/usr/share/gap/doc/ref/chap19.txt is in gap-online-help 4r7p9-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 |
[1X19 [33X[0;0YFloats[133X[101X
[33X[0;0YStarting with version 4.5, [5XGAP[105X has built-in support for floating-point
numbers in machine format, and allows package to implement
arbitrary-precision floating-point arithmetic in a uniform manner. For now,
one such package, [5XFloat[105X exists, and is based on the arbitrary-precision
routines in [5Xmpfr[105X.[133X
[33X[0;0YA word of caution: [5XGAP[105X deals primarily with algebraic objects, which can be
represented exactly in a computer. Numerical imprecision means that
floating-point numbers do not form a ring in the strict [5XGAP[105X sense, because
addition is in general not associative ([10X(1.0e-100+1.0)-1.0[110X is not the same
as [10X1.0e-100+(1.0-1.0)[110X, in the default precision setting).[133X
[33X[0;0YMost algorithms in [5XGAP[105X which require ring elements will therefore not be
applicable to floating-point elements. In some cases, such a notion would
not even make any sense (what is the greatest common divisor of two
floating-point numbers?)[133X
[1X19.1 [33X[0;0YA sample run[133X[101X
[33X[0;0YFloating-point numbers can be input into [5XGAP[105X in the standard floating-point
notation:[133X
[4X[32X Example [32X[104X
[4X[25Xgap>[125X [27X3.14;[127X[104X
[4X[28X3.14[128X[104X
[4X[25Xgap>[125X [27Xlast^2/6;[127X[104X
[4X[28X1.64327[128X[104X
[4X[25Xgap>[125X [27Xh := 6.62606896e-34;[127X[104X
[4X[28X6.62607e-34[128X[104X
[4X[25Xgap>[125X [27Xpi := 4*Atan(1.0);[127X[104X
[4X[28X3.14159[128X[104X
[4X[25Xgap>[125X [27Xhbar := h/(2*pi);[127X[104X
[4X[28X1.05457e-34[128X[104X
[4X[32X[104X
[33X[0;0YFloating-point numbers can also be created using [10XFloat[110X, from strings or
rational numbers; and can be converted back using [10XString,Rat,Int[110X.[133X
[33X[0;0Y[5XGAP[105X allows rational and floating-point numbers to be mixed in the elementary
operations [10X+,-,*,/[110X. However, floating-point numbers and rational numbers may
not be compared. Conversions are performed using the creator [10XFloat[110X:[133X
[4X[32X Example [32X[104X
[4X[25Xgap>[125X [27XFloat("3.1416");[127X[104X
[4X[28X3.1416[128X[104X
[4X[25Xgap>[125X [27XFloat(355/113);[127X[104X
[4X[28X3.14159[128X[104X
[4X[25Xgap>[125X [27XRat(last);[127X[104X
[4X[28X355/113[128X[104X
[4X[25Xgap>[125X [27XRat(0.33333);[127X[104X
[4X[28X1/3[128X[104X
[4X[25Xgap>[125X [27XInt(1.e10);[127X[104X
[4X[28X10000000000[128X[104X
[4X[25Xgap>[125X [27XInt(1.e20);[127X[104X
[4X[28X100000000000000000000[128X[104X
[4X[25Xgap>[125X [27XInt(1.e30);[127X[104X
[4X[28X1000000000000000019884624838656[128X[104X
[4X[32X[104X
[1X19.2 [33X[0;0YMethods[133X[101X
[33X[0;0YFloating-point numbers may be directly input, as in any usual mathematical
software or language; with the exception that every floating-point number
must contain a decimal digit. Therefore [10X.1[110X, [10X.1e1[110X, [10X-.999[110X etc. are all valid
[5XGAP[105X inputs.[133X
[33X[0;0YFloating-point numbers so entered in [5XGAP[105X are stored as strings. They are
converted to floating-point when they are first used. This means that, if
the floating-point precision is increased, the constants are reevaluated to
fit the new format.[133X
[33X[0;0YFloating-point numbers may be followed by an underscore, as in [10X1._[110X. This
means that they are to be immediately converted to the current
floating-point format. The underscore may be followed by a single letter,
which specifies which format/precision to use. By default, [5XGAP[105X has a single
floating-point handler, with fixed (53 bits) precision, and its format
specifier is [10X'l'[110X as in [10X1._l[110X. Higher-precision floating-point computations is
available via external packages; [5Xfloat[105X for example.[133X
[33X[0;0YA record, [2XFLOAT[102X ([14X19.2-6[114X), contains all relevant constants for the current
floating-point format; see its documentation for details. Typical fields are
[10XFLOAT.MANT_DIG=53[110X, the constant [10XFLOAT.VIEW_DIG=6[110X specifying the number of
digits to view, and [10XFLOAT.PI[110X for the constant [22Xπ[122X. The constants have the same
name as their C counterparts, except for the missing initial [10XDBL_[110X or [10XM_[110X.[133X
[33X[0;0YFloating-point numbers may be created using the single function [2XFloat[102X
([14X19.2-7[114X), which accepts as arguments rational, string, or floating-point
numbers. Floating-point numbers may also be created, in any floating-point
representation, using [2XNewFloat[102X ([14X19.2-7[114X) as in
[10XNewFloat(IsIEEE754FloatRep,355/113)[110X, by supplying the category filter of the
desired new floating-point number; or using [2XMakeFloat[102X ([14X19.2-7[114X) as in
[10XNewFloat(1.0,355/113)[110X, by supplying a sample floating-point number.[133X
[33X[0;0YFloating-point numbers may also be converted to other [5XGAP[105X formats using the
usual commands [2XInt[102X ([14X14.2-3[114X), [2XRat[102X ([14X17.2-6[114X), [2XString[102X ([14X27.6-6[114X).[133X
[33X[0;0YExact conversion to and from floating-point format may be done using
external representations. The "external representation" of a floating-point
number [10Xx[110X is a pair [10X[m,e][110X of integers, such that
[10Xx=m*2^(-1+e-LogInt(AbsInt(m),2))[110X. Conversion to and from external
representation is performed as usual using [2XExtRepOfObj[102X ([14X79.16-1[114X) and
[2XObjByExtRep[102X ([14X79.16-1[114X):[133X
[4X[32X Example [32X[104X
[4X[25Xgap>[125X [27XExtRepOfObj(3.14);[127X[104X
[4X[28X[ 7070651414971679, 2 ][128X[104X
[4X[25Xgap>[125X [27XObjByExtRep(IEEE754FloatsFamily,last);[127X[104X
[4X[28X3.14[128X[104X
[4X[32X[104X
[33X[0;0YComputations with floating-point numbers never raise any error. Division by
zero is allowed, and produces a signed infinity. Illegal operations, such as
[10X0./0.[110X, produce [9XNaN[109X's (not-a-number); this is the only floating-point number
[10Xx[110X such that [10Xnot EqFloat(x+0.0,x)[110X.[133X
[33X[0;0YThe IEEE754 standard requires [9XNaN[109X to be non-equal to itself. On the other
hand, [5XGAP[105X requires every object to be equal to itself. To respect the
IEEE754 standard, the function [2XEqFloat[102X ([14X19.2-2[114X) should be used instead of [10X=[110X.[133X
[33X[0;0YThe category a floating-point belongs to can be checked using the filters
[2XIsFinite[102X ([14X30.4-2[114X), [2XIsPInfinity[102X ([14X19.2-5[114X), [2XIsNInfinity[102X ([14X19.2-5[114X), [2XIsXInfinity[102X
([14X19.2-5[114X), [2XIsNaN[102X ([14X19.2-5[114X).[133X
[33X[0;0YComparisons between floating-point numbers and rationals are explicitly
forbidden. The rationale is that objects belonging to different families
should in general not be comparable in [5XGAP[105X. Floating-point numbers are also
approximations of real numbers, and don't follow the same rules; consider
for example, using the default [5XGAP[105X implementation of floating-point numbers,[133X
[4X[32X Example [32X[104X
[4X[25Xgap>[125X [27X1.0/3.0 = Float(1/3);[127X[104X
[4X[28Xtrue[128X[104X
[4X[25Xgap>[125X [27X(1.0/3.0)^5 = Float((1/3)^5);[127X[104X
[4X[28Xfalse[128X[104X
[4X[32X[104X
[1X19.2-1 [33X[0;0YMathematical operations[133X[101X
[29X[2XCos[102X( [3Xx[103X ) [32X operation
[29X[2XSin[102X( [3Xx[103X ) [32X operation
[29X[2XSinCos[102X( [3Xx[103X ) [32X operation
[29X[2XTan[102X( [3Xx[103X ) [32X operation
[29X[2XSec[102X( [3Xx[103X ) [32X operation
[29X[2XCsc[102X( [3Xx[103X ) [32X operation
[29X[2XCot[102X( [3Xx[103X ) [32X operation
[29X[2XAsin[102X( [3Xx[103X ) [32X operation
[29X[2XAcos[102X( [3Xx[103X ) [32X operation
[29X[2XAtan[102X( [3Xx[103X ) [32X operation
[29X[2XAtan2[102X( [3Xy[103X, [3Xx[103X ) [32X operation
[29X[2XCosh[102X( [3Xx[103X ) [32X operation
[29X[2XSinh[102X( [3Xx[103X ) [32X operation
[29X[2XTanh[102X( [3Xx[103X ) [32X operation
[29X[2XSech[102X( [3Xx[103X ) [32X operation
[29X[2XCsch[102X( [3Xx[103X ) [32X operation
[29X[2XCoth[102X( [3Xx[103X ) [32X operation
[29X[2XAsinh[102X( [3Xx[103X ) [32X operation
[29X[2XAcosh[102X( [3Xx[103X ) [32X operation
[29X[2XAtanh[102X( [3Xx[103X ) [32X operation
[29X[2XLog[102X( [3Xx[103X ) [32X operation
[29X[2XLog2[102X( [3Xx[103X ) [32X operation
[29X[2XLog10[102X( [3Xx[103X ) [32X operation
[29X[2XLog1p[102X( [3Xx[103X ) [32X operation
[29X[2XExp[102X( [3Xx[103X ) [32X operation
[29X[2XExp2[102X( [3Xx[103X ) [32X operation
[29X[2XExp10[102X( [3Xx[103X ) [32X operation
[29X[2XExpm1[102X( [3Xx[103X ) [32X operation
[29X[2XCuberoot[102X( [3Xx[103X ) [32X operation
[29X[2XSquare[102X( [3Xx[103X ) [32X operation
[29X[2XHypothenuse[102X( [3Xx[103X, [3Xy[103X ) [32X operation
[29X[2XCeil[102X( [3Xx[103X ) [32X operation
[29X[2XFloor[102X( [3Xx[103X ) [32X operation
[29X[2XRound[102X( [3Xx[103X ) [32X operation
[29X[2XTrunc[102X( [3Xx[103X ) [32X operation
[29X[2XFrac[102X( [3Xx[103X ) [32X operation
[29X[2XSignFloat[102X( [3Xx[103X ) [32X operation
[29X[2XArgument[102X( [3Xx[103X ) [32X operation
[29X[2XErf[102X( [3Xx[103X ) [32X operation
[29X[2XZeta[102X( [3Xx[103X ) [32X operation
[29X[2XGamma[102X( [3Xx[103X ) [32X operation
[29X[2XComplexI[102X( [3Xx[103X ) [32X operation
[33X[0;0YUsual mathematical functions.[133X
[1X19.2-2 EqFloat[101X
[29X[2XEqFloat[102X( [3Xx[103X, [3Xy[103X ) [32X operation
[6XReturns:[106X [33X[0;10YWhether the floateans [3Xx[103X and [3Xy[103X are equal[133X
[33X[0;0YThis function compares two floating-point numbers, and returns [9Xtrue[109X if they
are equal, and [9Xfalse[109X otherwise; with the exception that [9XNaN[109X is always
considered to be different from itself.[133X
[1X19.2-3 PrecisionFloat[101X
[29X[2XPrecisionFloat[102X( [3Xx[103X ) [32X operation
[6XReturns:[106X [33X[0;10YThe precision of [3Xx[103X[133X
[33X[0;0YThis function returns the precision, counted in number of binary digits, of
the floating-point number [3Xx[103X.[133X
[1X19.2-4 [33X[0;0YInterval operations[133X[101X
[29X[2XSup[102X( [3Xinterval[103X ) [32X operation
[29X[2XInf[102X( [3Xinterval[103X ) [32X operation
[29X[2XMid[102X( [3Xinterval[103X ) [32X operation
[29X[2XAbsoluteDiameter[102X( [3Xinterval[103X ) [32X operation
[29X[2XRelativeDiameter[102X( [3Xinterval[103X ) [32X operation
[29X[2XOverlaps[102X( [3Xinterval1[103X, [3Xinterval2[103X ) [32X operation
[29X[2XIsDisjoint[102X( [3Xinterval1[103X, [3Xinterval2[103X ) [32X operation
[29X[2XIncreaseInterval[102X( [3Xinterval[103X, [3Xdelta[103X ) [32X operation
[29X[2XBlowupInterval[102X( [3Xinterval[103X, [3Xratio[103X ) [32X operation
[29X[2XBisectInterval[102X( [3Xinterval[103X ) [32X operation
[33X[0;0YMost are self-explanatory. [10XBlowupInterval[110X returns an interval with same
midpoint but relative diameter increased by [3Xratio[103X; [10XIncreaseInterval[110X returns
an interval with same midpoint but absolute diameter increased by [3Xdelta[103X;
[10XBisectInterval[110X returns a list of two intervals whose union equals [3Xinterval[103X.[133X
[1X19.2-5 IsPInfinity[101X
[29X[2XIsPInfinity[102X( [3Xx[103X ) [32X property
[29X[2XIsNInfinity[102X( [3Xx[103X ) [32X property
[29X[2XIsXInfinity[102X( [3Xx[103X ) [32X property
[29X[2XIsFinite[102X( [3Xx[103X ) [32X property
[29X[2XIsNaN[102X( [3Xx[103X ) [32X property
[33X[0;0YReturns [9Xtrue[109X if the floating-point number [3Xx[103X is respectively [22X+∞[122X, [22X-∞[122X, [22X±∞[122X,
finite, or `not a number', such as the result of [10X0.0/0.0[110X.[133X
[1X19.2-6 FLOAT[101X
[29X[2XFLOAT[102X[32X global variable
[33X[0;0YThis record contains useful floating-point constants:[133X
[8XDECIMAL_DIG[108X
[33X[0;6YMaximal number of useful digits;[133X
[8XDIG[108X
[33X[0;6YNumber of significant digits;[133X
[8XVIEW_DIG[108X
[33X[0;6YNumber of digits to print in short view;[133X
[8XEPSILON[108X
[33X[0;6YSmallest number such that [22X1≠1+ϵ[122X;[133X
[8XMANT_DIG[108X
[33X[0;6YNumber of bits in the mantissa;[133X
[8XMAX[108X
[33X[0;6YMaximal representable number;[133X
[8XMAX_10_EXP[108X
[33X[0;6YMaximal decimal exponent;[133X
[8XMAX_EXP[108X
[33X[0;6YMaximal binary exponent;[133X
[8XMIN[108X
[33X[0;6YMinimal positive representable number;[133X
[8XMIN_10_EXP[108X
[33X[0;6YMinimal decimal exponent;[133X
[8XMIN_EXP[108X
[33X[0;6YMinimal exponent;[133X
[8XINFINITY[108X
[33X[0;6YPositive infinity;[133X
[8XNINFINITY[108X
[33X[0;6YNegative infinity;[133X
[8XNAN[108X
[33X[0;6YNot-a-number,[133X
[33X[0;0Yas well as mathematical constants [10XE[110X, [10XLOG2E[110X, [10XLOG10E[110X, [10XLN2[110X, [10XLN10[110X, [10XPI[110X, [10XPI_2[110X,
[10XPI_4[110X, [10X1_PI[110X, [10X2_PI[110X, [10X2_SQRTPI[110X, [10XSQRT2[110X, [10XSQRT1_2[110X.[133X
[1X19.2-7 Float[101X
[29X[2XFloat[102X( [3Xobj[103X ) [32X operation
[29X[2XNewFloat[102X( [3Xfilter[103X, [3Xobj[103X ) [32X operation
[29X[2XMakeFloat[102X( [3Xsample[103X, [3Xobj[103X, [3Xobj[103X ) [32X operation
[6XReturns:[106X [33X[0;10YA new floating-point number, based on [3Xobj[103X[133X
[33X[0;0YThis function creates a new floating-point number.[133X
[33X[0;0YIf [3Xobj[103X is a rational number, the created number is created with sufficient
precision so that the number can (usually) be converted back to the original
number (see [2XRat[102X ([14XReference: Rat[114X) and [2XRat[102X ([14X17.2-6[114X)). For an integer, the
precision, if unspecified, is chosen sufficient so that [10XInt(Float(obj))=obj[110X
always holds, but at least 64 bits.[133X
[33X[0;0Y[3Xobj[103X may also be a string, which may be of the form [10X"3.14e0"[110X or [10X".314e1"[110X or
[10X".314@1"[110X etc.[133X
[33X[0;0YAn option may be passed to specify, it bits, a desired precision. The format
is [10XFloat("3.14":PrecisionFloat:=1000)[110X to create a 1000-bit approximation of
[22X3.14[122X.[133X
[33X[0;0YIn particular, if [3Xobj[103X is already a floating-point number, then
[10XFloat(obj:PrecisionFloat:=prec)[110X creates a copy of [3Xobj[103X with a new precision.
prec[133X
[1X19.2-8 Rat[101X
[29X[2XRat[102X( [3Xf[103X ) [32X operation
[6XReturns:[106X [33X[0;10YA rational approximation to [3Xf[103X[133X
[33X[0;0YThis command constructs a rational approximation to the floating-point
number [3Xf[103X. Of course, it is not guaranteed to return the original rational
number [3Xf[103X was created from, though it returns the most `reasonable' one given
the precision of [3Xf[103X.[133X
[33X[0;0YTwo options control the precision of the rational approximation: In the form
[10XRat(f:maxdenom:=md,maxpartial:=mp)[110X, the rational returned is such that the
denominator is at most [3Xmd[103X and the partials in its continued fraction
expansion are at most [3Xmp[103X. The default values are [10Xmaxpartial:=10000[110X and
[10Xmaxdenom:=2^(precision/2)[110X.[133X
[1X19.2-9 SetFloats[101X
[29X[2XSetFloats[102X( [3Xrec[103X[, [3Xbits[103X][, [3Xinstall[103X] ) [32X function
[33X[0;0YInstalls a new interface to floating-point numbers in [5XGAP[105X, optionally with a
desired precision [3Xbits[103X in binary digits. The last optional argument [3Xinstall[103X
is a boolean value; if false, it only installs the eager handler and the
precision for the floateans, without making them the default.[133X
[1X19.3 [33X[0;0YHigh-precision-specific methods[133X[101X
[33X[0;0Y[5XGAP[105X provides a mechanism for packages to implement new floating-point
numerical interfaces. The following describes that mechanism, actual
examples of packages are documented separately.[133X
[33X[0;0YA package must create a record with fields (all optional)[133X
[8Xcreator[108X
[33X[0;6Ya function converting strings to floating-point;[133X
[8Xeager[108X
[33X[0;6Ya character allowing immediate conversion to floating-point;[133X
[8Xobjbyextrep[108X
[33X[0;6Ya function creating a floating-point number out of a list
[10X[mantissa,exponent][110X;[133X
[8Xfilter[108X
[33X[0;6Ya filter for the new floating-point objects;[133X
[8Xconstants[108X
[33X[0;6Ya record containing numerical constants, such as [10XMANT_DIG[110X, [10XMAX[110X, [10XMIN[110X,
[10XNAN[110X.[133X
[33X[0;0YThe package must install methods [10XInt[110X, [10XRat[110X, [10XString[110X for its objects, and
creators [10XNewFloat(filter,IsRat)[110X, [10XNewFloat(IsString)[110X.[133X
[33X[0;0YIt must then install methods for all arithmetic and numerical operations:
[10XPLUS[110X, [10XExp[110X, ...[133X
[33X[0;0YThe user chooses that implementation by calling [2XSetFloats[102X ([14X19.2-9[114X) with the
record as argument, and with an optional second argument requesting a
precision in binary digits.[133X
[1X19.4 [33X[0;0YComplex arithmetic[133X[101X
[33X[0;0YComplex arithmetic may be implemented in packages, and is present in [5Xfloat[105X.
Complex numbers are treated as usual numbers; they may be input with an
extra "i" as in [10X-0.5+0.866i[110X.[133X
[33X[0;0YMethods should then be implemented for [10XNorm[110X, [10XRealPart[110X, [10XImaginaryPart[110X,
[10XComplexConjugate[110X, ...[133X
[1X19.5 [33X[0;0YInterval-specific methods[133X[101X
[33X[0;0YInterval arithmetic may also be implemented in packages. Intervals are in
fact efficient implementations of sets of real numbers. The only non-trivial
issue is how they should be compared. The standard [10XEQ[110X tests if the intervals
are equal; however, it is usually more useful to know if intervals overlap,
or are disjoint, or are contained in each other. The methods provided by the
package should include
[10XSup,Inf,Mid,DiameterOfInterval,Overlaps,IsSubset,IsDisjoint[110X.[133X
[33X[0;0YNote the usual convention that intervals are compared as in [22X[a,b]le[c,d][122X if
and only if [22Xale c[122X and [22Xble d[122X.[133X
|