/usr/include/cppad/local/optimize.hpp is in cppad 2016.00.00.1-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 | // $Id: optimize.hpp 3757 2015-11-30 12:03:07Z bradbell $
# ifndef CPPAD_OPTIMIZE_HPP
# define CPPAD_OPTIMIZE_HPP
/* --------------------------------------------------------------------------
CppAD: C++ Algorithmic Differentiation: Copyright (C) 2003-15 Bradley M. Bell
CppAD is distributed under multiple licenses. This distribution is under
the terms of the
GNU General Public License Version 3.
A copy of this license is included in the COPYING file of this distribution.
Please visit http://www.coin-or.org/CppAD/ for information on other licenses.
-------------------------------------------------------------------------- */
/*
$begin optimize$$
$spell
enum
jac
bool
Taylor
var
CppAD
cppad
std
CondExpEq
$$
$section Optimize an ADFun Object Tape$$
$mindex sequence operations speed memory NDEBUG$$
$head Syntax$$
$icode%f%.optimize()%$$
$head Purpose$$
The operation sequence corresponding to an $cref ADFun$$ object can
be very large and involve many operations; see the
size functions in $cref seq_property$$.
The $icode%f%.optimize%$$ procedure reduces the number of operations,
and thereby the time and the memory, required to
compute function and derivative values.
$head f$$
The object $icode f$$ has prototype
$codei%
ADFun<%Base%> %f%
%$$
$head Improvements$$
You can see the reduction in number of variables in the operation sequence
by calling the function $cref/f.size_var()/seq_property/size_var/$$
before and after the optimization procedure.
Given that the optimization procedure takes time,
it may be faster to skip this optimize procedure and just compute
derivatives using the original operation sequence.
$subhead Testing$$
You can run the CppAD $cref/speed/speed_main/$$ tests and see
the corresponding changes in number of variables and execution time;
see $cref cmake_check$$.
$head Efficiency$$
The $code optimize$$ member function
may greatly reduce the number of variables
in the operation sequence; see $cref/size_var/seq_property/size_var/$$.
If a $cref/zero order forward/forward_zero/$$ calculation is done during
the construction of $icode f$$, it will require more memory
and time than required after the optimization procedure.
In addition, it will need to be redone.
For this reason, it is more efficient to use
$codei%
ADFun<%Base%> %f%;
%f%.Dependent(%x%, %y%);
%f%.optimize();
%$$
instead of
$codei%
ADFun<%Base%> %f%(%x%, %y%)
%f%.optimize();
%$$
See the discussion about
$cref/sequence constructors/FunConstruct/Sequence Constructor/$$.
$head Atomic Functions$$
There are some subtitle issue with optimized $cref atomic$$ functions
$latex v = g(u)$$:
$subhead rev_sparse_jac$$
The $cref atomic_rev_sparse_jac$$ function is be used to determine
which components of $icode u$$ affect the dependent variables of $icode f$$.
For each atomic operation, the current
$cref/atomic_sparsity/atomic_option/atomic_sparsity/$$ setting is used
to determine if $code pack_sparsity_enum$$, $code bool_sparsity_enum$$,
or $code set_sparsity_enum$$ is used to determine dependency relations
between argument and result variables.
$subhead nan$$
If $icode%u%[%i%]%$$ does not affect the value of
the dependent variables for $icode f$$,
the value of $icode%u%[%i%]%$$ is set to $cref nan$$.
$head Checking Optimization$$
If $cref/NDEBUG/Faq/Speed/NDEBUG/$$ is not defined,
and $cref/f.size_order()/size_order/$$ is greater than zero,
a $cref forward_zero$$ calculation is done using the optimized version
of $icode f$$ and the results are checked to see that they are
the same as before.
If they are not the same, the
$cref ErrorHandler$$ is called with a known error message
related to $icode%f%.optimize()%$$.
$head Example$$
$children%
example/optimize.cpp
%$$
The file
$cref optimize.cpp$$
contains an example and test of this operation.
It returns true if it succeeds and false otherwise.
$end
-----------------------------------------------------------------------------
*/
# include <stack>
namespace CppAD { // BEGIN_CPPAD_NAMESPACE
namespace optimize { // BEGIN_CPPAD_OPTIMIZE_NAMESPACE
/*!
\file optimize.hpp
Routines for optimizing a tape
*/
/*!
State for this variable set during reverse sweep.
*/
enum enum_connect_type {
/// There is no operation that connects this variable to the
/// independent variables.
not_connected ,
/// There is one or more operations that connects this variable to the
/// independent variables.
yes_connected ,
/// There is only one parrent that connects this variable to the
/// independent variables and the parent is a summation operation; i.e.,
/// AddvvOp, AddpvOp, SubpvOp, SubvpOp, or SubvvOp.
sum_connected ,
/// Satisfies the sum_connected assumptions above and in addition
/// this variable is the result of summation operator.
csum_connected ,
/// This node is only connected in the case where the comparision is
/// true for the conditional expression with index \c connect_index.
cexp_connected
};
/*!
Class used to hold information about one conditional expression.
*/
class class_cexp_pair {
public:
/// packs both the compare and index information
/// compare = pack_ % 2
/// index = pack_ / 2
size_t pack_;
/// If this is true (false) this connection is only for the case where
/// the comparision in the conditional expression is true (false)
bool compare(void) const
{ return pack_ % 2 != 0; }
/// This is the index of the conditional expression (in cksip_info)
/// for this connection
size_t index(void) const
{ return pack_ / 2; }
/// constructor
class_cexp_pair(const bool& compare_arg, const size_t& index_arg)
: pack_(size_t(compare_arg) + 2 * index_arg )
{ CPPAD_ASSERT_UNKNOWN( compare_arg == compare() );
CPPAD_ASSERT_UNKNOWN( index_arg == index() );
}
/// assignment operator
void operator=(const class_cexp_pair& right)
{ pack_ = right.pack_; }
/// not equal operator
bool operator!=(const class_cexp_pair& right)
{ return pack_ != right.pack_; }
/// Less than operator
/// (required for intersection of two sets of class_cexp_pair elements).
bool operator<(const class_cexp_pair& right) const
{ return pack_ < right.pack_; }
};
/*!
A container that is like std::set<class_cexp_pair> except that it does
not allocate empty sets and only has a few operations.
*/
class class_set_cexp_pair {
private:
// This set is empty if and only if ptr_ == CPPAD_NULL;
std::set<class_cexp_pair>* ptr_;
void new_ptr(void)
{ CPPAD_ASSERT_UNKNOWN( ptr_ == CPPAD_NULL );
ptr_ = new std::set<class_cexp_pair>;
CPPAD_ASSERT_UNKNOWN( ptr_ != CPPAD_NULL );
// std::cout << "new ptr_ = " << ptr_ << std::endl;
}
void delete_ptr(void)
{ if( ptr_ != CPPAD_NULL )
{ // std::cout << "delete ptr_ = " << ptr_ << std::endl;
delete ptr_;
}
ptr_ = CPPAD_NULL;
}
public:
/// constructor
class_set_cexp_pair(void)
{ ptr_ = CPPAD_NULL; }
/// destructor
~class_set_cexp_pair(void)
{ delete_ptr(); }
void print(void)
{ if( ptr_ == CPPAD_NULL )
{ std::cout << "{ }";
return;
}
CPPAD_ASSERT_UNKNOWN( ! empty() );
const char* sep = "{ ";
std::set<class_cexp_pair>::const_iterator itr;
for(itr = ptr_->begin(); itr != ptr_->end(); itr++)
{ std::cout << sep;
std::cout << "(" << itr->compare() << "," << itr->index() << ")";
sep = ", ";
}
std::cout << "}";
}
/// assignment operator
void operator=(const class_set_cexp_pair& other)
{ // make this a copy of the other set
if( other.ptr_ == CPPAD_NULL )
{ if( ptr_ == CPPAD_NULL )
return;
delete_ptr();
return;
}
CPPAD_ASSERT_UNKNOWN( ! other.empty() );
if( ptr_ == CPPAD_NULL )
new_ptr();
*ptr_ = *other.ptr_;
}
/// insert an element in this set
void insert(const class_cexp_pair& element)
{ if( ptr_ == CPPAD_NULL )
new_ptr();
ptr_->insert(element);
CPPAD_ASSERT_UNKNOWN( ! empty() );
}
/// is this set empty
bool empty(void) const
{ if( ptr_ == CPPAD_NULL )
return true;
CPPAD_ASSERT_UNKNOWN( ! ptr_->empty() );
return false;
}
/// remove the elements in this set
void clear(void)
{ if( ptr_ == CPPAD_NULL )
return;
CPPAD_ASSERT_UNKNOWN( ! empty() );
delete_ptr();
}
// returns begin pointer for the set
std::set<class_cexp_pair>::const_iterator begin(void)
{ CPPAD_ASSERT_UNKNOWN( ! empty() );
return ptr_->begin();
}
// returns end pointer for the set
std::set<class_cexp_pair>::const_iterator end(void)
{ CPPAD_ASSERT_UNKNOWN( ! empty() );
return ptr_->end();
}
/*!
Make this set the intersection of itself with another set.
\param other
the other set
*/
void intersection(const class_set_cexp_pair& other )
{ // empty result case
if( ptr_ == CPPAD_NULL )
return;
// empty result case
if( other.ptr_ == CPPAD_NULL )
{ delete_ptr();
return;
}
// put result here
class_set_cexp_pair result;
CPPAD_ASSERT_UNKNOWN( result.ptr_ == CPPAD_NULL );
result.new_ptr();
CPPAD_ASSERT_UNKNOWN( result.ptr_ != CPPAD_NULL );
// do the intersection
std::set_intersection(
ptr_->begin() ,
ptr_->end() ,
other.ptr_->begin() ,
other.ptr_->end() ,
std::inserter(*result.ptr_, result.ptr_->begin())
);
if( result.ptr_->empty() )
result.delete_ptr();
// swap this and the result
std::swap(ptr_, result.ptr_);
return;
}
};
/*!
Structure used by \c optimize to hold information about one variable.
in the old operation seqeunce.
*/
struct struct_old_variable {
/// Operator for which this variable is the result, \c NumRes(op) > 0.
/// Set by the reverse sweep at beginning of optimization.
OpCode op;
/// Pointer to first argument (child) for this operator.
/// Set by the reverse sweep at beginning of optimization.
const addr_t* arg;
/// How is this variable connected to the independent variables
enum_connect_type connect_type;
/// New operation sequence corresponding to this old varable.
/// Set during forward sweep to the index in the new tape
addr_t new_var;
/// New operator index for this varable.
/// Set during forward sweep to the index in the new tape
size_t new_op;
/// Did this variable match another variable in the operation sequence
bool match;
};
struct struct_size_pair {
size_t i_op; // an operator index
size_t i_var; // a variable index
};
/*!
Structures used by \c record_csum
to hold information about one variable.
*/
struct struct_csum_variable {
/// Operator for which this variable is the result, \c NumRes(op) > 0.
OpCode op;
/// Pointer to first argument (child) for this operator.
/// Set by the reverse sweep at beginning of optimization.
const addr_t* arg;
/// Is this variable added to the summation
/// (if not it is subtracted)
bool add;
};
/*!
Structure used to pass work space from \c optimize to \c record_csum
(so that stacks do not start from zero size every time).
*/
struct struct_csum_stacks {
/// stack of operations in the cummulative summation
std::stack<struct struct_csum_variable> op_stack;
/// stack of variables to be added
std::stack<size_t > add_stack;
/// stack of variables to be subtracted
std::stack<size_t > sub_stack;
};
/*!
CExpOp information that is copied to corresponding CSkipOp
*/
struct struct_cskip_info {
/// comparision operator
CompareOp cop;
/// (flag & 1) is true if and only if left is a variable
/// (flag & 2) is true if and only if right is a variable
size_t flag;
/// index for left comparison operand
size_t left;
/// index for right comparison operand
size_t right;
/// maximum variable index between left and right
size_t max_left_right;
/// set of variables to skip on true
CppAD::vector<size_t> skip_var_true;
/// set of variables to skip on false
CppAD::vector<size_t> skip_var_false;
/// set of operations to skip on true
CppAD::vector<size_t> skip_op_true;
/// set of operations to skip on false
CppAD::vector<size_t> skip_op_false;
/// size of skip_op_true
size_t n_op_true;
/// size of skip_op_false
size_t n_op_false;
/// index in the argument recording of first argument for this CSkipOp
size_t i_arg;
};
/*!
Connection information for a user atomic function
*/
struct struct_user_info {
/// type of connection for this atomic function
enum_connect_type connect_type;
/// If this is an conditional connection, this is the information
/// of the correpsonding CondExpOp operators
class_set_cexp_pair cexp_set;
/// If this is a conditional connection, this is the operator
/// index of the beginning of the atomic call sequence; i.e.,
/// the first UserOp.
size_t op_begin;
/// If this is a conditional connection, this is one more than the
/// operator index of the ending of the atomic call sequence; i.e.,
/// the second UserOp.
size_t op_end;
};
/*!
Shared documentation for optimization helper functions (not called).
<!-- define prototype -->
\param tape
is a vector that maps a variable index, in the old operation sequence,
to an <tt>struct_old_variable</tt> information record.
Note that the index for this vector must be greater than or equal zero and
less than <tt>tape.size()</tt>.
\li <tt>tape[i].op</tt>
is the operator in the old operation sequence
corresponding to the old variable index \c i.
Assertion: <tt>NumRes(tape[i].op) > 0</tt>.
\li <tt>tape[i].arg</tt>
for <tt>j < NumArg( tape[i].op ), tape[i].arg[j]</tt>
is the j-th the argument, in the old operation sequence,
corresponding to the old variable index \c i.
Assertion: <tt>tape[i].arg[j] < i</tt>.
\li <tt>tape[i].new_var</tt>
Suppose
<tt>i <= current, j < NumArg( tape[i].op ), and k = tape[i].arg[j]</tt>,
and \c j corresponds to a variable for operator <tt>tape[i].op</tt>.
It follows that <tt>tape[k].new_var</tt>
has alread been set to the variable in the new operation sequence
corresponding to the old variable index \c k.
This means that the \c new_var value has been set
for all the possible arguments that come before \a current.
\param current
is the index in the old operation sequence for
the variable corresponding to the result for the current operator.
Assertions:
<tt>
current < tape.size(),
NumRes( tape[current].op ) > 0.
</tt>
\param npar
is the number of parameters corresponding to this operation sequence.
\param par
is a vector of length \a npar containing the parameters
for this operation sequence; i.e.,
given a parameter index \c i, the corresponding parameter value is
<tt>par[i]</tt>.
<!-- end prototype -->
*/
template <class Base>
void prototype(
const CppAD::vector<struct struct_old_variable>& tape ,
size_t current ,
size_t npar ,
const Base* par )
{ CPPAD_ASSERT_UNKNOWN(false); }
/*!
Check a unary operator for a complete match with a previous operator.
A complete match means that the result of the previous operator
can be used inplace of the result for current operator.
<!-- replace prototype -->
\param tape
is a vector that maps a variable index, in the old operation sequence,
to an <tt>struct_old_variable</tt> information record.
Note that the index for this vector must be greater than or equal zero and
less than <tt>tape.size()</tt>.
\li <tt>tape[i].op</tt>
is the operator in the old operation sequence
corresponding to the old variable index \c i.
Assertion: <tt>NumRes(tape[i].op) > 0</tt>.
\li <tt>tape[i].arg</tt>
for <tt>j < NumArg( tape[i].op ), tape[i].arg[j]</tt>
is the j-th the argument, in the old operation sequence,
corresponding to the old variable index \c i.
Assertion: <tt>tape[i].arg[j] < i</tt>.
\li <tt>tape[i].new_var</tt>
Suppose
<tt>i <= current, j < NumArg( tape[i].op ), and k = tape[i].arg[j]</tt>,
and \c j corresponds to a variable for operator <tt>tape[i].op</tt>.
It follows that <tt>tape[k].new_var</tt>
has alread been set to the variable in the new operation sequence
corresponding to the old variable index \c k.
This means that the \c new_var value has been set
for all the possible arguments that come before \a current.
\param current
is the index in the old operation sequence for
the variable corresponding to the result for the current operator.
Assertions:
<tt>
current < tape.size(),
NumRes( tape[current].op ) > 0.
</tt>
\param npar
is the number of parameters corresponding to this operation sequence.
\param par
is a vector of length \a npar containing the parameters
for this operation sequence; i.e.,
given a parameter index \c i, the corresponding parameter value is
<tt>par[i]</tt>.
<!-- end prototype -->
\param hash_table_var
is a vector with size CPPAD_HASH_TABLE_SIZE
that maps a hash code to the corresponding
variable index in the old operation sequence.
All the values in this table must be less than \a current.
\param code
The input value of code does not matter.
The output value of code is the hash code corresponding to
this operation in the new operation sequence.
\return
If the return value is zero,
no match was found.
If the return value is greater than zero,
it is the old operation sequence index of a variable,
that comes before current and can be used to replace the current variable.
\par Restrictions:
NumArg( tape[current].op ) == 1
*/
template <class Base>
addr_t unary_match(
const CppAD::vector<struct struct_old_variable>& tape ,
size_t current ,
size_t npar ,
const Base* par ,
const CppAD::vector<size_t>& hash_table_var ,
unsigned short& code )
{ const addr_t* arg = tape[current].arg;
OpCode op = tape[current].op;
addr_t new_arg[1];
// ErfOp has three arguments, but the second and third are always the
// parameters 0 and 2 / sqrt(pi) respectively.
CPPAD_ASSERT_UNKNOWN( NumArg(op) == 1 || op == ErfOp);
CPPAD_ASSERT_UNKNOWN( NumRes(op) > 0 );
CPPAD_ASSERT_UNKNOWN( size_t(arg[0]) < current );
new_arg[0] = tape[arg[0]].new_var;
CPPAD_ASSERT_UNKNOWN( size_t(new_arg[0]) < current );
code = hash_code(
op ,
new_arg ,
npar ,
par
);
size_t i_var = hash_table_var[code];
CPPAD_ASSERT_UNKNOWN( i_var < current );
if( op == tape[i_var].op )
{ size_t k = tape[i_var].arg[0];
CPPAD_ASSERT_UNKNOWN( k < i_var );
if (new_arg[0] == tape[k].new_var )
return i_var;
}
return 0;
}
/*!
Check a binary operator for a complete match with a previous operator,
<!-- replace prototype -->
\param tape
is a vector that maps a variable index, in the old operation sequence,
to an <tt>struct_old_variable</tt> information record.
Note that the index for this vector must be greater than or equal zero and
less than <tt>tape.size()</tt>.
\li <tt>tape[i].op</tt>
is the operator in the old operation sequence
corresponding to the old variable index \c i.
Assertion: <tt>NumRes(tape[i].op) > 0</tt>.
\li <tt>tape[i].arg</tt>
for <tt>j < NumArg( tape[i].op ), tape[i].arg[j]</tt>
is the j-th the argument, in the old operation sequence,
corresponding to the old variable index \c i.
Assertion: <tt>tape[i].arg[j] < i</tt>.
\li <tt>tape[i].new_var</tt>
Suppose
<tt>i <= current, j < NumArg( tape[i].op ), and k = tape[i].arg[j]</tt>,
and \c j corresponds to a variable for operator <tt>tape[i].op</tt>.
It follows that <tt>tape[k].new_var</tt>
has alread been set to the variable in the new operation sequence
corresponding to the old variable index \c k.
This means that the \c new_var value has been set
for all the possible arguments that come before \a current.
\param current
is the index in the old operation sequence for
the variable corresponding to the result for the current operator.
Assertions:
<tt>
current < tape.size(),
NumRes( tape[current].op ) > 0.
</tt>
\param npar
is the number of parameters corresponding to this operation sequence.
\param par
is a vector of length \a npar containing the parameters
for this operation sequence; i.e.,
given a parameter index \c i, the corresponding parameter value is
<tt>par[i]</tt>.
<!-- end prototype -->
\param hash_table_var
is a vector with size CPPAD_HASH_TABLE_SIZE
that maps a hash code to the corresponding
variable index in the old operation sequence.
All the values in this table must be less than \a current.
\param code
The input value of code does not matter.
The output value of code is the hash code corresponding to
this operation in the new operation sequence.
\return
If the return value is zero,
no match was found.
If the return value is greater than zero,
it is the index of a new variable that can be used to replace the
old variable.
\par Restrictions:
The binary operator must be an addition, subtraction, multiplication, division
or power operator. NumArg( tape[current].op ) == 1.
*/
template <class Base>
inline addr_t binary_match(
const CppAD::vector<struct struct_old_variable>& tape ,
size_t current ,
size_t npar ,
const Base* par ,
const CppAD::vector<size_t>& hash_table_var ,
unsigned short& code )
{ OpCode op = tape[current].op;
const addr_t* arg = tape[current].arg;
addr_t new_arg[2];
bool parameter[2];
// initialize return value
addr_t match_var = 0;
CPPAD_ASSERT_UNKNOWN( NumArg(op) == 2 );
CPPAD_ASSERT_UNKNOWN( NumRes(op) > 0 );
switch(op)
{ // index op variable
case DisOp:
// parameter not defined for this case
CPPAD_ASSERT_UNKNOWN( size_t(arg[1]) < current );
new_arg[0] = arg[0];
new_arg[1] = tape[arg[1]].new_var;
break;
// parameter op variable ----------------------------------
case AddpvOp:
case MulpvOp:
case DivpvOp:
case PowpvOp:
case SubpvOp:
case ZmulpvOp:
// arg[0]
parameter[0] = true;
new_arg[0] = arg[0];
CPPAD_ASSERT_UNKNOWN( size_t(arg[0]) < npar );
// arg[1]
parameter[1] = false;
new_arg[1] = tape[arg[1]].new_var;
CPPAD_ASSERT_UNKNOWN( size_t(arg[1]) < current );
break;
// variable op parameter -----------------------------------
case DivvpOp:
case PowvpOp:
case SubvpOp:
case ZmulvpOp:
// arg[0]
parameter[0] = false;
new_arg[0] = tape[arg[0]].new_var;
CPPAD_ASSERT_UNKNOWN( size_t(arg[0]) < current );
// arg[1]
parameter[1] = true;
new_arg[1] = arg[1];
CPPAD_ASSERT_UNKNOWN( size_t(arg[1]) < npar );
break;
// variable op variable -----------------------------------
case AddvvOp:
case MulvvOp:
case DivvvOp:
case PowvvOp:
case SubvvOp:
case ZmulvvOp:
// arg[0]
parameter[0] = false;
new_arg[0] = tape[arg[0]].new_var;
CPPAD_ASSERT_UNKNOWN( size_t(arg[0]) < current );
// arg[1]
parameter[1] = false;
new_arg[1] = tape[arg[1]].new_var;
CPPAD_ASSERT_UNKNOWN( size_t(arg[1]) < current );
break;
// must be one of the cases above
default:
CPPAD_ASSERT_UNKNOWN(false);
}
code = hash_code(
op ,
new_arg ,
npar ,
par
);
size_t i_var = hash_table_var[code];
CPPAD_ASSERT_UNKNOWN( i_var < current );
if( op == tape[i_var].op )
{ bool match = true;
if( op == DisOp )
{ match &= new_arg[0] == tape[i_var].arg[0];
size_t k = tape[i_var].arg[1];
match &= new_arg[1] == tape[k].new_var;
}
else
{ for(size_t j = 0; j < 2; j++)
{ size_t k = tape[i_var].arg[j];
if( parameter[j] )
{ CPPAD_ASSERT_UNKNOWN( k < npar );
match &= IdenticalEqualPar(
par[ arg[j] ], par[k]
);
}
else
{ CPPAD_ASSERT_UNKNOWN( k < i_var );
match &= (new_arg[j] == tape[k].new_var);
}
}
}
if( match )
match_var = i_var;
}
if( (match_var > 0) | ( (op != AddvvOp) & (op != MulvvOp ) ) )
return match_var;
// check for match with argument order switched ----------------------
CPPAD_ASSERT_UNKNOWN( op == AddvvOp || op == MulvvOp );
std::swap(new_arg[0], new_arg[1]);
unsigned short code_switch = hash_code(
op ,
new_arg ,
npar ,
par
);
i_var = hash_table_var[code_switch];
CPPAD_ASSERT_UNKNOWN( i_var < current );
if( op == tape[i_var].op )
{ bool match = true;
size_t j;
for(j = 0; j < 2; j++)
{ size_t k = tape[i_var].arg[j];
CPPAD_ASSERT_UNKNOWN( k < i_var );
match &= (new_arg[j] == tape[k].new_var);
}
if( match )
match_var = i_var;
}
return match_var;
}
/*!
Record an operation of the form (parameter op variable).
<!-- replace prototype -->
\param tape
is a vector that maps a variable index, in the old operation sequence,
to an <tt>struct_old_variable</tt> information record.
Note that the index for this vector must be greater than or equal zero and
less than <tt>tape.size()</tt>.
\li <tt>tape[i].op</tt>
is the operator in the old operation sequence
corresponding to the old variable index \c i.
Assertion: <tt>NumRes(tape[i].op) > 0</tt>.
\li <tt>tape[i].arg</tt>
for <tt>j < NumArg( tape[i].op ), tape[i].arg[j]</tt>
is the j-th the argument, in the old operation sequence,
corresponding to the old variable index \c i.
Assertion: <tt>tape[i].arg[j] < i</tt>.
\li <tt>tape[i].new_var</tt>
Suppose
<tt>i <= current, j < NumArg( tape[i].op ), and k = tape[i].arg[j]</tt>,
and \c j corresponds to a variable for operator <tt>tape[i].op</tt>.
It follows that <tt>tape[k].new_var</tt>
has alread been set to the variable in the new operation sequence
corresponding to the old variable index \c k.
This means that the \c new_var value has been set
for all the possible arguments that come before \a current.
\param current
is the index in the old operation sequence for
the variable corresponding to the result for the current operator.
Assertions:
<tt>
current < tape.size(),
NumRes( tape[current].op ) > 0.
</tt>
\param npar
is the number of parameters corresponding to this operation sequence.
\param par
is a vector of length \a npar containing the parameters
for this operation sequence; i.e.,
given a parameter index \c i, the corresponding parameter value is
<tt>par[i]</tt>.
<!-- end prototype -->
\param rec
is the object that will record the operations.
\param op
is the operator that we are recording which must be one of the following:
AddpvOp, DivpvOp, MulpvOp, PowpvOp, SubpvOp, ZmulpvOp.
\param arg
is the vector of arguments for this operator.
\return
the result is the operaiton and variable index corresponding to the current
operation in the new operation sequence.
*/
template <class Base>
struct_size_pair record_pv(
const CppAD::vector<struct struct_old_variable>& tape ,
size_t current ,
size_t npar ,
const Base* par ,
recorder<Base>* rec ,
OpCode op ,
const addr_t* arg )
{
# ifndef NDEBUG
switch(op)
{ case AddpvOp:
case DivpvOp:
case MulpvOp:
case PowpvOp:
case SubpvOp:
case ZmulpvOp:
break;
default:
CPPAD_ASSERT_UNKNOWN(false);
}
# endif
CPPAD_ASSERT_UNKNOWN( size_t(arg[0]) < npar );
CPPAD_ASSERT_UNKNOWN( size_t(arg[1]) < current );
addr_t new_arg[2];
new_arg[0] = rec->PutPar( par[arg[0]] );
new_arg[1] = tape[ arg[1] ].new_var;
rec->PutArg( new_arg[0], new_arg[1] );
struct_size_pair ret;
ret.i_op = rec->num_op_rec();
ret.i_var = rec->PutOp(op);
CPPAD_ASSERT_UNKNOWN( size_t(new_arg[0]) < ret.i_var );
return ret;
}
/*!
Record an operation of the form (variable op parameter).
<!-- replace prototype -->
\param tape
is a vector that maps a variable index, in the old operation sequence,
to an <tt>struct_old_variable</tt> information record.
Note that the index for this vector must be greater than or equal zero and
less than <tt>tape.size()</tt>.
\li <tt>tape[i].op</tt>
is the operator in the old operation sequence
corresponding to the old variable index \c i.
Assertion: <tt>NumRes(tape[i].op) > 0</tt>.
\li <tt>tape[i].arg</tt>
for <tt>j < NumArg( tape[i].op ), tape[i].arg[j]</tt>
is the j-th the argument, in the old operation sequence,
corresponding to the old variable index \c i.
Assertion: <tt>tape[i].arg[j] < i</tt>.
\li <tt>tape[i].new_var</tt>
Suppose
<tt>i <= current, j < NumArg( tape[i].op ), and k = tape[i].arg[j]</tt>,
and \c j corresponds to a variable for operator <tt>tape[i].op</tt>.
It follows that <tt>tape[k].new_var</tt>
has alread been set to the variable in the new operation sequence
corresponding to the old variable index \c k.
This means that the \c new_var value has been set
for all the possible arguments that come before \a current.
\param current
is the index in the old operation sequence for
the variable corresponding to the result for the current operator.
Assertions:
<tt>
current < tape.size(),
NumRes( tape[current].op ) > 0.
</tt>
\param npar
is the number of parameters corresponding to this operation sequence.
\param par
is a vector of length \a npar containing the parameters
for this operation sequence; i.e.,
given a parameter index \c i, the corresponding parameter value is
<tt>par[i]</tt>.
<!-- end prototype -->
\param rec
is the object that will record the operations.
\param op
is the operator that we are recording which must be one of the following:
DivvpOp, PowvpOp, SubvpOp, ZmulvpOp.
\param arg
is the vector of arguments for this operator.
\return
the result operation and variable index corresponding to the current
operation in the new operation sequence.
*/
template <class Base>
struct_size_pair record_vp(
const CppAD::vector<struct struct_old_variable>& tape ,
size_t current ,
size_t npar ,
const Base* par ,
recorder<Base>* rec ,
OpCode op ,
const addr_t* arg )
{
# ifndef NDEBUG
switch(op)
{ case DivvpOp:
case PowvpOp:
case SubvpOp:
case ZmulvpOp:
break;
default:
CPPAD_ASSERT_UNKNOWN(false);
}
# endif
CPPAD_ASSERT_UNKNOWN( size_t(arg[0]) < current );
CPPAD_ASSERT_UNKNOWN( size_t(arg[1]) < npar );
addr_t new_arg[2];
new_arg[0] = tape[ arg[0] ].new_var;
new_arg[1] = rec->PutPar( par[arg[1]] );
rec->PutArg( new_arg[0], new_arg[1] );
struct_size_pair ret;
ret.i_op = rec->num_op_rec();
ret.i_var = rec->PutOp(op);
CPPAD_ASSERT_UNKNOWN( size_t(new_arg[0]) < ret.i_var );
return ret;
}
/*!
Record an operation of the form (variable op variable).
<!-- replace prototype -->
\param tape
is a vector that maps a variable index, in the old operation sequence,
to an <tt>struct_old_variable</tt> information record.
Note that the index for this vector must be greater than or equal zero and
less than <tt>tape.size()</tt>.
\li <tt>tape[i].op</tt>
is the operator in the old operation sequence
corresponding to the old variable index \c i.
Assertion: <tt>NumRes(tape[i].op) > 0</tt>.
\li <tt>tape[i].arg</tt>
for <tt>j < NumArg( tape[i].op ), tape[i].arg[j]</tt>
is the j-th the argument, in the old operation sequence,
corresponding to the old variable index \c i.
Assertion: <tt>tape[i].arg[j] < i</tt>.
\li <tt>tape[i].new_var</tt>
Suppose
<tt>i <= current, j < NumArg( tape[i].op ), and k = tape[i].arg[j]</tt>,
and \c j corresponds to a variable for operator <tt>tape[i].op</tt>.
It follows that <tt>tape[k].new_var</tt>
has alread been set to the variable in the new operation sequence
corresponding to the old variable index \c k.
This means that the \c new_var value has been set
for all the possible arguments that come before \a current.
\param current
is the index in the old operation sequence for
the variable corresponding to the result for the current operator.
Assertions:
<tt>
current < tape.size(),
NumRes( tape[current].op ) > 0.
</tt>
\param npar
is the number of parameters corresponding to this operation sequence.
\param par
is a vector of length \a npar containing the parameters
for this operation sequence; i.e.,
given a parameter index \c i, the corresponding parameter value is
<tt>par[i]</tt>.
<!-- end prototype -->
\param rec
is the object that will record the operations.
\param op
is the operator that we are recording which must be one of the following:
AddvvOp, DivvvOp, MulvvOp, PowvvOp, SubvvOp, ZmulvvOp.
\param arg
is the vector of arguments for this operator.
\return
the result is the operation and variable index corresponding to the current
operation in the new operation sequence.
*/
template <class Base>
struct_size_pair record_vv(
const CppAD::vector<struct struct_old_variable>& tape ,
size_t current ,
size_t npar ,
const Base* par ,
recorder<Base>* rec ,
OpCode op ,
const addr_t* arg )
{
# ifndef NDEBUG
switch(op)
{ case AddvvOp:
case DivvvOp:
case MulvvOp:
case PowvvOp:
case SubvvOp:
case ZmulvvOp:
break;
default:
CPPAD_ASSERT_UNKNOWN(false);
}
# endif
CPPAD_ASSERT_UNKNOWN( size_t(arg[0]) < current );
CPPAD_ASSERT_UNKNOWN( size_t(arg[1]) < current );
addr_t new_arg[2];
new_arg[0] = tape[ arg[0] ].new_var;
new_arg[1] = tape[ arg[1] ].new_var;
rec->PutArg( new_arg[0], new_arg[1] );
struct_size_pair ret;
ret.i_op = rec->num_op_rec();
ret.i_var = rec->PutOp(op);
CPPAD_ASSERT_UNKNOWN( size_t(new_arg[0]) < ret.i_var );
CPPAD_ASSERT_UNKNOWN( size_t(new_arg[1]) < ret.i_var );
return ret;
}
// ==========================================================================
/*!
Recording a cummulative cummulative summation starting at its highest parrent.
<!-- replace prototype -->
\param tape
is a vector that maps a variable index, in the old operation sequence,
to an <tt>struct_old_variable</tt> information record.
Note that the index for this vector must be greater than or equal zero and
less than <tt>tape.size()</tt>.
\li <tt>tape[i].op</tt>
is the operator in the old operation sequence
corresponding to the old variable index \c i.
Assertion: <tt>NumRes(tape[i].op) > 0</tt>.
\li <tt>tape[i].arg</tt>
for <tt>j < NumArg( tape[i].op ), tape[i].arg[j]</tt>
is the j-th the argument, in the old operation sequence,
corresponding to the old variable index \c i.
Assertion: <tt>tape[i].arg[j] < i</tt>.
\li <tt>tape[i].new_var</tt>
Suppose
<tt>i <= current, j < NumArg( tape[i].op ), and k = tape[i].arg[j]</tt>,
and \c j corresponds to a variable for operator <tt>tape[i].op</tt>.
It follows that <tt>tape[k].new_var</tt>
has alread been set to the variable in the new operation sequence
corresponding to the old variable index \c k.
This means that the \c new_var value has been set
for all the possible arguments that come before \a current.
\param current
is the index in the old operation sequence for
the variable corresponding to the result for the current operator.
Assertions:
<tt>
current < tape.size(),
NumRes( tape[current].op ) > 0.
</tt>
\param npar
is the number of parameters corresponding to this operation sequence.
\param par
is a vector of length \a npar containing the parameters
for this operation sequence; i.e.,
given a parameter index \c i, the corresponding parameter value is
<tt>par[i]</tt>.
<!-- end prototype -->
\param rec
is the object that will record the operations.
\param work
Is used for computation. On input and output,
<tt>work.op_stack.empty()</tt>,
<tt>work.add_stack.empty()</tt>, and
<tt>work.sub_stack.empty()</tt>,
are all true true.
These stacks are passed in so that elements can be allocated once
and then the elements can be reused with calls to \c record_csum.
\par Exception
<tt>tape[i].new_var</tt>
is not yet defined for any node \c i that is \c csum_connected
to the \a current node
(or that is \c sum_connected to a node that is \c csum_connected).
For example; suppose that index \c j corresponds to a variable
in the current operator,
<tt>i = tape[current].arg[j]</tt>,
and
<tt>tape[arg[j]].connect_type == csum_connected</tt>.
It then follows that
<tt>tape[i].new_var == tape.size()</tt>.
\par Restriction:
\li <tt>tape[current].op</tt>
must be one of <tt>AddpvOp, AddvvOp, SubpvOp, SubvpOp, SubvvOp</tt>.
\li <tt>tape[current].connect_type</tt> must be \c yes_connected.
\li <tt>tape[j].connect_type == csum_connected</tt> for some index
j that is a variable operand for the current operation.
*/
template <class Base>
struct_size_pair record_csum(
const CppAD::vector<struct struct_old_variable>& tape ,
size_t current ,
size_t npar ,
const Base* par ,
recorder<Base>* rec ,
struct_csum_stacks& work )
{
CPPAD_ASSERT_UNKNOWN( work.op_stack.empty() );
CPPAD_ASSERT_UNKNOWN( work.add_stack.empty() );
CPPAD_ASSERT_UNKNOWN( work.sub_stack.empty() );
CPPAD_ASSERT_UNKNOWN( tape[current].connect_type == yes_connected );
size_t i;
OpCode op;
const addr_t* arg;
bool add;
struct struct_csum_variable var;
var.op = tape[current].op;
var.arg = tape[current].arg;
var.add = true;
work.op_stack.push( var );
Base sum_par(0);
# ifndef NDEBUG
bool ok = false;
if( var.op == SubvpOp )
ok = tape[ tape[current].arg[0] ].connect_type == csum_connected;
if( var.op == AddpvOp || var.op == SubpvOp )
ok = tape[ tape[current].arg[1] ].connect_type == csum_connected;
if( var.op == AddvvOp || var.op == SubvvOp )
{ ok = tape[ tape[current].arg[0] ].connect_type == csum_connected;
ok |= tape[ tape[current].arg[1] ].connect_type == csum_connected;
}
CPPAD_ASSERT_UNKNOWN( ok );
# endif
while( ! work.op_stack.empty() )
{ var = work.op_stack.top();
work.op_stack.pop();
op = var.op;
arg = var.arg;
add = var.add;
// process first argument to this operator
switch(op)
{ case AddpvOp:
case SubpvOp:
CPPAD_ASSERT_UNKNOWN( size_t(arg[0]) < npar );
if( add )
sum_par += par[arg[0]];
else sum_par -= par[arg[0]];
break;
case AddvvOp:
case SubvpOp:
case SubvvOp:
if( tape[arg[0]].connect_type == csum_connected )
{ CPPAD_ASSERT_UNKNOWN(
size_t(tape[arg[0]].new_var) == tape.size()
);
var.op = tape[arg[0]].op;
var.arg = tape[arg[0]].arg;
var.add = add;
work.op_stack.push( var );
}
else if( add )
work.add_stack.push(arg[0]);
else work.sub_stack.push(arg[0]);
break;
default:
CPPAD_ASSERT_UNKNOWN(false);
}
// process second argument to this operator
switch(op)
{
case SubvpOp:
CPPAD_ASSERT_UNKNOWN( size_t(arg[1]) < npar );
if( add )
sum_par -= par[arg[1]];
else sum_par += par[arg[1]];
break;
case SubvvOp:
case SubpvOp:
add = ! add;
case AddvvOp:
case AddpvOp:
if( tape[arg[1]].connect_type == csum_connected )
{ CPPAD_ASSERT_UNKNOWN(
size_t(tape[arg[1]].new_var) == tape.size()
);
var.op = tape[arg[1]].op;
var.arg = tape[arg[1]].arg;
var.add = add;
work.op_stack.push( var );
}
else if( add )
work.add_stack.push(arg[1]);
else work.sub_stack.push(arg[1]);
break;
default:
CPPAD_ASSERT_UNKNOWN(false);
}
}
// number of variables in this cummulative sum operator
size_t n_add = work.add_stack.size();
size_t n_sub = work.sub_stack.size();
size_t old_arg, new_arg;
rec->PutArg(n_add); // arg[0]
rec->PutArg(n_sub); // arg[1]
new_arg = rec->PutPar( sum_par );
rec->PutArg(new_arg); // arg[2]
for(i = 0; i < n_add; i++)
{ CPPAD_ASSERT_UNKNOWN( ! work.add_stack.empty() );
old_arg = work.add_stack.top();
new_arg = tape[old_arg].new_var;
CPPAD_ASSERT_UNKNOWN( new_arg < tape.size() );
rec->PutArg(new_arg); // arg[3+i]
work.add_stack.pop();
}
for(i = 0; i < n_sub; i++)
{ CPPAD_ASSERT_UNKNOWN( ! work.sub_stack.empty() );
old_arg = work.sub_stack.top();
new_arg = tape[old_arg].new_var;
CPPAD_ASSERT_UNKNOWN( new_arg < tape.size() );
rec->PutArg(new_arg); // arg[3 + arg[0] + i]
work.sub_stack.pop();
}
rec->PutArg(n_add + n_sub); // arg[3 + arg[0] + arg[1]]
struct_size_pair ret;
ret.i_op = rec->num_op_rec();
ret.i_var = rec->PutOp(CSumOp);
CPPAD_ASSERT_UNKNOWN( new_arg < ret.i_var );
return ret;
}
// ==========================================================================
/*!
Convert a player object to an optimized recorder object
\tparam Base
base type for the operator; i.e., this operation was recorded
using AD< \a Base > and computations by this routine are done using type
\a Base.
\param options
The possible values for this string are:
"", "no_conditional_skip".
If it is "no_conditional_skip", then no conditional skip operations
will be generated.
\param n
is the number of independent variables on the tape.
\param dep_taddr
On input this vector contains the indices for each of the dependent
variable values in the operation sequence corresponding to \a play.
Upon return it contains the indices for the same variables but in
the operation sequence corresponding to \a rec.
\param play
This is the operation sequence that we are optimizing.
It is essentially const, except for play back state which
changes while it plays back the operation seqeunce.
\param rec
The input contents of this recording does not matter.
Upon return, it contains an optimized verison of the
operation sequence corresponding to \a play.
*/
template <class Base>
void optimize_run(
const std::string& options ,
size_t n ,
CppAD::vector<size_t>& dep_taddr ,
player<Base>* play ,
recorder<Base>* rec )
{
// nan with type Base
Base base_nan = Base( std::numeric_limits<double>::quiet_NaN() );
// temporary indices
size_t i, j, k;
// check options
bool conditional_skip =
options.find("no_conditional_skip", 0) == std::string::npos;
// temporary variables
OpCode op; // current operator
const addr_t* arg; // operator arguments
size_t i_var; // index of first result for current operator
// range and domain dimensions for F
size_t m = dep_taddr.size();
// number of variables in the player
const size_t num_var = play->num_var_rec();
# ifndef NDEBUG
// number of parameters in the player
const size_t num_par = play->num_par_rec();
# endif
// number of VecAD indices
size_t num_vecad_ind = play->num_vec_ind_rec();
// number of VecAD vectors
size_t num_vecad_vec = play->num_vecad_vec_rec();
// -------------------------------------------------------------
// data structure that maps variable index in original operation
// sequence to corresponding operator information
CppAD::vector<struct struct_old_variable> tape(num_var);
// if tape[i].connect_type == exp_connected, cexp_set[i] is the
// corresponding information for the conditional connection.
CppAD::vector<class_set_cexp_pair> cexp_vec_set;
if( conditional_skip )
cexp_vec_set.resize(num_var);
// -------------------------------------------------------------
// Determine how each variable is connected to the dependent variables
// initialize all variables has having no connections
for(i = 0; i < num_var; i++)
tape[i].connect_type = not_connected;
for(j = 0; j < m; j++)
{ // mark dependent variables as having one or more connections
tape[ dep_taddr[j] ].connect_type = yes_connected;
}
// vecad_connect contains a value for each VecAD object.
// vecad maps a VecAD index (which corresponds to the beginning of the
// VecAD object) to the vecad_connect falg for the VecAD object.
CppAD::vector<enum_connect_type> vecad_connect(num_vecad_vec);
CppAD::vector<size_t> vecad(num_vecad_ind);
j = 0;
for(i = 0; i < num_vecad_vec; i++)
{ vecad_connect[i] = not_connected;
// length of this VecAD
size_t length = play->GetVecInd(j);
// set to proper index for this VecAD
vecad[j] = i;
for(k = 1; k <= length; k++)
vecad[j+k] = num_vecad_vec; // invalid index
// start of next VecAD
j += length + 1;
}
CPPAD_ASSERT_UNKNOWN( j == num_vecad_ind );
// work space used by UserOp.
typedef std::set<size_t> size_set;
//
vector<size_set> user_r_set; // set sparsity pattern for result
vector<size_set> user_s_set; // set sparisty pattern for argument
//
vector<bool> user_r_bool; // bool sparsity pattern for result
vector<bool> user_s_bool; // bool sparisty pattern for argument
//
vectorBool user_r_pack; // pack sparsity pattern for result
vectorBool user_s_pack; // pack sparisty pattern for argument
//
size_t user_q = 0; // column dimension for sparsity patterns
size_t user_index = 0; // indentifier for this user_atomic operation
size_t user_id = 0; // user identifier for this call to operator
size_t user_i = 0; // index in result vector
size_t user_j = 0; // index in argument vector
size_t user_m = 0; // size of result vector
size_t user_n = 0; // size of arugment vector
//
atomic_base<Base>* user_atom = CPPAD_NULL; // current user atomic function
bool user_pack = false; // sparsity pattern type is pack
bool user_bool = false; // sparsity pattern type is bool
bool user_set = false; // sparsity pattern type is set
// next expected operator in a UserOp sequence
enum { user_start, user_arg, user_ret, user_end } user_state;
// During reverse mode, compute type of connection for each call to
// a user atomic function.
CppAD::vector<struct_user_info> user_info;
size_t user_curr = 0;
/// During reverse mode, information for each CSkip operation
CppAD::vector<struct_cskip_info> cskip_info;
// Initialize a reverse mode sweep through the operation sequence
size_t i_op;
play->reverse_start(op, arg, i_op, i_var);
CPPAD_ASSERT_UNKNOWN( op == EndOp );
size_t mask;
user_state = user_end;
while(op != BeginOp)
{ // next op
play->reverse_next(op, arg, i_op, i_var);
// Store the operator corresponding to each variable
if( NumRes(op) > 0 )
{ tape[i_var].op = op;
tape[i_var].arg = arg;
}
# ifndef NDEBUG
if( i_op <= n )
{ CPPAD_ASSERT_UNKNOWN((op == InvOp) | (op == BeginOp));
}
else CPPAD_ASSERT_UNKNOWN((op != InvOp) & (op != BeginOp));
# endif
enum_connect_type connect_type = tape[i_var].connect_type;
class_set_cexp_pair* cexp_set = CPPAD_NULL;
if( conditional_skip )
cexp_set = &cexp_vec_set[i_var];
switch( op )
{
// One variable corresponding to arg[0]
case AbsOp:
case AcosOp:
case AcoshOp:
case AsinOp:
case AsinhOp:
case AtanOp:
case AtanhOp:
case CosOp:
case CoshOp:
case DivvpOp:
case ErfOp:
case ExpOp:
case Expm1Op:
case LogOp:
case Log1pOp:
case PowvpOp:
case SignOp:
case SinOp:
case SinhOp:
case SqrtOp:
case TanOp:
case TanhOp:
case ZmulvpOp:
switch( connect_type )
{ case not_connected:
break;
case yes_connected:
case sum_connected:
case csum_connected:
tape[arg[0]].connect_type = yes_connected;
break;
case cexp_connected:
CPPAD_ASSERT_UNKNOWN( conditional_skip )
if( tape[arg[0]].connect_type == not_connected )
{ tape[arg[0]].connect_type = cexp_connected;
cexp_vec_set[arg[0]] = *cexp_set;
}
else if( tape[arg[0]].connect_type == cexp_connected )
{ cexp_vec_set[arg[0]].intersection(*cexp_set);
if( cexp_vec_set[arg[0]].empty() )
tape[arg[0]].connect_type = yes_connected;
}
else tape[arg[0]].connect_type = yes_connected;
break;
default:
CPPAD_ASSERT_UNKNOWN(false);
}
break; // --------------------------------------------
// One variable corresponding to arg[1]
case DisOp:
case DivpvOp:
case MulpvOp:
case PowpvOp:
case ZmulpvOp:
switch( connect_type )
{ case not_connected:
break;
case yes_connected:
case sum_connected:
case csum_connected:
tape[arg[1]].connect_type = yes_connected;
break;
case cexp_connected:
CPPAD_ASSERT_UNKNOWN( conditional_skip )
if( tape[arg[1]].connect_type == not_connected )
{ tape[arg[1]].connect_type = cexp_connected;
cexp_vec_set[arg[1]] = *cexp_set;
}
else if( tape[arg[1]].connect_type == cexp_connected )
{ cexp_vec_set[arg[1]].intersection(*cexp_set);
if( cexp_vec_set[arg[1]].empty() )
tape[arg[1]].connect_type = yes_connected;
}
else tape[arg[1]].connect_type = yes_connected;
break;
default:
CPPAD_ASSERT_UNKNOWN(false);
}
break; // --------------------------------------------
// Special case for SubvpOp
case SubvpOp:
switch( connect_type )
{ case not_connected:
break;
case yes_connected:
case sum_connected:
case csum_connected:
if( tape[arg[0]].connect_type == not_connected )
tape[arg[0]].connect_type = sum_connected;
else tape[arg[0]].connect_type = yes_connected;
break;
case cexp_connected:
CPPAD_ASSERT_UNKNOWN( conditional_skip )
if( tape[arg[0]].connect_type == not_connected )
{ tape[arg[0]].connect_type = cexp_connected;
cexp_vec_set[arg[0]] = *cexp_set;
}
else if( tape[arg[0]].connect_type == cexp_connected )
{ cexp_vec_set[arg[0]].intersection(*cexp_set);
if( cexp_vec_set[arg[0]].empty() )
tape[arg[0]].connect_type = yes_connected;
}
else tape[arg[0]].connect_type = yes_connected;
break;
default:
CPPAD_ASSERT_UNKNOWN(false);
}
if( connect_type == sum_connected )
{ // convert sum to csum connection for this variable
tape[i_var].connect_type = connect_type = csum_connected;
}
break; // --------------------------------------------
// Special case for AddpvOp and SubpvOp
case AddpvOp:
case SubpvOp:
switch( connect_type )
{ case not_connected:
break;
case yes_connected:
case sum_connected:
case csum_connected:
if( tape[arg[1]].connect_type == not_connected )
tape[arg[1]].connect_type = sum_connected;
else tape[arg[1]].connect_type = yes_connected;
break;
case cexp_connected:
CPPAD_ASSERT_UNKNOWN( conditional_skip )
if( tape[arg[1]].connect_type == not_connected )
{ tape[arg[1]].connect_type = cexp_connected;
cexp_vec_set[arg[1]] = *cexp_set;
}
else if( tape[arg[1]].connect_type == cexp_connected )
{ cexp_vec_set[arg[1]].intersection(*cexp_set);
if( cexp_vec_set[arg[1]].empty() )
tape[arg[1]].connect_type = yes_connected;
}
else tape[arg[1]].connect_type = yes_connected;
break;
default:
CPPAD_ASSERT_UNKNOWN(false);
}
if( connect_type == sum_connected )
{ // convert sum to csum connection for this variable
tape[i_var].connect_type = connect_type = csum_connected;
}
break; // --------------------------------------------
// Special case for AddvvOp and SubvvOp
case AddvvOp:
case SubvvOp:
for(i = 0; i < 2; i++) switch( connect_type )
{ case not_connected:
break;
case yes_connected:
case sum_connected:
case csum_connected:
if( tape[arg[i]].connect_type == not_connected )
tape[arg[i]].connect_type = sum_connected;
else tape[arg[i]].connect_type = yes_connected;
break;
case cexp_connected:
CPPAD_ASSERT_UNKNOWN( conditional_skip )
if( tape[arg[i]].connect_type == not_connected )
{ tape[arg[i]].connect_type = cexp_connected;
cexp_vec_set[arg[i]] = *cexp_set;
}
else if( tape[arg[i]].connect_type == cexp_connected )
{ cexp_vec_set[arg[i]].intersection(*cexp_set);
if( cexp_vec_set[arg[i]].empty() )
tape[arg[i]].connect_type = yes_connected;
}
else tape[arg[i]].connect_type = yes_connected;
break;
default:
CPPAD_ASSERT_UNKNOWN(false);
}
if( connect_type == sum_connected )
{ // convert sum to csum connection for this variable
tape[i_var].connect_type = connect_type = csum_connected;
}
break; // --------------------------------------------
// Other binary operators
// where operands are arg[0], arg[1]
case DivvvOp:
case MulvvOp:
case PowvvOp:
case ZmulvvOp:
for(i = 0; i < 2; i++) switch( connect_type )
{ case not_connected:
break;
case yes_connected:
case sum_connected:
case csum_connected:
tape[arg[i]].connect_type = yes_connected;
break;
case cexp_connected:
CPPAD_ASSERT_UNKNOWN( conditional_skip )
if( tape[arg[i]].connect_type == not_connected )
{ tape[arg[i]].connect_type = cexp_connected;
cexp_vec_set[arg[i]] = *cexp_set;
}
else if( tape[arg[i]].connect_type == cexp_connected )
{ cexp_vec_set[arg[i]].intersection(*cexp_set);
if( cexp_vec_set[arg[i]].empty() )
tape[arg[i]].connect_type = yes_connected;
}
else tape[arg[i]].connect_type = yes_connected;
break;
default:
CPPAD_ASSERT_UNKNOWN(false);
}
break; // --------------------------------------------
// Conditional expression operators
case CExpOp:
CPPAD_ASSERT_UNKNOWN( NumArg(CExpOp) == 6 );
if( connect_type != not_connected )
{ struct_cskip_info info;
info.cop = CompareOp( arg[0] );
info.flag = arg[1];
info.left = arg[2];
info.right = arg[3];
info.n_op_true = 0;
info.n_op_false = 0;
info.i_arg = 0; // case where no CSkipOp for this CExpOp
//
size_t index = 0;
if( arg[1] & 1 )
{ index = std::max(index, info.left);
tape[info.left].connect_type = yes_connected;
}
if( arg[1] & 2 )
{ index = std::max(index, info.right);
tape[info.right].connect_type = yes_connected;
}
CPPAD_ASSERT_UNKNOWN( index > 0 );
info.max_left_right = index;
//
index = cskip_info.size();
cskip_info.push_back(info);
//
if( arg[1] & 4 )
{ if( conditional_skip &&
tape[arg[4]].connect_type == not_connected )
{ tape[arg[4]].connect_type = cexp_connected;
cexp_vec_set[arg[4]] = *cexp_set;
cexp_vec_set[arg[4]].insert(
class_cexp_pair(true, index)
);
}
else
{ // if arg[4] is cexp_connected, it could be
// connected for both the true and false case
// 2DO: if previously cexp_connected
// and the true/false sense is the same, should
// keep this conditional connnection.
if(conditional_skip)
cexp_vec_set[arg[4]].clear();
tape[arg[4]].connect_type = yes_connected;
}
}
if( arg[1] & 8 )
{ if( conditional_skip &&
tape[arg[5]].connect_type == not_connected )
{ tape[arg[5]].connect_type = cexp_connected;
cexp_vec_set[arg[5]] = *cexp_set;
cexp_vec_set[arg[5]].insert(
class_cexp_pair(false, index)
);
}
else
{ if(conditional_skip)
cexp_vec_set[arg[5]].clear();
tape[arg[5]].connect_type = yes_connected;
}
}
}
break; // --------------------------------------------
// Operations where there is nothing to do
case EndOp:
case ParOp:
case PriOp:
break; // --------------------------------------------
// Operators that never get removed
case BeginOp:
case InvOp:
tape[i_var].connect_type = yes_connected;
break;
// Compare operators never get removed -----------------
case LepvOp:
case LtpvOp:
case EqpvOp:
case NepvOp:
tape[arg[1]].connect_type = yes_connected;
break;
case LevpOp:
case LtvpOp:
tape[arg[0]].connect_type = yes_connected;
break;
case LevvOp:
case LtvvOp:
case EqvvOp:
case NevvOp:
tape[arg[0]].connect_type = yes_connected;
tape[arg[1]].connect_type = yes_connected;
break;
// Load using a parameter index ----------------------
case LdpOp:
if( tape[i_var].connect_type != not_connected )
{
i = vecad[ arg[0] - 1 ];
vecad_connect[i] = yes_connected;
}
break; // --------------------------------------------
// Load using a variable index
case LdvOp:
if( tape[i_var].connect_type != not_connected )
{
i = vecad[ arg[0] - 1 ];
vecad_connect[i] = yes_connected;
tape[arg[1]].connect_type = yes_connected;
}
break; // --------------------------------------------
// Store a variable using a parameter index
case StpvOp:
i = vecad[ arg[0] - 1 ];
if( vecad_connect[i] != not_connected )
tape[arg[2]].connect_type = yes_connected;
break; // --------------------------------------------
// Store a variable using a variable index
case StvvOp:
i = vecad[ arg[0] - 1 ];
if( vecad_connect[i] )
{ tape[arg[1]].connect_type = yes_connected;
tape[arg[2]].connect_type = yes_connected;
}
break;
// ============================================================
case UserOp:
// start or end atomic operation sequence
CPPAD_ASSERT_UNKNOWN( NumRes( UserOp ) == 0 );
CPPAD_ASSERT_UNKNOWN( NumArg( UserOp ) == 4 );
if( user_state == user_end )
{ user_index = arg[0];
user_id = arg[1];
user_n = arg[2];
user_m = arg[3];
user_q = 1;
user_atom = atomic_base<Base>::class_object(user_index);
if( user_atom == CPPAD_NULL )
{ std::string msg =
atomic_base<Base>::class_name(user_index)
+ ": atomic_base function has been deleted";
CPPAD_ASSERT_KNOWN(false, msg.c_str() );
}
user_pack = user_atom->sparsity() ==
atomic_base<Base>::pack_sparsity_enum;
user_bool = user_atom->sparsity() ==
atomic_base<Base>::bool_sparsity_enum;
user_set = user_atom->sparsity() ==
atomic_base<Base>::set_sparsity_enum;
CPPAD_ASSERT_UNKNOWN( user_pack || user_bool || user_set );
user_set = user_atom->sparsity() ==
atomic_base<Base>::set_sparsity_enum;
//
// Note user_q is 1, but use it for clarity of code
if( user_pack )
{ if( user_r_pack.size() != user_m * user_q )
user_r_pack.resize( user_m * user_q );
if( user_s_pack.size() != user_n * user_q )
user_s_pack.resize( user_n * user_q );
for(i = 0; i < user_m; i++)
for(j = 0; j < user_q; j++)
user_r_pack[ i * user_q + j] = false;
}
if( user_bool )
{ if( user_r_bool.size() != user_m * user_q )
user_r_bool.resize( user_m * user_q );
if( user_s_bool.size() != user_n * user_q )
user_s_bool.resize( user_n * user_q );
for(i = 0; i < user_m; i++)
for(j = 0; j < user_q; j++)
user_r_bool[ i * user_q + j] = false;
}
if( user_set )
{ if(user_s_set.size() != user_n )
user_s_set.resize(user_n);
if(user_r_set.size() != user_m )
user_r_set.resize(user_m);
for(i = 0; i < user_m; i++)
user_r_set[i].clear();
}
//
user_j = user_n;
user_i = user_m;
user_state = user_ret;
//
struct_user_info info;
info.connect_type = not_connected;
info.op_end = i_op + 1;
user_info.push_back(info);
}
else
{ CPPAD_ASSERT_UNKNOWN( user_state == user_start );
CPPAD_ASSERT_UNKNOWN( user_index == size_t(arg[0]) );
CPPAD_ASSERT_UNKNOWN( user_id == size_t(arg[1]) );
CPPAD_ASSERT_UNKNOWN( user_n == size_t(arg[2]) );
CPPAD_ASSERT_UNKNOWN( user_m == size_t(arg[3]) );
user_state = user_end;
//
CPPAD_ASSERT_UNKNOWN( user_curr + 1 == user_info.size() );
user_info[user_curr].op_begin = i_op;
user_curr = user_info.size();
}
break;
case UsrapOp:
// parameter argument in an atomic operation sequence
CPPAD_ASSERT_UNKNOWN( user_state == user_arg );
CPPAD_ASSERT_UNKNOWN( 0 < user_j && user_j <= user_n );
CPPAD_ASSERT_UNKNOWN( NumArg(op) == 1 );
CPPAD_ASSERT_UNKNOWN( size_t(arg[0]) < num_par );
--user_j;
if( user_j == 0 )
user_state = user_start;
break;
case UsravOp:
// variable argument in an atomic operation sequence
CPPAD_ASSERT_UNKNOWN( user_state == user_arg );
CPPAD_ASSERT_UNKNOWN( 0 < user_j && user_j <= user_n );
CPPAD_ASSERT_UNKNOWN( NumArg(op) == 1 );
CPPAD_ASSERT_UNKNOWN( size_t(arg[0]) <= i_var );
CPPAD_ASSERT_UNKNOWN( 0 < arg[0] );
--user_j;
if( user_set )
{ if( ! user_s_set[user_j].empty() )
tape[arg[0]].connect_type =
user_info[user_curr].connect_type;
}
if( user_bool )
{ if( user_s_bool[user_j] )
tape[arg[0]].connect_type =
user_info[user_curr].connect_type;
}
if( user_pack )
{ if( user_s_pack[user_j] )
tape[arg[0]].connect_type =
user_info[user_curr].connect_type;
}
if( user_j == 0 )
user_state = user_start;
break;
case UsrrvOp:
// variable result in an atomic operation sequence
CPPAD_ASSERT_UNKNOWN( user_state == user_ret );
CPPAD_ASSERT_UNKNOWN( 0 < user_i && user_i <= user_m );
--user_i;
switch( connect_type )
{ case not_connected:
break;
case yes_connected:
case sum_connected:
case csum_connected:
user_info[user_curr].connect_type = yes_connected;
if( user_set )
user_r_set[user_i].insert(0);
if( user_bool )
user_r_bool[user_i] = true;
if( user_pack )
user_r_pack[user_i] = true;
break;
case cexp_connected:
CPPAD_ASSERT_UNKNOWN( conditional_skip );
if( user_info[user_curr].connect_type == not_connected )
{ user_info[user_curr].connect_type = connect_type;
user_info[user_curr].cexp_set = *cexp_set;
}
else if(user_info[user_curr].connect_type==cexp_connected)
{ user_info[user_curr].cexp_set.intersection(*cexp_set);
if( user_info[user_curr].cexp_set.empty() )
user_info[user_curr].connect_type = yes_connected;
}
else user_info[user_curr].connect_type = yes_connected;
if( user_set )
user_r_set[user_i].insert(0);
if( user_bool )
user_r_bool[user_i] = true;
if( user_pack )
user_r_pack[user_i] = true;
break;
default:
CPPAD_ASSERT_UNKNOWN(false);
}
// drop into op = UsrrpOp code to handle case where user_i == 0
// for both UsrrvOp and UsrrpOp together.
case UsrrpOp:
if( op == UsrrpOp )
{ // parameter result in an atomic operation sequence
CPPAD_ASSERT_UNKNOWN( user_state == user_ret );
CPPAD_ASSERT_UNKNOWN( 0 < user_i && user_i <= user_m );
CPPAD_ASSERT_UNKNOWN( NumArg(op) == 1 );
CPPAD_ASSERT_UNKNOWN( size_t(arg[0]) < num_par );
--user_i;
}
if( user_i == 0 )
{ // call users function for this operation
user_atom->set_id(user_id);
bool flag = false;
if( user_set )
{ flag = user_atom->
rev_sparse_jac(user_q, user_r_set, user_s_set);
}
if( user_bool )
{ flag = user_atom->
rev_sparse_jac(user_q, user_r_bool, user_s_bool);
}
if( user_pack )
{ flag = user_atom->
rev_sparse_jac(user_q, user_r_pack, user_s_pack);
}
if( ! flag )
{ std::string s =
"Optimizing an ADFun object"
" that contains the atomic function\n\t";
s += user_atom->afun_name();
s += "\nCurrent atomic_sparsity is set to";
//
if( user_set )
s += "set_sparsity_enum.\n";
if( user_bool )
s += "bool_sparsity_enum.\n";
if( user_pack )
s += "pack_sparsity_enum.\n";
//
s += "This version of rev_sparse_jac returned false";
CPPAD_ASSERT_KNOWN(false, s.c_str() );
}
user_state = user_arg;
}
break;
// ============================================================
// all cases should be handled above
default:
CPPAD_ASSERT_UNKNOWN(0);
}
}
// values corresponding to BeginOp
CPPAD_ASSERT_UNKNOWN( i_op == 0 && i_var == 0 && op == BeginOp );
tape[i_var].op = op;
tape[i_var].connect_type = yes_connected;
// -------------------------------------------------------------
// Determine which variables can be conditionally skipped
for(i = 0; i < num_var; i++)
{ if( tape[i].connect_type == cexp_connected &&
! cexp_vec_set[i].empty() )
{ std::set<class_cexp_pair>::const_iterator itr =
cexp_vec_set[i].begin();
while( itr != cexp_vec_set[i].end() )
{ j = itr->index();
if( itr->compare() == true )
cskip_info[j].skip_var_false.push_back(i);
else cskip_info[j].skip_var_true.push_back(i);
itr++;
}
}
}
// Determine size of skip information in user_info
for(i = 0; i < user_info.size(); i++)
{ if( user_info[i].connect_type == cexp_connected &&
! user_info[i].cexp_set.empty() )
{ std::set<class_cexp_pair>::const_iterator itr =
user_info[i].cexp_set.begin();
while( itr != user_info[i].cexp_set.end() )
{ j = itr->index();
if( itr->compare() == true )
cskip_info[j].n_op_false =
user_info[i].op_end - user_info[i].op_begin;
else
cskip_info[j].n_op_true =
user_info[i].op_end - user_info[i].op_begin;
itr++;
}
}
}
// Sort the conditional skip information by the maximum of the
// index for the left and right comparision operands
CppAD::vector<size_t> cskip_info_order( cskip_info.size() );
{ CppAD::vector<size_t> keys( cskip_info.size() );
for(i = 0; i < cskip_info.size(); i++)
keys[i] = std::max( cskip_info[i].left, cskip_info[i].right );
CppAD::index_sort(keys, cskip_info_order);
}
// index in sorted order
size_t cskip_order_next = 0;
// index in order during reverse sweep
size_t cskip_info_index = cskip_info.size();
// Initilaize table mapping hash code to variable index in tape
// as pointing to the BeginOp at the beginning of the tape
CppAD::vector<size_t> hash_table_var(CPPAD_HASH_TABLE_SIZE);
for(i = 0; i < CPPAD_HASH_TABLE_SIZE; i++)
hash_table_var[i] = 0;
CPPAD_ASSERT_UNKNOWN( tape[0].op == BeginOp );
// initialize mapping from old variable index to new
// operator and variable index
for(i = 0; i < num_var; i++)
{ tape[i].new_op = 0; // invalid index (except for BeginOp)
tape[i].new_var = num_var; // invalid index
}
// Erase all information in the old recording
rec->free();
// initialize mapping from old VecAD index to new VecAD index
CppAD::vector<size_t> new_vecad_ind(num_vecad_ind);
for(i = 0; i < num_vecad_ind; i++)
new_vecad_ind[i] = num_vecad_ind; // invalid index
j = 0; // index into the old set of indices
for(i = 0; i < num_vecad_vec; i++)
{ // length of this VecAD
size_t length = play->GetVecInd(j);
if( vecad_connect[i] != not_connected )
{ // Put this VecAD vector in new recording
CPPAD_ASSERT_UNKNOWN(length < num_vecad_ind);
new_vecad_ind[j] = rec->PutVecInd(length);
for(k = 1; k <= length; k++) new_vecad_ind[j+k] =
rec->PutVecInd(
rec->PutPar(
play->GetPar(
play->GetVecInd(j+k)
) ) );
}
// start of next VecAD
j += length + 1;
}
CPPAD_ASSERT_UNKNOWN( j == num_vecad_ind );
// start playing the operations in the forward direction
play->forward_start(op, arg, i_op, i_var);
CPPAD_ASSERT_UNKNOWN( user_curr == user_info.size() );
// playing forward skips BeginOp at the beginning, but not EndOp at
// the end. Put BeginOp at beginning of recording
CPPAD_ASSERT_UNKNOWN( op == BeginOp );
CPPAD_ASSERT_NARG_NRES(BeginOp, 1, 1);
tape[i_var].new_op = rec->num_op_rec();
tape[i_var].new_var = rec->PutOp(BeginOp);
rec->PutArg(0);
// temporary buffer for new argument values
addr_t new_arg[6];
// temporary work space used by record_csum
// (decalared here to avoid realloaction of memory)
struct_csum_stacks csum_work;
// tempory used to hold a size_pair
struct_size_pair size_pair;
user_state = user_start;
while(op != EndOp)
{ // next op
play->forward_next(op, arg, i_op, i_var);
CPPAD_ASSERT_UNKNOWN( (i_op > n) | (op == InvOp) );
CPPAD_ASSERT_UNKNOWN( (i_op <= n) | (op != InvOp) );
// determine if we should insert a conditional skip here
bool skip = cskip_order_next < cskip_info.size();
skip &= op != BeginOp;
skip &= op != InvOp;
skip &= user_state == user_start;
if( skip )
{ j = cskip_info_order[cskip_order_next];
if( NumRes(op) > 0 )
skip &= cskip_info[j].max_left_right < i_var;
else
skip &= cskip_info[j].max_left_right <= i_var;
}
if( skip )
{ cskip_order_next++;
struct_cskip_info info = cskip_info[j];
size_t n_true = info.skip_var_true.size() + info.n_op_true;
size_t n_false = info.skip_var_false.size() + info.n_op_false;
skip &= n_true > 0 || n_false > 0;
if( skip )
{ CPPAD_ASSERT_UNKNOWN( NumRes(CSkipOp) == 0 );
size_t n_arg = 7 + n_true + n_false;
// reserve space for the arguments to this operator but
// delay setting them until we have all the new addresses
cskip_info[j].i_arg = rec->ReserveArg(n_arg);
CPPAD_ASSERT_UNKNOWN( cskip_info[j].i_arg > 0 );
rec->PutOp(CSkipOp);
}
}
// determine if we should keep this operation in the new
// operation sequence
bool keep;
switch( op )
{ // see wish_list/Optimize/CompareChange entry.
case EqpvOp:
case EqvvOp:
case LepvOp:
case LevpOp:
case LevvOp:
case LtpvOp:
case LtvpOp:
case LtvvOp:
case NepvOp:
case NevvOp:
keep = true;
break;
case PriOp:
keep = false;
break;
case InvOp:
case EndOp:
keep = true;
break;
case StppOp:
case StvpOp:
case StpvOp:
case StvvOp:
CPPAD_ASSERT_UNKNOWN( NumRes(op) == 0 );
i = vecad[ arg[0] - 1 ];
keep = vecad_connect[i] != not_connected;
break;
case AddpvOp:
case AddvvOp:
case SubpvOp:
case SubvpOp:
case SubvvOp:
keep = tape[i_var].connect_type != not_connected;
keep &= tape[i_var].connect_type != csum_connected;
break;
case UserOp:
case UsrapOp:
case UsravOp:
case UsrrpOp:
case UsrrvOp:
keep = true;
break;
default:
keep = tape[i_var].connect_type != not_connected;
break;
}
unsigned short code = 0;
bool replace_hash = false;
addr_t match_var;
tape[i_var].match = false;
if( keep ) switch( op )
{
// Unary operator where operand is arg[0]
case AbsOp:
case AcosOp:
case AcoshOp:
case AsinOp:
case AsinhOp:
case AtanOp:
case AtanhOp:
case CosOp:
case CoshOp:
case ErfOp:
case ExpOp:
case Expm1Op:
case LogOp:
case Log1pOp:
case SignOp:
case SinOp:
case SinhOp:
case SqrtOp:
case TanOp:
case TanhOp:
match_var = unary_match(
tape , // inputs
i_var ,
play->num_par_rec() ,
play->GetPar() ,
hash_table_var ,
code // outputs
);
if( match_var > 0 )
{ tape[i_var].match = true;
tape[match_var].match = true;
tape[i_var].new_var = tape[match_var].new_var;
}
else
{
replace_hash = true;
new_arg[0] = tape[ arg[0] ].new_var;
rec->PutArg( new_arg[0] );
tape[i_var].new_op = rec->num_op_rec();
tape[i_var].new_var = i = rec->PutOp(op);
CPPAD_ASSERT_UNKNOWN( size_t(new_arg[0]) < i );
if( op == ErfOp )
{ // Error function is a special case
// second argument is always the parameter 0
// third argument is always the parameter 2 / sqrt(pi)
CPPAD_ASSERT_UNKNOWN( NumArg(ErfOp) == 3 );
rec->PutArg( rec->PutPar( Base(0) ) );
rec->PutArg( rec->PutPar(
Base( 1.0 / std::sqrt( std::atan(1.0) ) )
) );
}
}
break;
// ---------------------------------------------------
// Binary operators where
// left is a variable and right is a parameter
case SubvpOp:
if( tape[arg[0]].connect_type == csum_connected )
{
// convert to a sequence of summation operators
size_pair = record_csum(
tape , // inputs
i_var ,
play->num_par_rec() ,
play->GetPar() ,
rec ,
csum_work
);
tape[i_var].new_op = size_pair.i_op;
tape[i_var].new_var = size_pair.i_var;
// abort rest of this case
break;
}
case DivvpOp:
case PowvpOp:
case ZmulvpOp:
match_var = binary_match(
tape , // inputs
i_var ,
play->num_par_rec() ,
play->GetPar() ,
hash_table_var ,
code // outputs
);
if( match_var > 0 )
{ tape[i_var].match = true;
tape[match_var].match = true;
tape[i_var].new_var = tape[match_var].new_var;
}
else
{ size_pair = record_vp(
tape , // inputs
i_var ,
play->num_par_rec() ,
play->GetPar() ,
rec ,
op ,
arg
);
tape[i_var].new_op = size_pair.i_op;
tape[i_var].new_var = size_pair.i_var;
replace_hash = true;
}
break;
// ---------------------------------------------------
// Binary operators where
// left is an index and right is a variable
case DisOp:
match_var = binary_match(
tape , // inputs
i_var ,
play->num_par_rec() ,
play->GetPar() ,
hash_table_var ,
code // outputs
);
if( match_var > 0 )
{ tape[i_var].match = true;
tape[match_var].match = true;
tape[i_var].new_var = tape[match_var].new_var;
}
else
{ new_arg[0] = arg[0];
new_arg[1] = tape[ arg[1] ].new_var;
rec->PutArg( new_arg[0], new_arg[1] );
tape[i_var].new_op = rec->num_op_rec();
tape[i_var].new_var = rec->PutOp(op);
CPPAD_ASSERT_UNKNOWN(
new_arg[1] < tape[i_var].new_var
);
replace_hash = true;
}
break;
// ---------------------------------------------------
// Binary operators where
// left is a parameter and right is a variable
case SubpvOp:
case AddpvOp:
if( tape[arg[1]].connect_type == csum_connected )
{
// convert to a sequence of summation operators
size_pair = record_csum(
tape , // inputs
i_var ,
play->num_par_rec() ,
play->GetPar() ,
rec ,
csum_work
);
tape[i_var].new_op = size_pair.i_op;
tape[i_var].new_var = size_pair.i_var;
// abort rest of this case
break;
}
case DivpvOp:
case MulpvOp:
case PowpvOp:
case ZmulpvOp:
match_var = binary_match(
tape , // inputs
i_var ,
play->num_par_rec() ,
play->GetPar() ,
hash_table_var ,
code // outputs
);
if( match_var > 0 )
{ tape[i_var].match = true;
tape[match_var].match = true;
tape[i_var].new_var = tape[match_var].new_var;
}
else
{ size_pair = record_pv(
tape , // inputs
i_var ,
play->num_par_rec() ,
play->GetPar() ,
rec ,
op ,
arg
);
tape[i_var].new_op = size_pair.i_op;
tape[i_var].new_var = size_pair.i_var;
replace_hash = true;
}
break;
// ---------------------------------------------------
// Binary operator where
// both operators are variables
case AddvvOp:
case SubvvOp:
if( (tape[arg[0]].connect_type == csum_connected) |
(tape[arg[1]].connect_type == csum_connected)
)
{
// convert to a sequence of summation operators
size_pair = record_csum(
tape , // inputs
i_var ,
play->num_par_rec() ,
play->GetPar() ,
rec ,
csum_work
);
tape[i_var].new_op = size_pair.i_op;
tape[i_var].new_var = size_pair.i_var;
// abort rest of this case
break;
}
case DivvvOp:
case MulvvOp:
case PowvvOp:
case ZmulvvOp:
match_var = binary_match(
tape , // inputs
i_var ,
play->num_par_rec() ,
play->GetPar() ,
hash_table_var ,
code // outputs
);
if( match_var > 0 )
{ tape[i_var].match = true;
tape[match_var].match = true;
tape[i_var].new_var = tape[match_var].new_var;
}
else
{ size_pair = record_vv(
tape , // inputs
i_var ,
play->num_par_rec() ,
play->GetPar() ,
rec ,
op ,
arg
);
tape[i_var].new_op = size_pair.i_op;
tape[i_var].new_var = size_pair.i_var;
replace_hash = true;
}
break;
// ---------------------------------------------------
// Conditional expression operators
case CExpOp:
CPPAD_ASSERT_NARG_NRES(op, 6, 1);
new_arg[0] = arg[0];
new_arg[1] = arg[1];
mask = 1;
for(i = 2; i < 6; i++)
{ if( arg[1] & mask )
{ new_arg[i] = tape[arg[i]].new_var;
CPPAD_ASSERT_UNKNOWN(
size_t(new_arg[i]) < num_var
);
}
else new_arg[i] = rec->PutPar(
play->GetPar( arg[i] )
);
mask = mask << 1;
}
rec->PutArg(
new_arg[0] ,
new_arg[1] ,
new_arg[2] ,
new_arg[3] ,
new_arg[4] ,
new_arg[5]
);
tape[i_var].new_op = rec->num_op_rec();
tape[i_var].new_var = rec->PutOp(op);
//
// The new addresses for left and right are used during
// fill in the arguments for the CSkip operations. This does not
// affect max_left_right which is used during this sweep.
CPPAD_ASSERT_UNKNOWN( cskip_info_index > 0 );
cskip_info_index--;
cskip_info[ cskip_info_index ].left = new_arg[2];
cskip_info[ cskip_info_index ].right = new_arg[3];
break;
// ---------------------------------------------------
// Operations with no arguments and no results
case EndOp:
CPPAD_ASSERT_NARG_NRES(op, 0, 0);
rec->PutOp(op);
break;
// ---------------------------------------------------
// Operations with two arguments and no results
case LepvOp:
case LtpvOp:
case EqpvOp:
case NepvOp:
CPPAD_ASSERT_NARG_NRES(op, 2, 0);
new_arg[0] = rec->PutPar( play->GetPar(arg[0]) );
new_arg[1] = tape[arg[1]].new_var;
rec->PutArg(new_arg[0], new_arg[1]);
rec->PutOp(op);
break;
//
case LevpOp:
case LtvpOp:
CPPAD_ASSERT_NARG_NRES(op, 2, 0);
new_arg[0] = tape[arg[0]].new_var;
new_arg[1] = rec->PutPar( play->GetPar(arg[1]) );
rec->PutArg(new_arg[0], new_arg[1]);
rec->PutOp(op);
break;
//
case LevvOp:
case LtvvOp:
case EqvvOp:
case NevvOp:
CPPAD_ASSERT_NARG_NRES(op, 2, 0);
new_arg[0] = tape[arg[0]].new_var;
new_arg[1] = tape[arg[1]].new_var;
rec->PutArg(new_arg[0], new_arg[1]);
rec->PutOp(op);
break;
// ---------------------------------------------------
// Operations with no arguments and one result
case InvOp:
CPPAD_ASSERT_NARG_NRES(op, 0, 1);
tape[i_var].new_op = rec->num_op_rec();
tape[i_var].new_var = rec->PutOp(op);
break;
// ---------------------------------------------------
// Operations with one argument that is a parameter
case ParOp:
CPPAD_ASSERT_NARG_NRES(op, 1, 1);
new_arg[0] = rec->PutPar( play->GetPar(arg[0] ) );
rec->PutArg( new_arg[0] );
tape[i_var].new_op = rec->num_op_rec();
tape[i_var].new_var = rec->PutOp(op);
break;
// ---------------------------------------------------
// Load using a parameter index
case LdpOp:
CPPAD_ASSERT_NARG_NRES(op, 3, 1);
new_arg[0] = new_vecad_ind[ arg[0] ];
new_arg[1] = arg[1];
new_arg[2] = rec->num_load_op_rec();
CPPAD_ASSERT_UNKNOWN( size_t(new_arg[0]) < num_vecad_ind );
rec->PutArg(
new_arg[0],
new_arg[1],
new_arg[2]
);
tape[i_var].new_op = rec->num_op_rec();
tape[i_var].new_var = rec->PutLoadOp(op);
break;
// ---------------------------------------------------
// Load using a variable index
case LdvOp:
CPPAD_ASSERT_NARG_NRES(op, 3, 1);
new_arg[0] = new_vecad_ind[ arg[0] ];
new_arg[1] = tape[arg[1]].new_var;
new_arg[2] = rec->num_load_op_rec();
CPPAD_ASSERT_UNKNOWN( size_t(new_arg[0]) < num_vecad_ind );
CPPAD_ASSERT_UNKNOWN( size_t(new_arg[1]) < num_var );
rec->PutArg(
new_arg[0],
new_arg[1],
new_arg[2]
);
tape[i_var].new_var = rec->num_op_rec();
tape[i_var].new_var = rec->PutLoadOp(op);
break;
// ---------------------------------------------------
// Store a parameter using a parameter index
case StppOp:
CPPAD_ASSERT_NARG_NRES(op, 3, 0);
new_arg[0] = new_vecad_ind[ arg[0] ];
new_arg[1] = rec->PutPar( play->GetPar(arg[1]) );
new_arg[2] = rec->PutPar( play->GetPar(arg[2]) );
CPPAD_ASSERT_UNKNOWN( size_t(new_arg[0]) < num_vecad_ind );
rec->PutArg(
new_arg[0],
new_arg[1],
new_arg[2]
);
rec->PutOp(op);
break;
// ---------------------------------------------------
// Store a parameter using a variable index
case StvpOp:
CPPAD_ASSERT_NARG_NRES(op, 3, 0);
new_arg[0] = new_vecad_ind[ arg[0] ];
new_arg[1] = tape[arg[1]].new_var;
new_arg[2] = rec->PutPar( play->GetPar(arg[2]) );
CPPAD_ASSERT_UNKNOWN( size_t(new_arg[0]) < num_vecad_ind );
CPPAD_ASSERT_UNKNOWN( size_t(new_arg[1]) < num_var );
rec->PutArg(
new_arg[0],
new_arg[1],
new_arg[2]
);
rec->PutOp(op);
break;
// ---------------------------------------------------
// Store a variable using a parameter index
case StpvOp:
CPPAD_ASSERT_NARG_NRES(op, 3, 0);
new_arg[0] = new_vecad_ind[ arg[0] ];
new_arg[1] = rec->PutPar( play->GetPar(arg[1]) );
new_arg[2] = tape[arg[2]].new_var;
CPPAD_ASSERT_UNKNOWN( size_t(new_arg[0]) < num_vecad_ind );
CPPAD_ASSERT_UNKNOWN( size_t(new_arg[1]) < num_var );
CPPAD_ASSERT_UNKNOWN( size_t(new_arg[2]) < num_var );
rec->PutArg(
new_arg[0],
new_arg[1],
new_arg[2]
);
rec->PutOp(op);
break;
// ---------------------------------------------------
// Store a variable using a variable index
case StvvOp:
CPPAD_ASSERT_NARG_NRES(op, 3, 0);
new_arg[0] = new_vecad_ind[ arg[0] ];
new_arg[1] = tape[arg[1]].new_var;
new_arg[2] = tape[arg[2]].new_var;
CPPAD_ASSERT_UNKNOWN( size_t(new_arg[0]) < num_vecad_ind );
CPPAD_ASSERT_UNKNOWN( size_t(new_arg[1]) < num_var );
CPPAD_ASSERT_UNKNOWN( size_t(new_arg[2]) < num_var );
rec->PutArg(
new_arg[0],
new_arg[1],
new_arg[2]
);
rec->PutOp(op);
break;
// -----------------------------------------------------------
case UserOp:
CPPAD_ASSERT_NARG_NRES(op, 4, 0);
if( user_state == user_start )
{ user_state = user_arg;
CPPAD_ASSERT_UNKNOWN( user_curr > 0 );
user_curr--;
user_info[user_curr].op_begin = rec->num_op_rec();
}
else
{ user_state = user_start;
user_info[user_curr].op_end = rec->num_op_rec() + 1;
}
// user_index, user_id, user_n, user_m
if( user_info[user_curr].connect_type != not_connected )
{ rec->PutArg(arg[0], arg[1], arg[2], arg[3]);
rec->PutOp(UserOp);
}
break;
case UsrapOp:
CPPAD_ASSERT_NARG_NRES(op, 1, 0);
if( user_info[user_curr].connect_type != not_connected )
{ new_arg[0] = rec->PutPar( play->GetPar(arg[0]) );
rec->PutArg(new_arg[0]);
rec->PutOp(UsrapOp);
}
break;
case UsravOp:
CPPAD_ASSERT_NARG_NRES(op, 1, 0);
if( user_info[user_curr].connect_type != not_connected )
{ new_arg[0] = tape[arg[0]].new_var;
if( size_t(new_arg[0]) < num_var )
{ rec->PutArg(new_arg[0]);
rec->PutOp(UsravOp);
}
else
{ // This argument does not affect the result and
// has been optimized out so use nan in its place.
new_arg[0] = rec->PutPar( base_nan );
rec->PutArg(new_arg[0]);
rec->PutOp(UsrapOp);
}
}
break;
case UsrrpOp:
CPPAD_ASSERT_NARG_NRES(op, 1, 0);
if( user_info[user_curr].connect_type != not_connected )
{ new_arg[0] = rec->PutPar( play->GetPar(arg[0]) );
rec->PutArg(new_arg[0]);
rec->PutOp(UsrrpOp);
}
break;
case UsrrvOp:
CPPAD_ASSERT_NARG_NRES(op, 0, 1);
if( user_info[user_curr].connect_type != not_connected )
{ tape[i_var].new_op = rec->num_op_rec();
tape[i_var].new_var = rec->PutOp(UsrrvOp);
}
break;
// ---------------------------------------------------
// all cases should be handled above
default:
CPPAD_ASSERT_UNKNOWN(false);
}
if( replace_hash )
{ // The old variable index i_var corresponds to the
// new variable index tape[i_var].new_var. In addition
// this is the most recent variable that has this code.
hash_table_var[code] = i_var;
}
}
// modify the dependent variable vector to new indices
for(i = 0; i < dep_taddr.size(); i++ )
{ CPPAD_ASSERT_UNKNOWN( size_t(tape[dep_taddr[i]].new_var) < num_var );
dep_taddr[i] = tape[ dep_taddr[i] ].new_var;
}
# ifndef NDEBUG
size_t num_new_op = rec->num_op_rec();
for(i_var = 0; i_var < tape.size(); i_var++)
CPPAD_ASSERT_UNKNOWN( tape[i_var].new_op < num_new_op );
# endif
// Move skip information from user_info to cskip_info
for(i = 0; i < user_info.size(); i++)
{ if( user_info[i].connect_type == cexp_connected &&
! user_info[i].cexp_set.empty() )
{ std::set<class_cexp_pair>::const_iterator itr =
user_info[i].cexp_set.begin();
while( itr != user_info[i].cexp_set.end() )
{ j = itr->index();
k = user_info[i].op_begin;
while(k < user_info[i].op_end)
{ if( itr->compare() == true )
cskip_info[j].skip_op_false.push_back(k++);
else cskip_info[j].skip_op_true.push_back(k++);
}
itr++;
}
}
}
// fill in the arguments for the CSkip operations
CPPAD_ASSERT_UNKNOWN( cskip_order_next == cskip_info.size() );
for(i = 0; i < cskip_info.size(); i++)
{ struct_cskip_info info = cskip_info[i];
if( info.i_arg > 0 )
{ CPPAD_ASSERT_UNKNOWN( info.n_op_true==info.skip_op_true.size() );
CPPAD_ASSERT_UNKNOWN(info.n_op_false==info.skip_op_false.size());
size_t n_true =
info.skip_var_true.size() + info.skip_op_true.size();
size_t n_false =
info.skip_var_false.size() + info.skip_op_false.size();
size_t i_arg = info.i_arg;
rec->ReplaceArg(i_arg++, info.cop );
rec->ReplaceArg(i_arg++, info.flag );
rec->ReplaceArg(i_arg++, info.left );
rec->ReplaceArg(i_arg++, info.right );
rec->ReplaceArg(i_arg++, n_true );
rec->ReplaceArg(i_arg++, n_false );
for(j = 0; j < info.skip_var_true.size(); j++)
{ i_var = info.skip_var_true[j];
if( tape[i_var].match )
{ // The operation for this argument has been removed,
// so use an operator index that never comes up.
rec->ReplaceArg(i_arg++, rec->num_op_rec());
}
else
{ CPPAD_ASSERT_UNKNOWN( tape[i_var].new_op > 0 );
rec->ReplaceArg(i_arg++, tape[i_var].new_op );
}
}
for(j = 0; j < info.skip_op_true.size(); j++)
{ i_op = info.skip_op_true[j];
rec->ReplaceArg(i_arg++, i_op);
}
for(j = 0; j < info.skip_var_false.size(); j++)
{ i_var = info.skip_var_false[j];
if( tape[i_var].match )
{ // The operation for this argument has been removed,
// so use an operator index that never comes up.
rec->ReplaceArg(i_arg++, rec->num_op_rec());
}
else
{ CPPAD_ASSERT_UNKNOWN( tape[i_var].new_op > 0 );
rec->ReplaceArg(i_arg++, tape[i_var].new_op );
}
}
for(j = 0; j < info.skip_op_false.size(); j++)
{ i_op = info.skip_op_false[j];
rec->ReplaceArg(i_arg++, i_op);
}
rec->ReplaceArg(i_arg++, n_true + n_false);
# ifndef NDEBUG
size_t n_arg = 7 + n_true + n_false;
CPPAD_ASSERT_UNKNOWN( info.i_arg + n_arg == i_arg );
# endif
}
}
}
} // END_CPPAD_OPTIMIZE_NAMESPACE
/*!
Optimize a player object operation sequence
The operation sequence for this object is replaced by one with fewer operations
but the same funcition and derivative values.
\tparam Base
base type for the operator; i.e., this operation was recorded
using AD< \a Base > and computations by this routine are done using type
\a Base.
\param options
The default value for this option is the empty string.
The only other possible value is "no_conditional_skip".
If this option is present, no conditional skip operators will be generated.
*/
template <class Base>
void ADFun<Base>::optimize(const std::string& options)
{ // place to store the optimized version of the recording
recorder<Base> rec;
// number of independent variables
size_t n = ind_taddr_.size();
# ifndef NDEBUG
size_t i, j, m = dep_taddr_.size();
CppAD::vector<Base> x(n), y(m), check(m);
Base max_taylor(0);
bool check_zero_order = num_order_taylor_ > 0;
if( check_zero_order )
{ // zero order coefficients for independent vars
for(j = 0; j < n; j++)
{ CPPAD_ASSERT_UNKNOWN( play_.GetOp(j+1) == InvOp );
CPPAD_ASSERT_UNKNOWN( ind_taddr_[j] == j+1 );
x[j] = taylor_[ ind_taddr_[j] * cap_order_taylor_ + 0];
}
// zero order coefficients for dependent vars
for(i = 0; i < m; i++)
{ CPPAD_ASSERT_UNKNOWN( dep_taddr_[i] < num_var_tape_ );
y[i] = taylor_[ dep_taddr_[i] * cap_order_taylor_ + 0];
}
// maximum zero order coefficient not counting BeginOp at beginning
// (which is correpsonds to uninitialized memory).
for(i = 1; i < num_var_tape_; i++)
{ if( abs_geq(taylor_[i*cap_order_taylor_+0] , max_taylor) )
max_taylor = taylor_[i*cap_order_taylor_+0];
}
}
# endif
// create the optimized recording
CppAD::optimize::optimize_run<Base>(options, n, dep_taddr_, &play_, &rec);
// number of variables in the recording
num_var_tape_ = rec.num_var_rec();
// now replace the recording
play_.get(rec);
// set flag so this function knows it has been optimized
has_been_optimized_ = true;
// free memory allocated for sparse Jacobian calculation
// (the results are no longer valid)
for_jac_sparse_pack_.resize(0, 0);
for_jac_sparse_set_.resize(0,0);
// free old Taylor coefficient memory
taylor_.free();
num_order_taylor_ = 0;
cap_order_taylor_ = 0;
// resize and initilaize conditional skip vector
// (must use player size because it now has the recoreder information)
cskip_op_.erase();
cskip_op_.extend( play_.num_op_rec() );
# ifndef NDEBUG
if( check_zero_order )
{
// zero order forward calculation using new operation sequence
check = Forward(0, x);
// check results
Base eps = 10. * CppAD::numeric_limits<Base>::epsilon();
for(i = 0; i < m; i++) CPPAD_ASSERT_KNOWN(
abs_geq( eps * max_taylor , check[i] - y[i] ) ,
"Error during check of f.optimize()."
);
// Erase memory that this calculation was done so NDEBUG gives
// same final state for this object (from users perspective)
num_order_taylor_ = 0;
}
# endif
}
} // END_CPPAD_NAMESPACE
# endif
|