This file is indexed.

/usr/share/gap/grp/basic.gd is in gap-libs 4r7p9-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
#############################################################################
##
#W  basic.gd                    GAP Library                      Frank Celler
##
##
#Y  Copyright (C)  1996,  Lehrstuhl D für Mathematik,  RWTH Aachen,  Germany
##
##  This file contains the operations for the construction of the basic group
##  types.
##


#############################################################################
##
##  <#GAPDoc Label="[1]{basic}">
##  There are several infinite families of groups which are parametrized by
##  numbers.
##  &GAP; provides various functions to construct these groups.
##  The functions always permit (but do not require) one to indicate
##  a filter (see&nbsp;<Ref Sect="Filters"/>),
##  for example <Ref Prop="IsPermGroup"/>, <Ref Prop="IsMatrixGroup"/> or
##  <Ref Prop="IsPcGroup"/>, in which the group shall be constructed.
##  There always is a default filter corresponding to a <Q>natural</Q> way
##  to describe the group in question.
##  Note that not every group can be constructed in every filter,
##  there may be theoretical restrictions (<Ref Prop="IsPcGroup"/> only works
##  for solvable groups) or methods may be available only for a few filters.
##  <P/>
##  Certain filters may admit additional hints.
##  For example, groups constructed in <Ref Prop="IsMatrixGroup"/> may be
##  constructed over a specified field, which can be given as second argument
##  of the function that constructs the group;
##  The default field is <Ref Var="Rationals"/>.
##  <#/GAPDoc>


#############################################################################
##
#O  TrivialGroupCons( <filter> )
##
##  <ManSection>
##  <Oper Name="TrivialGroupCons" Arg='filter'/>
##
##  <Description>
##  </Description>
##  </ManSection>
##
DeclareConstructor( "TrivialGroupCons", [ IsGroup ] );


#############################################################################
##
#F  TrivialGroup( [<filter>] )  . . . . . . . . . . . . . . . . trivial group
##
##  <#GAPDoc Label="TrivialGroup">
##  <ManSection>
##  <Func Name="TrivialGroup" Arg='[filter]'/>
##
##  <Description>
##  constructs a trivial group in the category given by the filter
##  <A>filter</A>.
##  If <A>filter</A> is not given it defaults to <Ref Func="IsPcGroup"/>.
##  <P/>
##  <Example><![CDATA[
##  gap> TrivialGroup();
##  <pc group of size 1 with 0 generators>
##  gap> TrivialGroup( IsPermGroup );
##  Group(())
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
BindGlobal( "TrivialGroup", function( arg )

  if Length( arg ) = 0 then
    return TrivialGroupCons( IsPcGroup );
  elif IsFilter( arg[1] ) and Length( arg ) = 1 then
    return TrivialGroupCons( arg[1] );
  fi;
  Error( "usage: TrivialGroup( [<filter>] )" );

end );


#############################################################################
##
#O  AbelianGroupCons( <filter>, <ints> )
##
##  <ManSection>
##  <Oper Name="AbelianGroupCons" Arg='filter, ints'/>
##
##  <Description>
##  </Description>
##  </ManSection>
##
DeclareConstructor( "AbelianGroupCons", [ IsGroup, IsList ] );


#############################################################################
##
#F  AbelianGroup( [<filt>, ]<ints> )  . . . . . . . . . . . . . abelian group
##
##  <#GAPDoc Label="AbelianGroup">
##  <ManSection>
##  <Func Name="AbelianGroup" Arg='[filt, ]ints'/>
##
##  <Description>
##  constructs an abelian group in the category given by the filter
##  <A>filt</A> which is of isomorphism type
##  <M>C_{{<A>ints</A>[1]}} \times C_{{<A>ints</A>[2]}} \times \ldots
##  \times C_{{<A>ints</A>[n]}}</M>,
##  where <A>ints</A> must be a list of positive integers.
##  If <A>filt</A> is not given it defaults to <Ref Func="IsPcGroup"/>.
##  The generators of the group returned are the elements corresponding to
##  the integers in <A>ints</A>.
##  <P/>
##  <Example><![CDATA[
##  gap> AbelianGroup([1,2,3]);
##  <pc group of size 6 with 3 generators>
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
BindGlobal( "AbelianGroup", function ( arg )

  if Length(arg) = 1  then
    if ForAny(arg[1],x->x=0) then
      return AbelianGroupCons( IsFpGroup, arg[1] );
    fi;
    return AbelianGroupCons( IsPcGroup, arg[1] );
  elif IsOperation(arg[1]) then

    if Length(arg) = 2  then
      return AbelianGroupCons( arg[1], arg[2] );

    elif Length(arg) = 3  then
      return AbelianGroupCons( arg[1], arg[2], arg[3] );
    fi;
  fi;
  Error( "usage: AbelianGroup( [<filter>, ]<ints> )" );

end );


#############################################################################
##
#O  AlternatingGroupCons( <filter>, <deg> )
##
##  <ManSection>
##  <Oper Name="AlternatingGroupCons" Arg='filter, deg'/>
##
##  <Description>
##  </Description>
##  </ManSection>
##
DeclareConstructor( "AlternatingGroupCons", [ IsGroup, IsInt ] );


#############################################################################
##
#F  AlternatingGroup( [<filt>, ]<deg> ) . . . . . . . . . . alternating group
#F  AlternatingGroup( [<filt>, ]<dom> ) . . . . . . . . . . alternating group
##
##  <#GAPDoc Label="AlternatingGroup">
##  <ManSection>
##  <Heading>AlternatingGroup</Heading>
##  <Func Name="AlternatingGroup" Arg='[filt, ]deg' Label="for a degree"/>
##  <Func Name="AlternatingGroup" Arg='[filt, ]dom' Label="for a domain"/>
##
##  <Description>
##  constructs the alternating group of degree <A>deg</A> in the category given
##  by the filter <A>filt</A>.
##  If <A>filt</A> is not given it defaults to <Ref Prop="IsPermGroup"/>.
##  In the second version, the function constructs the alternating group on
##  the points given in the set <A>dom</A> which must be a set of positive
##  integers.
##  <Example><![CDATA[
##  gap> AlternatingGroup(5);
##  Alt( [ 1 .. 5 ] )
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
BindGlobal( "AlternatingGroup", function ( arg )

  if Length(arg) = 1  then
    return  AlternatingGroupCons( IsPermGroup, arg[1] );
  elif IsOperation(arg[1]) then

    if Length(arg) = 2  then
      return  AlternatingGroupCons( arg[1], arg[2] );
    fi;
  fi;
  Error( "usage:  AlternatingGroup( [<filter>, ]<deg> )" );

end );


#############################################################################
##
#O  CyclicGroupCons( <filter>, <n> )
##
##  <ManSection>
##  <Oper Name="CyclicGroupCons" Arg='filter, n'/>
##
##  <Description>
##  </Description>
##  </ManSection>
##
DeclareConstructor( "CyclicGroupCons", [ IsGroup, IsInt ] );


#############################################################################
##
#F  CyclicGroup( [<filt>, ]<n> )  . . . . . . . . . . . . . . .  cyclic group
##
##  <#GAPDoc Label="CyclicGroup">
##  <ManSection>
##  <Func Name="CyclicGroup" Arg='[filt, ]n'/>
##
##  <Description>
##  constructs the cyclic group of size <A>n</A> in the category given by the
##  filter <A>filt</A>.
##  If <A>filt</A> is not given it defaults to <Ref Func="IsPcGroup"/>.
##  <P/>
##  <Example><![CDATA[
##  gap> CyclicGroup(12);
##  <pc group of size 12 with 3 generators>
##  gap> CyclicGroup(IsPermGroup,12);
##  Group([ (1,2,3,4,5,6,7,8,9,10,11,12) ])
##  gap> matgrp1:= CyclicGroup( IsMatrixGroup, 12 );
##  <matrix group of size 12 with 1 generators>
##  gap> FieldOfMatrixGroup( matgrp1 );
##  Rationals
##  gap> matgrp2:= CyclicGroup( IsMatrixGroup, GF(2), 12 );
##  <matrix group of size 12 with 1 generators>
##  gap> FieldOfMatrixGroup( matgrp2 );
##  GF(2)
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
BindGlobal( "CyclicGroup", function ( arg )

  if Length(arg) = 1  then
    if arg[1]=infinity then
      return CyclicGroupCons(IsFpGroup,arg[1]);
    fi;
    return CyclicGroupCons( IsPcGroup, arg[1] );
  elif IsOperation(arg[1]) then

    if Length(arg) = 2  then
      return CyclicGroupCons( arg[1], arg[2] );

    elif Length(arg) = 3  then
      return CyclicGroupCons( arg[1], arg[2], arg[3] );
    fi;
  fi;
  Error( "usage: CyclicGroup( [<filter>, ]<size> )" );

end );


#############################################################################
##
#O  DihedralGroupCons( <filter>, <n> )
##
##  <ManSection>
##  <Oper Name="DihedralGroupCons" Arg='filter, n'/>
##
##  <Description>
##  </Description>
##  </ManSection>
##
DeclareConstructor( "DihedralGroupCons", [ IsGroup, IsInt ] );


#############################################################################
##
#F  DihedralGroup( [<filt>, ]<n> )  . . . . . . . dihedral group of order <n>
##
##  <#GAPDoc Label="DihedralGroup">
##  <ManSection>
##  <Func Name="DihedralGroup" Arg='[filt, ]n'/>
##
##  <Description>
##  constructs the dihedral group of size <A>n</A> in the category given by the
##  filter <A>filt</A>.
##  If <A>filt</A> is not given it defaults to <Ref Func="IsPcGroup"/>.
##  <P/>
##  <Example><![CDATA[
##  gap> DihedralGroup(10);
##  <pc group of size 10 with 2 generators>
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
BindGlobal( "DihedralGroup", function ( arg )

  if Length(arg) = 1  then
    return DihedralGroupCons( IsPcGroup, arg[1] );
  elif IsOperation(arg[1]) then

    if Length(arg) = 2  then
      return DihedralGroupCons( arg[1], arg[2] );

    elif Length(arg) = 3  then
      return DihedralGroupCons( arg[1], arg[2], arg[3] );
    fi;
  fi;
  Error( "usage: DihedralGroup( [<filter>, ]<size> )" );

end );

#############################################################################
##
#O  QuaternionGroupCons( <filter>, <n> )
##
##  <ManSection>
##  <Oper Name="QuaternionGroupCons" Arg='filter, n'/>
##
##  <Description>
##  </Description>
##  </ManSection>
##
DeclareConstructor( "QuaternionGroupCons", [ IsGroup, IsInt ] );


#############################################################################
##
#F  QuaternionGroup( [<filt>, ]<n> )  . . . . . . . quaternion group of order <n>
##
##  <#GAPDoc Label="QuaternionGroup">
##  <ManSection>
##  <Func Name="QuaternionGroup" Arg='[filt, ]n'/>
##  <Func Name="DicyclicGroup" Arg='[filt, ]n'/>
##
##  <Description>
##  constructs the generalized quaternion group (or dicyclic group) of size
##  <A>n</A> in the category given by the filter <A>filt</A>.  Here, <A>n</A>
##  is a multiple of 4.
##  If <A>filt</A> is not given it defaults to <Ref Func="IsPcGroup"/>.
##  Methods are also available for permutation and matrix groups (of minimal
##  degree and minimal dimension in coprime characteristic).
##  <P/>
##  <Example><![CDATA[
##  gap> QuaternionGroup(32);
##  <pc group of size 32 with 5 generators>
##  gap> g:=QuaternionGroup(IsMatrixGroup,CF(16),32);
##  Group([ [ [ 0, 1 ], [ -1, 0 ] ], [ [ E(16), 0 ], [ 0, -E(16)^7 ] ] ])
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
BindGlobal( "QuaternionGroup", function ( arg )

  if Length(arg) = 1  then
    return QuaternionGroupCons( IsPcGroup, arg[1] );
  elif IsOperation(arg[1]) then

    if Length(arg) = 2  then
      return QuaternionGroupCons( arg[1], arg[2] );

    elif Length(arg) = 3  then
      return QuaternionGroupCons( arg[1], arg[2], arg[3] );
    fi;
  fi;
  Error( "usage: QuaternionGroup( [<filter>, ]<size> )" );

end );

DeclareSynonym( "DicyclicGroup", QuaternionGroup );


#############################################################################
##
#O  ElementaryAbelianGroupCons( <filter>, <n> )
##
##  <ManSection>
##  <Oper Name="ElementaryAbelianGroupCons" Arg='filter, n'/>
##
##  <Description>
##  </Description>
##  </ManSection>
##
DeclareConstructor( "ElementaryAbelianGroupCons", [ IsGroup, IsInt ] );


#############################################################################
##
#F  ElementaryAbelianGroup( [<filt>, ]<n> ) . . . .  elementary abelian group
##
##  <#GAPDoc Label="ElementaryAbelianGroup">
##  <ManSection>
##  <Func Name="ElementaryAbelianGroup" Arg='[filt, ]n'/>
##
##  <Description>
##  constructs the elementary abelian group of size <A>n</A> in the category
##  given by the filter <A>filt</A>.
##  If <A>filt</A> is not given it defaults to <Ref Func="IsPcGroup"/>.
##  <P/>
##  <Example><![CDATA[
##  gap> ElementaryAbelianGroup(8192);
##  <pc group of size 8192 with 13 generators>
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
BindGlobal( "ElementaryAbelianGroup", function ( arg )

  if Length(arg) = 1  then
    return ElementaryAbelianGroupCons( IsPcGroup, arg[1] );
  elif IsOperation(arg[1]) then

    if Length(arg) = 2  then
      return ElementaryAbelianGroupCons( arg[1], arg[2] );

    elif Length(arg) = 3  then
      return ElementaryAbelianGroupCons( arg[1], arg[2], arg[3] );
    fi;
  fi;
  Error( "usage: ElementaryAbelianGroup( [<filter>, ]<size> )" );

end );


#############################################################################
##
#O  FreeAbelianGroupCons( <filter>, <rank> )
##
##  <ManSection>
##  <Oper Name="FreeAbelianGroupCons" Arg='filter, rank'/>
##
##  <Description>
##  </Description>
##  </ManSection>
##
DeclareConstructor( "FreeAbelianGroupCons", [ IsGroup, IsInt ] );


#############################################################################
##
#F  FreeAbelianGroup( [<filt>, ]<rank> ) . . . . . . . . . .  free abelian group
##
##  <#GAPDoc Label="FreeAbelianGroup">
##  <ManSection>
##  <Func Name="FreeAbelianGroup" Arg='[filt, ]rank'/>
##
##  <Description>
##  constructs the free abelian group of rank <A>n</A> in the category
##  given by the filter <A>filt</A>.
##  If <A>filt</A> is not given it defaults to <Ref Func="IsFpGroup"/>.
##  <P/>
##  <Example><![CDATA[
##  gap> FreeAbelianGroup(4);
##  <fp group on the generators [ f1, f2, f3, f4 ]>
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
BindGlobal( "FreeAbelianGroup", function ( arg )

  if Length(arg) = 1  then
    return FreeAbelianGroupCons( IsFpGroup, arg[1] );
  elif IsOperation(arg[1]) then

    if Length(arg) = 2  then
      return FreeAbelianGroupCons( arg[1], arg[2] );

    elif Length(arg) = 3  then
      return FreeAbelianGroupCons( arg[1], arg[2], arg[3] );
    fi;
  fi;
  Error( "usage: FreeAbelianGroup( [<filter>, ]<size> )" );

end );


#############################################################################
##
#O  ExtraspecialGroupCons( <filter>, <order>, <exponent> )
##
##  <ManSection>
##  <Oper Name="ExtraspecialGroupCons" Arg='filter, order, exponent'/>
##
##  <Description>
##  </Description>
##  </ManSection>
##
DeclareConstructor( "ExtraspecialGroupCons", [ IsGroup, IsInt, IsObject ] );


#############################################################################
##
#F  ExtraspecialGroup( [<filt>, ]<order>, <exp> ) . . . .  extraspecial group
##
##  <#GAPDoc Label="ExtraspecialGroup">
##  <ManSection>
##  <Func Name="ExtraspecialGroup" Arg='[filt, ]order, exp'/>
##
##  <Description>
##  Let <A>order</A> be of the form <M>p^{{2n+1}}</M>, for a prime integer
##  <M>p</M> and a positive integer <M>n</M>.
##  <Ref Func="ExtraspecialGroup"/> returns the extraspecial group of order
##  <A>order</A> that is determined by <A>exp</A>,
##  in the category given by the filter <A>filt</A>.
##  <P/>
##  If <M>p</M> is odd then admissible values of <A>exp</A> are the exponent
##  of the group (either <M>p</M> or <M>p^2</M>) or one of <C>'+'</C>,
##  <C>"+"</C>, <C>'-'</C>, <C>"-"</C>.
##  For <M>p = 2</M>, only the above plus or minus signs are admissible.
##  <P/>
##  If <A>filt</A> is not given it defaults to <Ref Func="IsPcGroup"/>.
##  <P/>
##  <Example><![CDATA[
##  gap> ExtraspecialGroup( 27, 3 );
##  <pc group of size 27 with 3 generators>
##  gap> ExtraspecialGroup( 27, '+' );
##  <pc group of size 27 with 3 generators>
##  gap> ExtraspecialGroup( 8, "-" );
##  <pc group of size 8 with 3 generators>
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
BindGlobal( "ExtraspecialGroup", function ( arg )

  if Length(arg) = 2  then
    return ExtraspecialGroupCons( IsPcGroup, arg[1], arg[2] );
  elif IsOperation(arg[1]) then

    if Length(arg) = 3  then
      return ExtraspecialGroupCons( arg[1], arg[2], arg[3] );

    elif Length(arg) = 4  then
      return ExtraspecialGroupCons( arg[1], arg[2], arg[3], arg[4] );
    fi;
  fi;
  Error( "usage: ExtraspecialGroup( [<filter>, ]<order>, <exponent> )" );

end );


#############################################################################
##
#O  MathieuGroupCons( <filter>, <degree> )
##
##  <ManSection>
##  <Oper Name="MathieuGroupCons" Arg='filter, degree'/>
##
##  <Description>
##  </Description>
##  </ManSection>
##
DeclareConstructor( "MathieuGroupCons", [ IsGroup, IsInt ] );


#############################################################################
##
#F  MathieuGroup( [<filt>, ]<degree> )  . . . . . . . . . . . . Mathieu group
##
##  <#GAPDoc Label="MathieuGroup">
##  <ManSection>
##  <Func Name="MathieuGroup" Arg='[filt, ]degree'/>
##
##  <Description>
##  constructs the Mathieu group of degree <A>degree</A> in the category
##  given by the filter <A>filt</A>, where <A>degree</A> must be in the set
##  <M>\{ 9, 10, 11, 12, 21, 22, 23, 24 \}</M>.
##  If <A>filt</A> is not given it defaults to <Ref Prop="IsPermGroup"/>.
##  <P/>
##  <Example><![CDATA[
##  gap> MathieuGroup( 11 );
##  Group([ (1,2,3,4,5,6,7,8,9,10,11), (3,7,11,8)(4,10,5,6) ])
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
BindGlobal( "MathieuGroup", function( arg )

  if Length( arg ) = 1 then
    return MathieuGroupCons( IsPermGroup, arg[1] );
  elif IsOperation( arg[1] ) then

    if Length( arg ) = 2 then
      return MathieuGroupCons( arg[1], arg[2] );

    elif Length( arg ) = 3 then
      return MathieuGroupCons( arg[1], arg[2], arg[3] );
    fi;
  fi;
  Error( "usage: MathieuGroup( [<filter>, ]<degree> )" );

end );


#############################################################################
##
#O  SymmetricGroupCons( <filter>, <deg> )
##
##  <ManSection>
##  <Oper Name="SymmetricGroupCons" Arg='filter, deg'/>
##
##  <Description>
##  </Description>
##  </ManSection>
##
DeclareConstructor( "SymmetricGroupCons", [ IsGroup, IsInt ] );


#############################################################################
##
#F  SymmetricGroup( [<filt>, ]<deg> )
#F  SymmetricGroup( [<filt>, ]<dom> )
##
##  <#GAPDoc Label="SymmetricGroup">
##  <ManSection>
##  <Heading>SymmetricGroup</Heading>
##  <Func Name="SymmetricGroup" Arg='[filt, ]deg' Label="for a degree"/>
##  <Func Name="SymmetricGroup" Arg='[filt, ]dom' Label="for a domain"/>
##
##  <Description>
##  constructs the symmetric group of degree <A>deg</A> in the category
##  given by the filter <A>filt</A>.
##  If <A>filt</A> is not given it defaults to <Ref Prop="IsPermGroup"/>.
##  In the second version, the function constructs the symmetric group on
##  the points given in the set <A>dom</A> which must be a set of positive
##  integers.
##  <P/>
##  <Example><![CDATA[
##  gap> SymmetricGroup(10);
##  Sym( [ 1 .. 10 ] )
##  ]]></Example>
##  <P/>
##  Note that permutation groups provide special treatment of symmetric and
##  alternating groups,
##  see&nbsp;<Ref Sect="Symmetric and Alternating Groups"/>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
BindGlobal( "SymmetricGroup", function ( arg )

  if Length(arg) = 1  then
    return  SymmetricGroupCons( IsPermGroup, arg[1] );
  elif IsOperation(arg[1]) then

    if Length(arg) = 2  then
      return  SymmetricGroupCons( arg[1], arg[2] );
    fi;
  fi;
  Error( "usage:  SymmetricGroup( [<filter>, ]<deg> )" );

end );

BIND_GLOBAL("PermConstructor",function(oper,filter,use)
local val, i;
  val:=0;
  # force value 0 (unless offset).
  for i in filter do
    # when completing, `RankFilter' is redefined. Thus we must use
    # SIZE_FLAGS.
    val:=val-SIZE_FLAGS(WITH_HIDDEN_IMPS_FLAGS(FLAGS_FILTER(i)));
  od;

  InstallOtherMethod( oper,
    "convert to permgroup",
    filter,
    val,
  function(arg)
  local argc,g,h;
    argc:=ShallowCopy(arg);
    argc[1]:=use;
    g:=CallFuncList(oper,argc);
    h:=Image(IsomorphismPermGroup(g),g);
    if HasName(g) then
      SetName(h,Concatenation("Perm_",Name(g)));
    fi;
    if HasSize(g) then
      SetSize(h,Size(g));
    fi;
    return h;
  end);

end);


#############################################################################
##
#E