This file is indexed.

/usr/share/gap/grp/classic.gd is in gap-libs 4r7p9-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
#############################################################################
##
#W  classic.gd                  GAP Library                      Frank Celler
##
#Y  Copyright (C)  1996,  Lehrstuhl D für Mathematik,  RWTH Aachen,  Germany
##
##  This file contains the operations for the construction of the classical
##  group types.
##


#############################################################################
##
##  <#GAPDoc Label="[1]{classic}">
##  The following functions return classical groups.
##  For the linear, symplectic, and unitary groups (the latter in dimension
##  at least <M>3</M>),
##  the generators are taken from&nbsp;<Cite Key="Tay87"/>.
##  For the unitary groups in dimension <M>2</M>, the isomorphism of
##  SU<M>(2,q)</M> and SL<M>(2,q)</M> is used,
##  see for example&nbsp;<Cite Key="Hup67"/>.
##  The generators of the general and special orthogonal groups are taken
##  from&nbsp;<Cite Key="IshibashiEarnest94"/> and
##  <Cite Key="KleidmanLiebeck90"/>,
##  except that the generators of the groups in odd dimension in even
##  characteristic are constructed via the isomorphism to a symplectic group,
##  see for example&nbsp;<Cite Key="Car72a"/>.
##  The generators of the groups <M>\Omega^\epsilon(d, q)</M> are taken
##  from&nbsp;<Cite Key="RylandsTalor98"/>,
##  except that the generators of SO<M>(5, 2)</M> are taken for
##  <M>\Omega(5, 2)</M>.
##  The generators for the semilinear groups are constructed from the
##  generators of the corresponding linear groups plus one additional
##  generator that describes the action of the group of field automorphisms;
##  for prime integers <M>p</M> and positive integers <M>f</M>,
##  this yields the matrix groups <M>Gamma</M>L<M>(d, p^f)</M> and
##  <M>Sigma</M>L<M>(d, p^f)</M> as groups of <M>d f \times df</M> matrices
##  over the field with <M>p</M> elements.
##  <P/>
##  For symplectic and orthogonal matrix groups returned by the functions
##  described below, the invariant bilinear form is stored as the value of
##  the attribute <Ref Attr="InvariantBilinearForm"/>.
##  Analogously, the invariant sesquilinear form defining the unitary groups
##  is stored as the value of the attribute
##  <Ref Attr="InvariantSesquilinearForm"/>).
##  The defining quadratic form of orthogonal groups is stored as the value
##  of the attribute <Ref Attr="InvariantQuadraticForm"/>.
##  <P/>
##  Note that due to the different sources for the generators,
##  the invariant forms for the groups <M>\Omega(e,d,q)</M> are in general
##  different from the forms for SO<M>(e,d,q)</M> and GO<M>(e,d,q)</M>.
##  <!--
##  If the <Package>Forms</Package> is loaded then compatible groups can be
##  created by specifying the desired form, see the examples below.
##  -->
##  <#/GAPDoc>
##


#############################################################################
##
#O  GeneralLinearGroupCons( <filter>, <d>, <R> )
##
##  <ManSection>
##  <Oper Name="GeneralLinearGroupCons" Arg='filter, d, R'/>
##
##  <Description>
##  </Description>
##  </ManSection>
##
DeclareConstructor( "GeneralLinearGroupCons", [ IsGroup, IsPosInt, IsRing ] );


#############################################################################
##
#F  GeneralLinearGroup( [<filt>, ]<d>, <R> )  . . . . .  general linear group
#F  GL( [<filt>, ]<d>, <R> )
#F  GeneralLinearGroup( [<filt>, ]<d>, <q> )
#F  GL( [<filt>, ]<d>, <q> )
##
##  <#GAPDoc Label="GeneralLinearGroup">
##  <ManSection>
##  <Heading>GeneralLinearGroup</Heading>
##  <Func Name="GeneralLinearGroup" Arg='[filt, ]d, R'
##   Label="for dimension and a ring"/>
##  <Func Name="GL" Arg='[filt, ]d, R'
##   Label="for dimension and a ring"/>
##  <Func Name="GeneralLinearGroup" Arg='[filt, ]d, q'
##   Label="for dimension and field size"/>
##  <Func Name="GL" Arg='[filt, ]d, q'
##   Label="for dimension and field size"/>
##
##  <Description>
##  The first two forms construct a group isomorphic to the general linear
##  group GL( <A>d</A>, <A>R</A> ) of all <M><A>d</A> \times <A>d</A></M>
##  matrices that are invertible over the ring <A>R</A>,
##  in the category given by the filter <A>filt</A>.
##  <P/>
##  The third and the fourth form construct the general linear group over the
##  finite field with <A>q</A> elements.
##  <P/>
##  If <A>filt</A> is not given it defaults to <Ref Func="IsMatrixGroup"/>,
##  and the returned group is the general linear group as a matrix group in
##  its natural action (see also&nbsp;<Ref Func="IsNaturalGL"/>,
##  <Ref Func="IsNaturalGLnZ"/>).
##  <P/>
##  Currently supported rings <A>R</A> are finite fields,
##  the ring <Ref Var="Integers"/>,
##  and residue class rings <C>Integers mod <A>m</A></C>,
##  see <Ref Sect="Residue Class Rings"/>.
##  <P/>
##  <Example><![CDATA[
##  gap> GL(4,3);
##  GL(4,3)
##  gap> GL(2,Integers);
##  GL(2,Integers)
##  gap> GL(3,Integers mod 12);
##  GL(3,Z/12Z)
##  ]]></Example>
##  <P/>
##  <Index Key="OnLines" Subkey="example"><C>OnLines</C></Index>
##  Using the <Ref Func="OnLines"/> operation it is possible to obtain the
##  corresponding projective groups in a permutation action:
##  <P/>
##  <Example><![CDATA[
##  gap> g:=GL(4,3);;Size(g);
##  24261120
##  gap> pgl:=Action(g,Orbit(g,Z(3)^0*[1,0,0,0],OnLines),OnLines);;
##  gap> Size(pgl);
##  12130560
##  ]]></Example>
##  <P/>
##  If you are interested only in the projective group as a permutation group
##  and not in the correspondence between its moved points and the points in
##  the projective space, you can also use <Ref Func="PGL"/>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
BindGlobal( "GeneralLinearGroup", function ( arg )
  if Length( arg ) = 2 then
    if IsRing( arg[2] ) then
      return GeneralLinearGroupCons( IsMatrixGroup, arg[1], arg[2] );
    elif IsPrimePowerInt( arg[2] ) then
      return GeneralLinearGroupCons( IsMatrixGroup, arg[1], GF( arg[2] ) );
    fi;
  elif Length( arg ) = 3 and IsOperation( arg[1] ) then
    if IsRing( arg[3] ) then
      return GeneralLinearGroupCons( arg[1], arg[2], arg[3] );
    elif IsPrimePowerInt( arg[3] ) then
      return GeneralLinearGroupCons( arg[1], arg[2], GF( arg[3] ) );
    fi;
  fi;
  Error( "usage: GeneralLinearGroup( [<filter>, ]<d>, <R> )" );
end );

DeclareSynonym( "GL", GeneralLinearGroup );


#############################################################################
##
#O  GeneralOrthogonalGroupCons( <filter>, <e>, <d>, <q> )
##
##  <ManSection>
##  <Oper Name="GeneralOrthogonalGroupCons" Arg='filter, e, d, q'/>
##
##  <Description>
##  </Description>
##  </ManSection>
##
DeclareConstructor( "GeneralOrthogonalGroupCons",
    [ IsGroup, IsInt, IsPosInt, IsPosInt ] );
DeclareConstructor( "GeneralOrthogonalGroupCons",
    [ IsGroup, IsInt, IsPosInt, IsRing ] );


#############################################################################
##
#F  GeneralOrthogonalGroup( [<filt>, ][<e>, ]<d>, <q> ) .  gen. orthog. group
#F  GO( [<filt>, ][<e>, ]<d>, <q> )
##
##  <#GAPDoc Label="GeneralOrthogonalGroup">
##  <ManSection>
##  <Func Name="GeneralOrthogonalGroup" Arg='[filt, ][e, ]d, q'/>
##  <Func Name="GO" Arg='[filt, ][e, ]d, q'/>
##
##  <Description>
##  constructs a group isomorphic to the
##  general orthogonal group GO( <A>e</A>, <A>d</A>, <A>q</A> ) of those
##  <M><A>d</A> \times <A>d</A></M> matrices over the field with <A>q</A>
##  elements that respect a non-singular quadratic form
##  (see&nbsp;<Ref Func="InvariantQuadraticForm"/>) specified by <A>e</A>,
##  in the category given by the filter <A>filt</A>.
##  <P/>
##  The value of <A>e</A> must be <M>0</M> for odd <A>d</A> (and can
##  optionally be  omitted in this case), respectively one of <M>1</M> or
##  <M>-1</M> for even <A>d</A>.
##  If <A>filt</A> is not given it defaults to <Ref Func="IsMatrixGroup"/>,
##  and the returned group is the general orthogonal group itself.
##  <P/>
##  <!--
##  If the &GAP; package <Package>Forms</Package> is loaded then one can also
##  specify the desired invariant quadratic form respected by the group. -->
##  Note that in&nbsp;<Cite Key="KleidmanLiebeck90"/>,
##  GO is defined as the stabilizer
##  <M>\Delta(V, F, \kappa)</M> of the quadratic form, up to scalars,
##  whereas our GO is called <M>I(V, F, \kappa)</M> there.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
BindGlobal( "GeneralOrthogonalGroup", function ( arg )
  if   Length( arg ) = 2 then
    return GeneralOrthogonalGroupCons( IsMatrixGroup, 0, arg[1], arg[2] );
  elif Length( arg ) = 3 and IsInt(arg[1]) and IsInt(arg[2]) and
    (IsInt(arg[3]) or IsRing(arg[3])) then
    return GeneralOrthogonalGroupCons( IsMatrixGroup,arg[1],arg[2],arg[3] );
  elif IsOperation( arg[1] ) then
    if   Length( arg ) = 3 then
      return GeneralOrthogonalGroupCons( arg[1], 0, arg[2], arg[3] );
    elif Length( arg ) = 4 then
      return GeneralOrthogonalGroupCons( arg[1], arg[2], arg[3], arg[4] );
    fi;
  fi;
  Error( "usage: GeneralOrthogonalGroup( [<filter>, ][<e>, ]<d>, <q> )" );
end );

DeclareSynonym( "GO", GeneralOrthogonalGroup );


#############################################################################
##
#O  GeneralUnitaryGroupCons( <filter>, <d>, <q> )
##
##  <ManSection>
##  <Oper Name="GeneralUnitaryGroupCons" Arg='filter, d, q'/>
##
##  <Description>
##  </Description>
##  </ManSection>
##
DeclareConstructor( "GeneralUnitaryGroupCons",
    [ IsGroup, IsPosInt, IsPosInt ] );


#############################################################################
##
#F  GeneralUnitaryGroup( [<filt>, ]<d>, <q> ) . . . . . general unitary group
#F  GU( [<filt>, ]<d>, <q> )
##
##  <#GAPDoc Label="GeneralUnitaryGroup">
##  <ManSection>
##  <Func Name="GeneralUnitaryGroup" Arg='[filt, ]d, q'/>
##  <Func Name="GU" Arg='[filt, ]d, q'/>
##
##  <Description>
##  constructs a group isomorphic to the general unitary group
##  GU( <A>d</A>, <A>q</A> ) of those <M><A>d</A> \times <A>d</A></M>
##  matrices over the field with <M><A>q</A>^2</M> elements
##  that respect a fixed nondegenerate sesquilinear form,
##  in the category given by the filter <A>filt</A>.
##  <P/>
##  If <A>filt</A> is not given it defaults to <Ref Func="IsMatrixGroup"/>,
##  and the returned group is the general unitary group itself.
##  <P/>
##  <!--
##  If the &GAP; package <Package>Forms</Package> is loaded then one can also
##  specify the desired invariant sesquilinear form respected by the group. -->
##  <Example><![CDATA[
##  gap> GeneralUnitaryGroup( 3, 5 );
##  GU(3,5)
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
BindGlobal( "GeneralUnitaryGroup", function ( arg )

  if Length( arg ) = 2 then
    return GeneralUnitaryGroupCons( IsMatrixGroup, arg[1], arg[2] );
  elif IsOperation( arg[1] ) then

    if Length( arg ) = 3 then
      return GeneralUnitaryGroupCons( arg[1], arg[2], arg[3] );
    fi;
  fi;
  Error( "usage: GeneralUnitaryGroup( [<filter>, ]<d>, <q> )" );

end );

DeclareSynonym( "GU", GeneralUnitaryGroup );


#############################################################################
##
#O  SpecialLinearGroupCons( <filter>, <d>, <R> )
##
##  <ManSection>
##  <Oper Name="SpecialLinearGroupCons" Arg='filter, d, R'/>
##
##  <Description>
##  </Description>
##  </ManSection>
##
DeclareConstructor( "SpecialLinearGroupCons", [ IsGroup, IsInt, IsRing ] );


#############################################################################
##
#F  SpecialLinearGroup( [<filt>, ]<d>, <R> )  . . . . .  special linear group
#F  SL( [<filt>, ]<d>, <R> )
#F  SpecialLinearGroup( [<filt>, ]<d>, <q> )
#F  SL( [<filt>, ]<d>, <q> )
##
##  <#GAPDoc Label="SpecialLinearGroup">
##  <ManSection>
##  <Heading>SpecialLinearGroup</Heading>
##  <Func Name="SpecialLinearGroup" Arg='[filt, ]d, R'
##   Label="for dimension and a ring"/>
##  <Func Name="SL" Arg='[filt, ]d, R'
##   Label="for dimension and a ring"/>
##  <Func Name="SpecialLinearGroup" Arg='[filt, ]d, q'
##   Label="for dimension and a field size"/>
##  <Func Name="SL" Arg='[filt, ]d, q'
##   Label="for dimension and a field size"/>
##
##  <Description>
##  The first two forms construct a group isomorphic to the special linear
##  group SL( <A>d</A>, <A>R</A> ) of all those
##  <M><A>d</A> \times <A>d</A></M> matrices over the ring <A>R</A> whose
##  determinant is the identity of <A>R</A>,
##  in the category given by the filter <A>filt</A>.
##  <P/>
##  The third and the fourth form construct the special linear group over the
##  finite field with <A>q</A> elements.
##  <P/>
##  If <A>filt</A> is not given it defaults to <Ref Func="IsMatrixGroup"/>,
##  and the returned group is the special linear group as a matrix group in
##  its natural action (see also&nbsp;<Ref Func="IsNaturalSL"/>,
##  <Ref Func="IsNaturalSLnZ"/>).
##  <P/>
##  Currently supported rings <A>R</A> are finite fields,
##  the ring <Ref Var="Integers"/>,
##  and residue class rings <C>Integers mod <A>m</A></C>,
##  see <Ref Sect="Residue Class Rings"/>.
##  <P/>
##  <Example><![CDATA[
##  gap> SpecialLinearGroup(2,2);
##  SL(2,2)
##  gap> SL(3,Integers);
##  SL(3,Integers)
##  gap> SL(4,Integers mod 4);
##  SL(4,Z/4Z)
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
BindGlobal( "SpecialLinearGroup", function ( arg )
  if Length( arg ) = 2  then
    if IsRing( arg[2] ) then
      return SpecialLinearGroupCons( IsMatrixGroup, arg[1], arg[2] );
    elif IsPrimePowerInt( arg[2] ) then
      return SpecialLinearGroupCons( IsMatrixGroup, arg[1], GF( arg[2] ) );
    fi;
  elif Length( arg ) = 3 and IsOperation( arg[1] ) then
    if IsRing( arg[3] ) then
      return SpecialLinearGroupCons( arg[1], arg[2], arg[3] );
    elif IsPrimePowerInt( arg[3] ) then
      return SpecialLinearGroupCons( arg[1], arg[2], GF( arg[3] ) );
    fi;
  fi;
  Error( "usage: SpecialLinearGroup( [<filter>, ]<d>, <R> )" );

end );

DeclareSynonym( "SL", SpecialLinearGroup );


#############################################################################
##
#O  SpecialOrthogonalGroupCons( <filter>, <e>, <d>, <q> )
##
##  <ManSection>
##  <Oper Name="SpecialOrthogonalGroupCons" Arg='filter, e, d, q'/>
##
##  <Description>
##  </Description>
##  </ManSection>
##
DeclareConstructor( "SpecialOrthogonalGroupCons",
    [ IsGroup, IsInt, IsPosInt, IsPosInt ] );
DeclareConstructor( "SpecialOrthogonalGroupCons",
    [ IsGroup, IsInt, IsPosInt, IsRing ] );


#############################################################################
##
#F  SpecialOrthogonalGroup( [<filt>, ][<e>, ]<d>, <q> ) . spec. orthog. group
#F  SO( [<filt>, ][<e>, ]<d>, <q> )
##
##  <#GAPDoc Label="SpecialOrthogonalGroup">
##  <ManSection>
##  <Func Name="SpecialOrthogonalGroup" Arg='[filt, ][e, ]d, q'/>
##  <Func Name="SO" Arg='[filt, ][e, ]d, q'/>
##
##  <Description>
##  <Ref Func="SpecialOrthogonalGroup"/> returns a group isomorphic to the 
##  special orthogonal group SO( <A>e</A>, <A>d</A>, <A>q</A> ),
##  which is the subgroup of all those matrices in the general orthogonal
##  group (see&nbsp;<Ref Func="GeneralOrthogonalGroup"/>) that have
##  determinant one, in the category given by the filter <A>filt</A>.
##  (The index of SO( <A>e</A>, <A>d</A>, <A>q</A> ) in
##  GO( <A>e</A>, <A>d</A>, <A>q</A> ) is <M>2</M> if <A>q</A> is
##  odd, and <M>1</M> if <A>q</A> is even.)
##  Also interesting is the group Omega( <A>e</A>, <A>d</A>, <A>q</A> ),
##  see <Ref Oper="Omega" Label="construct an orthogonal group"/>,
##  which is always of index <M>2</M> in SO( <A>e</A>, <A>d</A>, <A>q</A> ).
##  <P/>
##  If <A>filt</A> is not given it defaults to <Ref Func="IsMatrixGroup"/>,
##  and the returned group is the special orthogonal group itself.
##  <P/>
##  <!--
##  If the &GAP; package <Package>Forms</Package> is loaded then one can also
##  specify the desired invariant quadratic form respected by the group. -->
##  <Example><![CDATA[
##  gap> GeneralOrthogonalGroup( 3, 7 );
##  GO(0,3,7)
##  gap> GeneralOrthogonalGroup( -1, 4, 3 );
##  GO(-1,4,3)
##  gap> SpecialOrthogonalGroup( 1, 4, 4 );
##  GO(+1,4,4)
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
BindGlobal( "SpecialOrthogonalGroup", function ( arg )

  if   Length( arg ) = 2 then
    return SpecialOrthogonalGroupCons( IsMatrixGroup, 0, arg[1], arg[2] );
  elif Length( arg ) = 3 and IsInt(arg[1]) and IsInt(arg[2]) and
    (IsInt(arg[3]) or IsRing(arg[3])) then
    return SpecialOrthogonalGroupCons( IsMatrixGroup,arg[1],arg[2],arg[3] );
  elif IsOperation( arg[1] ) then
    if   Length( arg ) = 3 then
      return SpecialOrthogonalGroupCons( arg[1], 0, arg[2], arg[3] );
    elif Length( arg ) = 4 then
      return SpecialOrthogonalGroupCons( arg[1], arg[2], arg[3], arg[4] );
    fi;
  fi;
  Error( "usage: SpecialOrthogonalGroup( [<filter>, ][<e>, ]<d>, <q> )" );

end );

DeclareSynonym( "SO", SpecialOrthogonalGroup );


#############################################################################
##
#O  SpecialUnitaryGroupCons( <filter>, <d>, <q> )
##
##  <ManSection>
##  <Oper Name="SpecialUnitaryGroupCons" Arg='filter, d, q'/>
##
##  <Description>
##  </Description>
##  </ManSection>
##
DeclareConstructor( "SpecialUnitaryGroupCons",
    [ IsGroup, IsPosInt, IsPosInt ] );


#############################################################################
##
#F  SpecialUnitaryGroup( [<filt>, ]<d>, <q> ) . . . . . general unitary group
#F  SU( [<filt>, ]<d>, <q> )
##
##  <#GAPDoc Label="SpecialUnitaryGroup">
##  <ManSection>
##  <Func Name="SpecialUnitaryGroup" Arg='[filt, ]d, q'/>
##  <Func Name="SU" Arg='[filt, ]d, q'/>
##
##  <Description>
##  constructs a group isomorphic to the special unitary group
##  GU(<A>d</A>, <A>q</A>) of those <M><A>d</A> \times <A>d</A></M> matrices
##  over the field with <M><A>q</A>^2</M> elements
##  whose determinant is the identity of the field and that respect a fixed
##  nondegenerate sesquilinear form,
##  in the category given by the filter <A>filt</A>.
##  <P/>
##  If <A>filt</A> is not given it defaults to <Ref Func="IsMatrixGroup"/>,
##  and the returned group is the special unitary group itself.
##  <P/>
##  <!--
##  If the &GAP; package <Package>Forms</Package> is loaded then one can also
##  specify the desired invariant sesquilinear form respected by the group. -->
##  <Example><![CDATA[
##  gap> SpecialUnitaryGroup( 3, 5 );
##  SU(3,5)
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
BindGlobal( "SpecialUnitaryGroup", function ( arg )

  if Length( arg ) = 2 then
    return SpecialUnitaryGroupCons( IsMatrixGroup, arg[1], arg[2] );
  elif IsOperation( arg[1] ) then

    if Length( arg ) = 3 then
      return SpecialUnitaryGroupCons( arg[1], arg[2], arg[3] );
    fi;
  fi;
  Error( "usage: SpecialUnitaryGroup( [<filter>, ]<d>, <q> )" );

end );

DeclareSynonym( "SU", SpecialUnitaryGroup );


#############################################################################
##
#O  SymplecticGroupCons( <filter>, <d>, <q> )
##
##  <ManSection>
##  <Oper Name="SymplecticGroupCons" Arg='filter, d, q'/>
##
##  <Description>
##  </Description>
##  </ManSection>
##
DeclareConstructor( "SymplecticGroupCons", [ IsGroup, IsPosInt, IsPosInt ] );
DeclareConstructor( "SymplecticGroupCons", [ IsGroup, IsPosInt, IsRing ] );


#############################################################################
##
#F  SymplecticGroup( [<filt>, ]<d>, <q> ) . . . . . . . . .  symplectic group
#F  Sp( [<filt>, ]<d>, <q> )
#F  SP( [<filt>, ]<d>, <q> )
##
##  <#GAPDoc Label="SymplecticGroup">
##  <ManSection>
##  <Heading>SymplecticGroup</Heading>
##  <Func Name="SymplecticGroup" Arg='[filt, ]d, q'
##   Label="for dimension and field size"/>
##  <Func Name="SymplecticGroup" Arg='[filt, ]d, ring'
##   Label="for dimension and a ring"/>
##  <Func Name="Sp" Arg='[filt, ]d, q'
##   Label="for dimension and field size"/>
##  <Func Name="Sp" Arg='[filt, ]d, ring'
##   Label="for dimension and a ring"/>
##  <Func Name="SP" Arg='[filt, ]d, q'
##   Label="for dimension and field size"/>
##  <Func Name="SP" Arg='[filt, ]d, ring'
##   Label="for dimension and a ring"/>
##
##  <Description>
##  constructs a group isomorphic to the symplectic group
##  Sp( <A>d</A>, <A>q</A> ) of those <M><A>d</A> \times <A>d</A></M>
##  matrices over the field with <A>q</A> elements (respectively the ring
##  <A>ring</A>)
##  that respect a fixed nondegenerate symplectic form,
##  in the category given by the filter <A>filt</A>.
##  <P/>
##  If <A>filt</A> is not given it defaults to <Ref Func="IsMatrixGroup"/>,
##  and the returned group is the symplectic group itself.
##  <P/>
##  At the moment finite fields or residue class rings 
##  <C>Integers mod <A>q</A></C>, with <A>q</A> an odd prime power are
##  supported.
##  <!--
##  If the &GAP; package <Package>Forms</Package> is loaded then one can also
##  specify the desired invariant symplectic form respected by the group. -->
##  <Example><![CDATA[
##  gap> SymplecticGroup( 4, 2 );
##  Sp(4,2)
##  gap> g:=SymplecticGroup(6,Integers mod 9);
##  Sp(6,Z/9Z)
##  gap> Size(g);
##  95928796265538862080
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
BindGlobal( "SymplecticGroup", function ( arg )

  if Length( arg ) = 2 then
    return SymplecticGroupCons( IsMatrixGroup, arg[1], arg[2] );
  elif IsOperation( arg[1] ) then

    if Length( arg ) = 3 then
      return SymplecticGroupCons( arg[1], arg[2], arg[3] );
    fi;
  fi;
  Error( "usage: SymplecticGroup( [<filter>, ]<d>, <q> )" );

end );

DeclareSynonym( "Sp", SymplecticGroup );
DeclareSynonym( "SP", SymplecticGroup );


#############################################################################
##
#O  OmegaCons( <filter>, <e>, <d>, <q> )  . . . . . . . . .  orthogonal group
##
##  <ManSection>
##  <Oper Name="OmegaCons" Arg='filter, d, e, q'/>
##
##  <Description>
##  </Description>
##  </ManSection>
##
DeclareConstructor( "OmegaCons", [ IsGroup, IsInt, IsPosInt, IsPosInt ] );


#############################################################################
##
#O  Omega( [<filt>, ][<e>, ]<d>, <q> )
##
##  <#GAPDoc Label="Omega_orthogonal_groups">
##  <ManSection>
##  <Oper Name="Omega" Arg='[filt, ][e, ]d, q'
##   Label="construct an orthogonal group"/>
##
##  <Description>
##  constructs a group isomorphic to the
##  group <M>\Omega</M>( <A>e</A>, <A>d</A>, <A>q</A> ) of those
##  <M><A>d</A> \times <A>d</A></M> matrices over the field with <A>q</A>
##  elements that respect a non-singular quadratic form
##  (see&nbsp;<Ref Func="InvariantQuadraticForm"/>) specified by <A>e</A>,
##  and that have square spinor norm in odd characteristic
##  or Dickson invariant <M>0</M> in even characteristic, respectively,
##  in the category given by the filter <A>filt</A>.
##  This group has always index two in SO( <A>e</A>, <A>d</A>, <A>q</A> ),
##  see <Ref Func="SpecialOrthogonalGroup"/>.
##  <P/>
##  The value of <A>e</A> must be <M>0</M> for odd <A>d</A> (and can
##  optionally be omitted in this case), respectively one of <M>1</M> or
##  <M>-1</M> for even <A>d</A>.
##  If <A>filt</A> is not given it defaults to <Ref Func="IsMatrixGroup"/>,
##  and the returned group is the group
##  <M>\Omega</M>( <A>e</A>, <A>d</A>, <A>q</A> ) itself.
##  <P/>
##  <!--
##  If the &GAP; package <Package>Forms</Package> is loaded then one can also
##  specify the desired invariant quadratic form respected by the group. -->
##  <Example><![CDATA[
##  gap> g:= Omega( 3, 5 );  StructureDescription( g );
##  Omega(0,3,5)
##  "A5"
##  gap> g:= Omega( 1, 4, 4 );  StructureDescription( g );
##  Omega(+1,4,4)
##  "A5 x A5"
##  gap> g:= Omega( -1, 4, 3 );  StructureDescription( g );
##  Omega(-1,4,3)
##  "A6"
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "Omega", [ IsPosInt, IsPosInt ] );
DeclareOperation( "Omega", [ IsInt, IsPosInt, IsPosInt ] );
DeclareOperation( "Omega", [ IsFunction, IsPosInt, IsPosInt ] );
DeclareOperation( "Omega", [ IsFunction, IsInt, IsPosInt, IsPosInt ] );


#############################################################################
##
#O  GeneralSemilinearGroupCons( <filter>, <d>, <q> )
##
##  <ManSection>
##  <Oper Name="GeneralSemilinearGroupCons" Arg='filter, d, q'/>
##
##  <Description>
##  </Description>
##  </ManSection>
##
DeclareConstructor( "GeneralSemilinearGroupCons",
    [ IsGroup, IsPosInt, IsPosInt ] );


#############################################################################
##
#F  GeneralSemilinearGroup( [<filt>, ]<d>, <q> )  .  general semilinear group
#F  GammaL( [<filt>, ]<d>, <q> )
##
##  <#GAPDoc Label="GeneralSemilinearGroup">
##  <ManSection>
##  <Func Name="GeneralSemilinearGroup" Arg='[filt, ]d, q'/>
##  <Func Name="GammaL" Arg='[filt, ]d, q'/>
##
##  <Description>
##  <Ref Func="GeneralSemilinearGroup"/> returns a group isomorphic to the
##  general semilinear group <M>\Gamma</M>L( <A>d</A>, <A>q</A> ) of
##  semilinear mappings of the vector space
##  <C>GF( </C><A>q</A><C> )^</C><A>d</A>.
##  <P/>
##  If <A>filt</A> is not given it defaults to <Ref Func="IsMatrixGroup"/>,
##  and the returned group consists of matrices of dimension
##  <A>d</A> <M>f</M> over the field with <M>p</M> elements,
##  where <A>q</A> <M>= p^f</M>, for a prime integer <M>p</M>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
BindGlobal( "GeneralSemilinearGroup", function( arg )
  if Length( arg ) = 2 then
    return GeneralSemilinearGroupCons( IsMatrixGroup, arg[1], arg[2] );
  elif Length( arg ) = 3 and IsOperation( arg[1] ) then
    return GeneralSemilinearGroupCons( arg[1], arg[2], arg[3] );
  fi;
  Error( "usage: GeneralSemilinearGroup( [<filter>, ]<d>, <q> )" );
end );

DeclareSynonym( "GammaL", GeneralSemilinearGroup );


#############################################################################
##
#O  SpecialSemilinearGroupCons( <filter>, <d>, <q> )
##
##  <ManSection>
##  <Oper Name="SpecialSemilinearGroupCons" Arg='filter, d, q'/>
##
##  <Description>
##  </Description>
##  </ManSection>
##
DeclareConstructor( "SpecialSemilinearGroupCons",
    [ IsGroup, IsPosInt, IsPosInt ] );


#############################################################################
##
#F  SpecialSemilinearGroup( [<filt>, ]<d>, <q> )  .  special semilinear group
#F  SigmaL( [<filt>, ]<d>, <q> )
##
##  <#GAPDoc Label="SpecialSemilinearGroup">
##  <ManSection>
##  <Func Name="SpecialSemilinearGroup" Arg='[filt, ]d, q'/>
##  <Func Name="SigmaL" Arg='[filt, ]d, q'/>
##
##  <Description>
##  <Ref Func="SpecialSemilinearGroup"/> returns a group isomorphic to the
##  special semilinear group <M>\Sigma</M>L( <A>d</A>, <A>q</A> ) of those
##  semilinear mappings of the vector space
##  <C>GF( </C><A>q</A><C> )^</C><A>d</A> 
##  (see <Ref Func="GeneralSemilinearGroup"/>)
##  whose linear part has determinant one.
##  <P/>
##  If <A>filt</A> is not given it defaults to <Ref Func="IsMatrixGroup"/>,
##  and the returned group consists of matrices of dimension
##  <A>d</A> <M>f</M> over the field with <M>p</M> elements,
##  where <A>q</A> <M>= p^f</M>, for a prime integer <M>p</M>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
BindGlobal( "SpecialSemilinearGroup", function( arg )
  if Length( arg ) = 2 then
    return SpecialSemilinearGroupCons( IsMatrixGroup, arg[1], arg[2] );
  elif Length( arg ) = 3 and IsOperation( arg[1] ) then
    return SpecialSemilinearGroupCons( arg[1], arg[2], arg[3] );
  fi;
  Error( "usage: SpecialSemilinearGroup( [<filter>, ]<d>, <q> )" );
end );

DeclareSynonym( "SigmaL", SpecialSemilinearGroup );


#############################################################################
##
#F  DECLARE_PROJECTIVE_GROUPS_OPERATION( ... )
##
BindGlobal("DECLARE_PROJECTIVE_GROUPS_OPERATION",
  # (<name>,<abbreviation>,<fieldextdeg>,<sizefunc-or-fail>)
  function(nam,abbr,extdeg,szf)
local pnam,cons,opr;
  opr:=VALUE_GLOBAL(nam);
  pnam:=Concatenation("Projective",nam);
  cons:=NewConstructor(Concatenation(pnam,"Cons"),[IsGroup,IsInt,IsInt]);
  BindGlobal(Concatenation(pnam,"Cons"),cons);
  BindGlobal(pnam,function(arg)
    if Length(arg) = 2  then
      return cons( IsPermGroup, arg[1], arg[2] );
    elif IsOperation(arg[1]) then
      if Length(arg) = 3  then
	return cons( arg[1], arg[2], arg[3] );
      fi;
    fi;
    Error( "usage: ",pnam,"( [<filter>, ]<d>, <q> )" );
  end );
  DeclareSynonym(Concatenation("P",abbr),VALUE_GLOBAL(pnam));

  # install a method to get the permutation action on lines
  InstallMethod( cons,"action on lines",
      [ IsPermGroup, IsPosInt,IsPosInt ],
  function(fil,n,q)
  local g,f,p;
    g:=opr(IsMatrixGroup,n,q);
    f:=GF(q^extdeg);
    p:=ProjectiveActionOnFullSpace(g,f,n);
    if szf<>fail then
      SetSize(p,szf(n,q,g));
    fi;
    return p;
  end);

end);


#############################################################################
##
#F  ProjectiveGeneralLinearGroup( [<filt>, ]<d>, <q> )
#F  PGL( [<filt>, ]<d>, <q> )
##
##  <#GAPDoc Label="ProjectiveGeneralLinearGroup">
##  <ManSection>
##  <Func Name="ProjectiveGeneralLinearGroup" Arg='[filt, ]d, q'/>
##  <Func Name="PGL" Arg='[filt, ]d, q'/>
##
##  <Description>
##  constructs a group isomorphic to the projective general linear group
##  PGL( <A>d</A>, <A>q</A> ) of those <M><A>d</A> \times <A>d</A></M>
##  matrices over the field with <A>q</A> elements, modulo the
##  centre, in the category given by the filter <A>filt</A>.
##  <P/>
##  If <A>filt</A> is not given it defaults to <Ref Func="IsPermGroup"/>,
##  and the returned group is the action on lines of the underlying vector
##  space.
##  <P/>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DECLARE_PROJECTIVE_GROUPS_OPERATION("GeneralLinearGroup","GL",1,
  # size function
  function(n,q,g)
    return Size(g)/(q-1);
  end);


#############################################################################
##
#F  ProjectiveSpecialLinearGroup( [<filt>, ]<d>, <q> )
#F  PSL( [<filt>, ]<d>, <q> )
##
##  <#GAPDoc Label="ProjectiveSpecialLinearGroup">
##  <ManSection>
##  <Func Name="ProjectiveSpecialLinearGroup" Arg='[filt, ]d, q'/>
##  <Func Name="PSL" Arg='[filt, ]d, q'/>
##
##  <Description>
##  constructs a group isomorphic to the projective special linear group
##  PSL( <A>d</A>, <A>q</A> ) of those <M><A>d</A> \times <A>d</A></M>
##  matrices over the field with <A>q</A> elements whose determinant is the
##  identity of the field, modulo the centre,
##  in the category given by the filter <A>filt</A>.
##  <P/>
##  If <A>filt</A> is not given it defaults to <Ref Func="IsPermGroup"/>,
##  and the returned group is the action on lines of the underlying vector
##  space.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DECLARE_PROJECTIVE_GROUPS_OPERATION("SpecialLinearGroup","SL",1,
  # size function
  function(n,q,g)
    return Size(g)/Gcd(n,q-1);
  end);


#############################################################################
##
#F  ProjectiveGeneralUnitaryGroup( [<filt>, ]<d>, <q> )
#F  PGU( [<filt>, ]<d>, <q> )
##
##  <#GAPDoc Label="ProjectiveGeneralUnitaryGroup">
##  <ManSection>
##  <Func Name="ProjectiveGeneralUnitaryGroup" Arg='[filt, ]d, q'/>
##  <Func Name="PGU" Arg='[filt, ]d, q'/>
##
##  <Description>
##  constructs a group isomorphic to the projective general unitary group
##  PGU( <A>d</A>, <A>q</A> ) of those <M><A>d</A> \times <A>d</A></M>
##  matrices over the field with <M><A>q</A>^2</M> elements that respect
##  a fixed nondegenerate sesquilinear form,
##  modulo the centre, in the category given by the filter <A>filt</A>.
##  <P/>
##  If <A>filt</A> is not given it defaults to <Ref Func="IsPermGroup"/>,
##  and the returned group is the action on lines of the underlying vector
##  space.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DECLARE_PROJECTIVE_GROUPS_OPERATION("GeneralUnitaryGroup","GU",2,
  # size function
  function(n,q,g)
    return Size(g)/(q+1);
  end);


#############################################################################
##
#F  ProjectiveSpecialUnitaryGroup( [<filt>, ]<d>, <q> )
#F  PSU( [<filt>, ]<d>, <q> )
##
##  <#GAPDoc Label="ProjectiveSpecialUnitaryGroup">
##  <ManSection>
##  <Func Name="ProjectiveSpecialUnitaryGroup" Arg='[filt, ]d, q'/>
##  <Func Name="PSU" Arg='[filt, ]d, q'/>
##
##  <Description>
##  constructs a group isomorphic to the projective special unitary group
##  PSU( <A>d</A>, <A>q</A> ) of those <M><A>d</A> \times <A>d</A></M>
##  matrices over the field with <M><A>q</A>^2</M> elements that respect
##  a fixed nondegenerate sesquilinear form and have determinant 1,
##  modulo the centre, in the category given by the filter <A>filt</A>.
##  <P/>
##  If <A>filt</A> is not given it defaults to <Ref Func="IsPermGroup"/>,
##  and the returned group is the action on lines of the underlying vector
##  space.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DECLARE_PROJECTIVE_GROUPS_OPERATION("SpecialUnitaryGroup","SU",2,
  # size function
  function(n,q,g)
    return Size(g)/Gcd(n,q+1);
  end);


#############################################################################
##
#F  ProjectiveSymplecticGroup( [<filt>, ]<d>, <q> )
#F  PSP( [<filt>, ]<d>, <q> )
#F  PSp( [<filt>, ]<d>, <q> )
##
##  <#GAPDoc Label="ProjectiveSymplecticGroup">
##  <ManSection>
##  <Func Name="ProjectiveSymplecticGroup" Arg='[filt, ]d, q'/>
##  <Func Name="PSP" Arg='[filt, ]d, q'/>
##  <Func Name="PSp" Arg='[filt, ]d, q'/>
##
##  <Description>
##  constructs a group isomorphic to the projective symplectic group
##  PSp(<A>d</A>,<A>q</A>) of those <M><A>d</A> \times <A>d</A></M> matrices
##  over the field with <A>q</A> elements that respect a fixed nondegenerate
##  symplectic form, modulo the centre,
##  in the category given by the filter <A>filt</A>.
##  <P/>
##  If <A>filt</A> is not given it defaults to <Ref Func="IsPermGroup"/>,
##  and the returned group is the action on lines of the underlying vector
##  space.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DECLARE_PROJECTIVE_GROUPS_OPERATION("SymplecticGroup","SP",1,
  # size function
  function(n,q,g)
    return Size(g)/Gcd(2,q-1);
  end);
DeclareSynonym( "PSp", PSP );


#############################################################################
##
#O  ProjectiveOmegaCons( <filt>, <e>, <d>, <q> )
#F  ProjectiveOmega( [<filt>, ][<e>, ]<d>, <q> )
#F  POmega( [<filt>, ][<e>, ]<d>, <q> )
##
##  <#GAPDoc Label="ProjectiveOmega">
##  <ManSection>
##  <Func Name="ProjectiveOmega" Arg='[filt, ][e, ]d, q'/>
##  <Func Name="POmega" Arg='[filt, ][e, ]d, q'/>
##
##  <Description>
##  constructs a group isomorphic to the projective group
##  P<M>\Omega</M>( <A>e</A>, <A>d</A>, <A>q</A> )
##  of <M>\Omega</M>( <A>e</A>, <A>d</A>, <A>q</A> ),
##  modulo the centre
##  (see <Ref Oper="Omega" Label="construct an orthogonal group"/>),
##  in the category given by the filter <A>filt</A>.
##  <P/>
##  If <A>filt</A> is not given it defaults to <Ref Func="IsPermGroup"/>,
##  and the returned group is the action on lines of the underlying vector
##  space.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareConstructor( "ProjectiveOmegaCons", [ IsGroup, IsInt, IsInt, IsInt ] );

BindGlobal( "ProjectiveOmega", function( arg )
    if Length( arg ) = 2  then
      return ProjectiveOmegaCons( IsPermGroup, 0, arg[1], arg[2] );
    elif Length( arg ) = 3  and IsInt( arg[1] ) then
      return ProjectiveOmegaCons( IsPermGroup, arg[1], arg[2], arg[3] );
    elif Length( arg ) = 3  and IsOperation( arg[1] ) then
      return ProjectiveOmegaCons( arg[1], 0, arg[2], arg[3] );
    elif IsOperation( arg[1] ) and Length( arg ) = 4 then
      return ProjectiveOmegaCons( arg[1], arg[2], arg[3], arg[4] );
    fi;
    Error( "usage: ProjectiveOmega( [<filter>, ][<e>, ]<d>, <q> )" );
  end );

DeclareSynonym( "POmega", ProjectiveOmega );

InstallMethod( ProjectiveOmegaCons,
    "action on lines",
    [ IsPermGroup, IsInt, IsPosInt, IsPosInt ],
    function( filter, e, n, q )
    local g, p;

    g:= Omega( IsMatrixGroup, e, n, q );
    p:= ProjectiveActionOnFullSpace( g, GF( q ), n );
    if n mod 2 = 0 and ( q^(n/2) - e ) mod 4 = 0 then
      SetSize( p, Size( g ) / 2 );
    else
      SetSize( p, Size( g ) );
    fi;

    return p;
  end);


#############################################################################
##
#E