This file is indexed.

/usr/share/gap/grp/glzmodmz.gi is in gap-libs 4r7p9-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
#############################################################################
##
#W  glzmodmz.gi                    GAP library                    Stefan Kohl
#W                                                           Alexander Hulpke
##
##
#Y  Copyright (C) 2011 The GAP Group
##
##  This file contains the functionality for constructing clasical groups over
##  residue class rings.
##

#############################################################################
##
#F  SizeOfGLdZmodmZ( <d>, <m> ) . . . . . .  Size of the group GL(<d>,Z/<m>Z)
##
##  Computes the order of the group `GL( <d>, Integers mod <m> )' for
##  positive integers <d> and <m> > 1.
##
InstallGlobalFunction( SizeOfGLdZmodmZ,

  function ( d, m )

    local  size, pow, p, q, k, i;

    if   not (IsPosInt(d) and IsInt(m) and m > 1)
    then Error("GL(",d,",Integers mod ",m,") is not a well-defined group, ",
               "resp. not supported.\n");
    fi;
    size := 1;
    for pow in Collected(Factors(m)) do
      p := pow[1]; k := pow[2]; q := p^k;
      size := size * Product([d*k - d .. d*k - 1], i -> q^d - p^i);
    od;
    return size;
  end );

#############################################################################
##
#M  SpecialLinearGroupCons( IsNaturalSL, <d>, Integers mod <m> )
##
InstallMethod( SpecialLinearGroupCons,
               "natural SL for dimension and residue class ring",
               [ IsMatrixGroup and IsFinite, IsPosInt,
                 IsRing and IsFinite and IsZmodnZObjNonprimeCollection ],

  function ( filter, d, R )

    local  G, gens, g, m, T;

    m := Size(R);
    if R <> Integers mod m or m = 1 then TryNextMethod(); fi;
    if IsPrime(m) then return SpecialLinearGroupCons(IsMatrixGroup,d,m); fi;
    if   d = 1
    then gens := [IdentityMat(d,R)];
    else gens := List(GeneratorsOfGroup(SymmetricGroup(d)),
                      g -> PermutationMat(g,d) * One(R));
         for g in gens do
           if DeterminantMat(g) <> One(R) then g[1] := -g[1]; fi;
         od;
         T := IdentityMat(d,R); T[1][2] := One(R); Add(gens,T);
    fi;
    G := GroupByGenerators(gens);
    SetName(G,Concatenation("SL(",String(d),",Z/",String(m),"Z)"));
    SetIsNaturalSL(G,true);
    SetDimensionOfMatrixGroup(G,d);
    SetIsFinite(G,true);
    SetSize(G,SizeOfGLdZmodmZ(d,m)/Phi(m));
    return G;
  end );

#############################################################################
##
#M  GeneralLinearGroupCons( IsNaturalGL, <d>, Integers mod <m> )
##
InstallMethod( GeneralLinearGroupCons,
               "natural GL for dimension and residue class ring",
               [ IsMatrixGroup and IsFinite, IsPosInt,
                 IsRing and IsFinite and IsZmodnZObjNonprimeCollection ],

  function ( filter, d, R )

    local  G, gens, g, m, T, D;

    m := Size(R);
    if R <> Integers mod m or m = 1 then TryNextMethod(); fi;
    if IsPrime(m) then return GeneralLinearGroupCons(IsMatrixGroup,d,m); fi;
    if   d = 1
    then gens := List(GeneratorsOfGroup(Units(R)), g -> [[g]]);
    else gens := List(GeneratorsOfGroup(SymmetricGroup(d)),
                      g -> PermutationMat(g,d) * One(R));
         T := IdentityMat(d,R); T[1][2] := One(R); Add(gens,T);
         for g in GeneratorsOfGroup(Units(R)) do
           D := IdentityMat(d,R); D[1][1] := g; Add(gens,D);
         od;
    fi;
    G := GroupByGenerators(gens);
    SetName(G,Concatenation("GL(",String(d),",Z/",String(m),"Z)"));
    SetIsNaturalGL(G,true);
    SetDimensionOfMatrixGroup(G,d);
    SetIsFinite(G,true);
    SetSize(G,SizeOfGLdZmodmZ(d,m));
    return G;
  end );

BindGlobal("OrderMatrixIntegerResidue",function(p,a,M)
local f,M2,o,e,MM,i;
  MM:=M;
  f:=GF(p);
  M2:=ImmutableMatrix(f,List(M,x->List(x,y->Int(y)*One(f))));
  o:=Order(M2);
  M:=M^o;
  e:=p;
  i:=1;
  while i<a do
    i:=i+1;
    e:=e*p;
    M2:=M-M^0;
    if ForAny(M2,x->ForAny(x,x->Int(x) mod e<>0)) then
      o:=o*p;
      M:=M^p;
    fi;
  od;
  
  Assert(1,IsOne(M));
  return o;
end);

InstallGlobalFunction("ConstructFormPreservingGroup",function(arg)
local oper,n,R,o,nrit,
  q,p,field,zero,one,oner,a,f,pp,b,d,fb,btf,eq,r,i,j,e,k,ogens,gens,gensi,
  bp,sol,
  g,prev,proper,fp,ho,evrels,hom,bas,basm,em,ngens,addmat,sub,transpose;

  oper:=arg[1];
  R:=arg[Length(arg)];
  n:=arg[Length(arg)-1];
  q:=Size(R);
  if not IsPrimePowerInt(q) then
    TryNextMethod();
  fi;
  p:=Factors(q)[1];
  if p=2 then return fail;fi;
  field:=GF(p);
  zero:=Zero(field);
  one:=One(field);
  if Length(arg)=3 then
    g:=oper(n,p);
  else
    g:=oper(arg[2],n,p);
  fi;
    
  # get the form and get the correct -1's
  f:=InvariantBilinearForm(g).matrix;

  transpose:=not ForAll(GeneratorsOfGroup(g),
    x->TransposedMat(x)*f*x=f);
  if transpose then
    Info(InfoGroup,1,"transpose!");
    if HasSize(g) then
      e:=Size(g);
    else
      e:=fail;
    fi;
    g:=Group(List(GeneratorsOfGroup(g),TransposedMat));
    if e<>fail then
      SetSize(g,e);
    fi;
  fi;
  #IsomorphismFpGroup(g); # force hom for next steps
  f:=List(f,r->List(r,Int));
  for i in [1..n] do

    for j in [1..n] do
      if f[i][j]=p-1 then
	f[i][j]:=-1;
      fi;
    od;
  od;

  nrit:=0;
  pp:=p; # previous p
  while pp<q do

    nrit:=nrit+1;
    prev:=g;

    if HasIsomorphismFpGroup(prev) then
      hom:=IsomorphismFpGroup(prev);
      fp:=Range(hom);
      ogens:=List(GeneratorsOfGroup(fp),
	      x->List(PreImagesRepresentative(hom,x)));
    else
      fp:=fail;
      ogens:=GeneratorsOfGroup(prev);
    fi;
    ogens:=List(ogens,x->List(x,r->List(r,Int)));
    gens:=[];

    for bp in [1..Length(ogens)+1] do
      if bp<=Length(ogens) then
	b:=ogens[bp];
      else
	b:=One(ogens[1]);
      fi;
      d:=(TransposedMat(b)*f*b-f)*1/pp;
      # solve  D+E^T*F*B+B^T*F*E=0
      fb:=f*b;
      btf:=TransposedMat(b)*f;
      eq:=[];
      r:=[];
      for i in [1..n] do
	for j in [1..n] do
	  # eq for entry i,j
	  e:=ListWithIdenticalEntries(n^2,zero);
	  for k in [1..n] do
	    e[(k-1)*n+i]:=e[(k-1)*n+i]+fb[k][j];
	    e[(k-1)*n+j]:=e[(k-1)*n+j]+btf[i][k];
	  od;
	  Add(eq,e);

	  #RHS is -d entry
	  Add(r,-d[i][j]*one);
	od;
      od;
      eq:=TransposedMat(eq); # columns were corresponding to variables

      if bp<=Length(ogens) then
	# lift generator
	sol:=SolutionMat(eq,r);

	# matrix from it
	sol:=List([1..n],x->sol{[(x-1)*n+1..x*n]});
	sol:=List(sol,x->List(x,Int));
	Add(gens,b+pp*sol);
      else
	# we know all gens

	oner:=One(Integers mod (pp*p));
	gens:=List(gens,x->x*oner);

	g:=Group(gens);

	# d will be zero, so homogeneous

	sol:=NullspaceMat(eq);
	#Info(InfoGroup,1,"extend by dim",Length(sol));

	proper:=p^Length(sol)*Size(prev); # proper order of group

	if ValueOption("avoidkerneltest")<>true then
	  # vector space in kernel that is generated
	  bas:=[];
	  basm:=[];
	  sub:=VectorSpace(field,bas,Zero(e));

	  addmat:=function(em)
	  local c;
	    e:=List(em,r->List(r,Int))-b;
	    e:=1/pp*e;
	    e:=Concatenation(e)*one;
	    if p<257 then
	      ConvertToVectorRep(e,p);
	    fi;
	    if not e in sub then
	      Add(bas,e);
	      Add(basm,em);
	      sub:=VectorSpace(field,bas);
	    fi;
	  end;

	  if fp<>fail then
	    # evaluate relators
	    evrels:=RelatorsOfFpGroup(fp);

	    i:=1;
	    while i<=Length(evrels) and Length(bas)<Length(sol) do
	      em:=MappedWord(evrels[i],FreeGeneratorsOfFpGroup(fp),gens);
	      addmat(em);
	      i:=i+1;
	    od;
	  else
	    evrels:=Source(EpimorphismFromFreeGroup(prev));
	    repeat
	      j:=PseudoRandom(evrels:radius:=10);
	      k:=MappedWord(j,GeneratorsOfGroup(evrels),GeneratorsOfGroup(prev));
	      o:=OrderMatrixIntegerResidue(p,nrit,k);
	      k:=MappedWord(j,GeneratorsOfGroup(evrels),gens)^o;
	    until not IsOne(k);
	    addmat(k);
	      
	  fi;

	  # close under action
	  gensi:=List(gens,Inverse);
	  i:=1;
	  while i<=Length(basm) and Length(bas)<Length(sol) do
	    for j in [1..Length(gens)] do
	      #em:=basm[i]^j;
	      em:=gensi[j]*basm[i]*gens[j];
	      addmat(em);
	    od;
	    i:=i+1;
	  od;

	  if Length(bas)=Length(sol) then
	    Info(InfoGroup,1,"kernel generated ",Length(bas));
	  else
	    Info(InfoGroup,1,"kernel partially generated ",Length(bas));
	    ngens:=ShallowCopy(gens);
	    i:=Iterator(sol); # just run through basis as linear
	    while Length(bas)<Length(sol) do
	      e:=NextIterator(i);
	      e:=List(e,Int);
	      e:=b+pp*List([1..n],x->e{[(x-1)*n+1..x*n]});
	      addmat(e);
	      if e=basm[Length(basm)] then
		# was added
		Add(ngens,e);
		g:=Group(ngens);
		Info(InfoGroup,1,"added generator");
	      fi;
	    od;
	  fi;

	  if fp <>fail then
	    # extend presentation
	    bas:=Basis(sub,bas);
	    RUN_IN_GGMBI:=true;
	    hom:=GroupGeneralMappingByImagesNC(g,fp,gens,GeneratorsOfGroup(fp));
	    hom:=LiftFactorFpHom(hom,g,"M",SubgroupNC(g,basm),rec(
		  pcgs:=basm,
		  prime:=p,
		  decomp:=function(em)
		  local e;
		    e:=List(em,r->List(r,Int))-b;
		    e:=1/pp*e;
		    e:=Concatenation(e)*one;
		    return List(Coefficients(bas,e),Int);
		  end
		  ));
	    RUN_IN_GGMBI:=false;
	    #simplify Image to avoid explosion of generator number
	    fp:=Range(hom);
	    if true then
	      # remove redundant generators
	      e:=PresentationFpGroup(fp);
	      TzOptions(e).printLevel:=0;
	      j:=Filtered(Reversed([1..Length(e!.generators)]),
		x->not MappingGeneratorsImages(hom)[1][x] in ngens);
	      j:=e!.generators{j};

	      TzInitGeneratorImages(e);
	      for i in j do
		TzEliminate(e,i);
	      od;
	      fp:=FpGroupPresentation(e);
	      j:=MappingGeneratorsImages(hom);
	      k:=TzPreImagesNewGens(e);
	      k:=List(k,x->j[1][Position(OldGeneratorsOfPresentation(e),x)]);

	      RUN_IN_GGMBI:=true;
	      hom:=GroupHomomorphismByImagesNC(g,fp,
		    k,
		    GeneratorsOfGroup(fp));
	      RUN_IN_GGMBI:=false;
	    fi;

	    SetIsomorphismFpGroup(g,hom);
	  fi;
	fi;

	SetSize(g,Size(prev)*Size(field)^Length(sol));
      fi;

    od;

    pp:=pp*p;
  od;

  if transpose then
    e:=Size(g);
    g:=Group(List(GeneratorsOfGroup(g),TransposedMat));
    SetSize(g,e);
  fi;
  SetInvariantBilinearForm(g,rec(matrix:=f*oner));
  
  return g;
end);

#############################################################################
##
#M  SymplecticGroupCons( <IsMatrixGroup>, <d>, Integers mod <q> )
##
InstallOtherMethod( SymplecticGroupCons,
  "symplectic group for dimension and residue class ring for prime powers",
  [ IsMatrixGroup and IsFinite, IsPosInt,
    IsRing and IsFinite and IsZmodnZObjNonprimeCollection ],
function ( filter, n, R )
local g;
  g:=ConstructFormPreservingGroup(SP,n,R);
  SetName(g,Concatenation("Sp(",String(n),",Z/",String(Size(R)),"Z)"));
  return g;
end);

#############################################################################
##
#M  GeneralOrthogonalGroupCons ( <IsMatrixGroup>, <d>, Integers mod <q> )
##
InstallOtherMethod( GeneralOrthogonalGroupCons,
  "GO for dimension and residue class ring for prime powers",
  [ IsMatrixGroup and IsFinite, IsInt,IsPosInt,
    IsRing and IsFinite and IsZmodnZObjNonprimeCollection ],
function ( filter, sign,n, R )
local g;
  if sign=0 then
    g:=ConstructFormPreservingGroup(GO,n,R);
    SetName(g,Concatenation("GO(",String(n),",Z/",String(Size(R)),"Z)"));
  else
    g:=ConstructFormPreservingGroup(GO,sign,n,R);
    SetName(g,Concatenation("GO(",String(sign),",",String(n),
      ",Z/",String(Size(R)),"Z)"));
  fi;
  return g;
end);

#############################################################################
##
#M  SpecialOrthogonalGroupCons( <IsMatrixGroup>, <d>, Integers mod <q> )
##
InstallOtherMethod( SpecialOrthogonalGroupCons,
  "GO for dimension and residue class ring for prime powers",
  [ IsMatrixGroup and IsFinite, IsInt,IsPosInt,
    IsRing and IsFinite and IsZmodnZObjNonprimeCollection ],
function ( filter, sign,n, R )
local g;
  if sign=0 then
    g:=ConstructFormPreservingGroup(SO,n,R);
    if g=fail then TryNextMethod();fi;
    SetName(g,Concatenation("SO(",String(n),",Z/",String(Size(R)),"Z)"));
  else
    g:=ConstructFormPreservingGroup(SO,sign,n,R);
    if g=fail then TryNextMethod();fi;
    SetName(g,Concatenation("SO(",String(sign),",",String(n),
      ",Z/",String(Size(R)),"Z)"));
  fi;
  return g;
end);

#############################################################################
##
#E  glzmodmz.gi . . . . . . . . . . . . . . . . . . . . . . . . . . ends here