/usr/share/gap/grp/imf.gd is in gap-libs 4r7p9-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 | #############################################################################
##
#W imf.gd GAP group library Volkmar Felsch
##
##
#Y Copyright (C) 1995, Lehrstuhl D für Mathematik, RWTH Aachen, Germany
#Y (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
##
## This file contains the declarations of operations for the GAP library of
## irreducible maximal finite integral matrix groups.
##
#############################################################################
##
#V InfoImf
##
## is the info class for the imf functions
## (see~"Info Functions").
##
DeclareInfoClass( "InfoImf" );
#############################################################################
##
## Some global variables.
##
#############################################################################
##
#F IsImfMatrixGroup( <G> )
##
DeclareFilter( "IsImfMatrixGroup" );
#############################################################################
##
#A ImfRecord( <G> )
##
DeclareAttribute( "ImfRecord", IsGroup, "mutable" );
#############################################################################
##
## list of global variables not thought for the user
##
#############################################################################
##
#F BaseShortVectors( <orbit> ) . . . . . . . . . . . . . . . . . . . . . . .
##
## 'BaseShortVectors' expects as argument an orbit of short vectors under
## some imf matrix group of dimension dim, say. This orbit can be
## considered as a set of generatos of a dim-dimensional Q-vectorspace.
## 'BaseShortVectors' determines a subset B, say, of <orbit> which is a base
## of that vectorspace, and it returns a list of two lists containing
##
## - a list of the position numbers with respect to <orbit> of the elements
## of the base B and
## - the base change matrix B^-1.
##
## Both will be needed by the function 'ImfPermutationToMatrix'.
##
DeclareGlobalFunction( "BaseShortVectors" );
#############################################################################
##
#F DisplayImfInvariants( <dim>, <q> ) . . . . . . . . . . . . . . . . . . .
#F DisplayImfInvariants( <dim>, <q>, <z> ) . . . . . . . . . . . . . . . . .
##
## 'DisplayImfInvariants' displays some Z-class invariants of the specified
## classes of irreducible maximal finite integral matrix groups in some
## easily readable format.
##
## The default value of z is 1. If any of the arguments is zero, the routine
## loops over all legal values of the respective parameter.
##
DeclareGlobalFunction( "DisplayImfInvariants" );
#############################################################################
##
#F DisplayImfReps( <dim>, <q>, <z> ) . . . . . . . . . . . . . . . . . . . .
##
## 'DisplayImfReps' is a subroutine of the 'DisplayImfInvariants' command.
## It displays some Z-class invariants of the zth Z-classes in the qth
## Q-class of the irreducible maximal finite integral matrix groups of
## dimension dim.
##
## If an argument z = 0 has been specified, then all classes in the given
## Q-class will be displayed, otherwise just the zth Z-class is displayed.
##
## This subroutine is considered to be an internal one. Hence the arguments
## are not checked for being in range. Moreover, it is assumed that the imf
## main list IMFList has already been loaded.
##
DeclareGlobalFunction( "DisplayImfReps" );
#############################################################################
##
#F ImfInvariants( <dim>, <q> ) . . . . . . . . . . . . . . . . . . . . . . .
#F ImfInvariants( <dim>, <q>, <z> ) . . . . . . . . . . . . . . . . . . . .
##
## 'ImfInvariants' returns a record of Z-class invariants of the zth Z-class
## in the qth Q-class of irreducible maximal finite integral matrix groups
## of dimension dim. The default value of z is 1.
##
## Assume that G is a representative group of the specified Z-class. Then
## the resulting record contains the following components:
##
## size group size of G,
## isSolvable true, if G is solvable,
## isomorphismType isomorphism type of G,
## elementaryDivisors elementary divisors of G,
## minimalNorm norm of the short vectors associated to G,
## sizesOrbitsShortVectors a list of the sizes of the orbits of short
## vectors associated to G,
## maximalQClass Q-class number of coresponding rational imf
## class (only if it is different from q).
##
## If a value z > 1 has been specified for a dimension for which no Z-class
## representatives are available, the function will display an appropriate
## message and return the value 'false'.
##
DeclareGlobalFunction( "ImfInvariants" );
#############################################################################
##
#F IMFLoad( <dim> ) . . . . . . . . load a secondary file of the imf library
##
## 'IMFLoad' loads the imf main list and, if dim > 0, the list of matrices
## containing the Gram matrices and the lists of generators for the
## irreducible maximal finite integral matrix groups of dimension <dim>.
## Nothing is done if the required lists have already been loaded.
##
## 'IMFLoad' finds the files in the directory specified by 'GRPNAME'. This
## variable is set in the init file 'LIBNAME/\"init.g\"'.
##
## The given dimension is not checked to be in range.
##
DeclareGlobalFunction( "IMFLoad" );
#############################################################################
##
#F ImfMatrixGroup( <dim>, <q> ) . . . . . . . . . . . . . . . . . . . . . .
#F ImfMatrixGroup( <dim>, <q>, <z> ) . . . . . . . . . . . . . . . . . . . .
##
## 'ImfMatrixGroup' returns the representative of the zth Z-class in the qth
## Q-class of the irreducible maximal finite integral matrix groups of
## dimension dim. The default value of z is 1.
##
## If a value z > 1 has been specified for a dimension for which no Z-class
## representatives are available, the function will display an appropriate
## message and return the value 'false'.
##
DeclareGlobalFunction( "ImfMatrixGroup" );
#############################################################################
##
#F ImfNumberQClasses( <dim> ) . . . . . . . . . . . . . . . . . . . . . . .
##
## 'ImfNumberQClasses' returns the number of available Q-classes of
## irreducible maximal finite subgroups of dimension dim, i. e., the number
## of Q-classes of irreducible maximal finite subgroups of GL(dim,Z), if dim
## is at most 11 or a prime, or the number of Q-classes of irreducible
## maximal finite subgroups of GL(dim,Q), else.
##
DeclareGlobalFunction( "ImfNumberQClasses" );
#############################################################################
##
#F ImfNumberQQClasses( <dim> ) . . . . . . . . . . . . . . . . . . . . . . .
##
## 'ImfNumberQQClasses' returns the number of Q-classes of irreducible
## maximal finite subgroups of GL(dim,Q).
##
DeclareGlobalFunction( "ImfNumberQQClasses" );
#############################################################################
##
#F ImfNumberZClasses( <dim>, <q> ) . . . . . . . . . . . . . . . . . . . . .
##
## 'ImfNumberZClasses' returns the number of available class representatives
## in the qth Q-class of irreducible maximal finite integral matrix groups
## of dimension dim, i. e., the number of Z-classes in that Q-class, if dim
## is at most 11 or a prime, or just the value 1, else.
##
DeclareGlobalFunction( "ImfNumberZClasses" );
#############################################################################
##
#F ImfPositionNumber( [ <dim>, <q> ] ) . . . . . . . . . . . . . . . . . . .
#F ImfPositionNumber( [ <dim>, <q>, <z> ] ) . . . . . . . . . . . . . . . .
##
## 'ImfPositionNumber' loads the imf main list if it is not yet available.
## Then it checks the given arguments and returns the position number of the
## specified Z-class representative within the list of all representatives
## of dimension dim which is still in the original order as submitted to
## us by LehrstuhL B. The default value of z is 1.
##
DeclareGlobalFunction( "ImfPositionNumber" );
#############################################################################
##
#F OrbitShortVectors( <gens>, <rep> ) . . . . . . . . . . . . . . . . . . .
##
## 'OrbitShortVectors' is a subroutine of the 'PermGroupImfGroup' command.
## It returns the orbit of the short vector <rep> under the matrix group
## generators given in list <gens>.
##
DeclareGlobalFunction( "OrbitShortVectors" );
#############################################################################
##
#F IsomorphismPermGroupImfGroup( <M> ) . . . . . . . . . . . . . . . . . . .
#F IsomorphismPermGroupImfGroup( <M>, <n> ) . . . . . . . . . . . . . . . .
##
## 'IsomorphismPermGroupImfGroup' returns an isomorphism from the given
## irreducible maximal finite integral matrix group to the permutation grou
## induced by the action of M on its nth orbit on the set of short vectors.
## The default value of n is 1.
##
DeclareGlobalFunction( "IsomorphismPermGroupImfGroup" );
#############################################################################
##
#E
|