If the input is not
##  corresponding to a standard presentation, then a warning is printed 
##  and <K>fail</K> is returned.
##  </Description>
##  </ManSection>
##
DeclareGlobalFunction( "IdStandardPresented512Group" );

#############################################################################
##
#F  SmallGroupsInformation( <order> )
##
##  <#GAPDoc Label="SmallGroupsInformation">
##  <ManSection>
##  <Func Name="SmallGroupsInformation" Arg='order'/>
##
##  <Description>
##  prints information on the groups of the specified order.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "SmallGroupsInformation" );

UnbindGlobal( "Gap3CatalogueIdGroup" );

#############################################################################
##  
#A  IdGap3SolvableGroup( <G> )
#A  Gap3CatalogueIdGroup( <G> )
##
##  <#GAPDoc Label="IdGap3SolvableGroup">
##  <ManSection>
##  <Attr Name="IdGap3SolvableGroup" Arg='G'/>
##  <Attr Name="Gap3CatalogueIdGroup" Arg='G'/>
##
##  <Description>
##  returns the catalogue number of <A>G</A> in the &GAP;&nbsp;3 catalogue
##  of solvable groups;
##  that is, the function returns a pair <C>[<A>order</A>, <A>i</A>]</C> meaning that
##  <A>G</A> is isomorphic to the group
##  <C>SolvableGroup( <A>order</A>, <A>i</A> )</C> in &GAP;&nbsp;3.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "Gap3CatalogueIdGroup", IsGroup );
DeclareSynonym( "IdGap3SolvableGroup", Gap3CatalogueIdGroup );

#############################################################################
##  
#F  Gap3CatalogueGroup( <order>, <i> )
##
##  <ManSection>
##  <Func Name="Gap3CatalogueGroup" Arg='order, i'/>
##
##  <Description>
##  returns the <A>i</A>-th group of order <A>order</A> in the &GAP;&nbsp;3
##  catalogue of solvable groups.
##  This group is isomorphic to the group returned by
##  <C>SolvableGroup( <A>order</A>, <A>i</A> )</C> in &GAP;&nbsp;3.
##  </Description>
##  </ManSection>
##
DeclareGlobalFunction( "Gap3CatalogueGroup" );

#############################################################################
##  
#A  FrattinifactorSize( <G> )
##
##  <ManSection>
##  <Attr Name="FrattinifactorSize" Arg='G'/>
##
##  <Description>
##  </Description>
##  </ManSection>
##
DeclareAttribute( "FrattinifactorSize", IsGroup );

#############################################################################
##  
#A  FrattinifactorId( <G> )
##
##  <ManSection>
##  <Attr Name="FrattinifactorId" Arg='G'/>
##
##  <Description>
##  </Description>
##  </ManSection>
##
DeclareAttribute( "FrattinifactorId", IsGroup );


#############################################################################
##
#E