/usr/share/gap/grp/suzuki.gi is in gap-libs 4r7p9-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 | #############################################################################
##
#W suzuki.gi GAP library Stefan Kohl
##
##
#Y (C) 1999 School Math and Comp. Sci., University of St Andrews, Scotland
##
## This file contains constructors for the Suzuki groups.
##
## The generators are taken from
##
## Michio Suzuki. On a Class of Doubly Transitive Groups,
## Ann. Math. 75 (1962), 105-145.
##
## See the middle of page 140, in the proof of Theorem 12.
##
#############################################################################
##
#M SuzukiGroupCons( <IsMatrixGroup>, <q> )
##
InstallMethod( SuzukiGroupCons,
"matrix group for finite field size",
true,
[ IsMatrixGroup and IsFinite,
IsInt and IsPosRat ],
0,
function ( filter, q )
local G,f;
if not IsPrimePowerInt(q)
or SmallestRootInt(q) <> 2 or LogInt(q,2) mod 2 = 0
then Error("<q> must be a non-square power of 2\n"); fi;
f := GF(q);
G := GroupByGenerators(
[ImmutableMatrix(f,
[[1, 0, 0,0],
[1, 1, 0,0],
[1+Z(q), 1, 1,0],
[1+Z(q)+Z(q)^RootInt(2 * q),Z(q),1,1]] * One(f),true),
ImmutableMatrix(f,
[[0,0,0,1],
[0,0,1,0],
[0,1,0,0],
[1,0,0,0]] * One(f),true)]);
SetName(G,Concatenation("Sz(",String(q),")"));
SetDimensionOfMatrixGroup(G,4);
SetFieldOfMatrixGroup(G,f);
SetIsFinite(G,true);
SetSize(G,q^2*(q-1)*(q^2+1));
if q > 2 then SetIsSimpleGroup(G,true); fi;
return G;
end );
#############################################################################
##
#M SuzukiGroupCons( <IsPermGroup>, <q> )
##
InstallMethod( SuzukiGroupCons,
"permutation group for finite field size",
true,
[ IsPermGroup and IsFinite,
IsInt and IsPosRat ],
0,
function ( filter, q )
local G,Ovoid,f,r,a,b,v;
if not IsPrimePowerInt(q)
or SmallestRootInt(q) <> 2 or LogInt(q,2) mod 2 = 0
then Error("<q> must be a non-square power of 2\n"); fi;
f := GF(q);
r := RootInt(2 * q);
v:=[1,0,0,0] * One(f);
ConvertToVectorRep(v,q);
MakeImmutable(v);
Ovoid := [v];
for a in f do
for b in f do
v:=[a^(r+2) + a*b + b^r,b,a,One(f)];
ConvertToVectorRep(v,q);
MakeImmutable(v);
Add(Ovoid,NormedRowVector(v));
od;
od;
Sort(Ovoid);
G := Action(SuzukiGroupCons(IsMatrixGroup,q),Ovoid,OnLines);
SetName(G,Concatenation("Sz(",String(q),")"));
SetSize(G,q^2*(q-1)*(q^2+1));
if q > 2 then SetIsSimpleGroup(G,true); fi;
return G;
end );
#############################################################################
##
#E suzuki.gi . . . . . . . . . . . . . . . . . . . . . . . . . . . ends here
|