This file is indexed.

/usr/include/cppad/local/exp_op.hpp is in cppad 2016.00.00.1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
// $Id: exp_op.hpp 3757 2015-11-30 12:03:07Z bradbell $
# ifndef CPPAD_EXP_OP_HPP
# define CPPAD_EXP_OP_HPP

/* --------------------------------------------------------------------------
CppAD: C++ Algorithmic Differentiation: Copyright (C) 2003-15 Bradley M. Bell

CppAD is distributed under multiple licenses. This distribution is under
the terms of the
                    GNU General Public License Version 3.

A copy of this license is included in the COPYING file of this distribution.
Please visit http://www.coin-or.org/CppAD/ for information on other licenses.
-------------------------------------------------------------------------- */


namespace CppAD { // BEGIN_CPPAD_NAMESPACE
/*!
\file exp_op.hpp
Forward and reverse mode calculations for z = exp(x).
*/


/*!
Forward mode Taylor coefficient for result of op = ExpOp.

The C++ source code corresponding to this operation is
\verbatim
	z = exp(x)
\endverbatim

\copydetails forward_unary1_op
*/
template <class Base>
inline void forward_exp_op(
	size_t p           ,
	size_t q           ,
	size_t i_z         ,
	size_t i_x         ,
	size_t cap_order   ,
	Base*  taylor      )
{
	// check assumptions
	CPPAD_ASSERT_UNKNOWN( NumArg(ExpOp) == 1 );
	CPPAD_ASSERT_UNKNOWN( NumRes(ExpOp) == 1 );
	CPPAD_ASSERT_UNKNOWN( q < cap_order );
	CPPAD_ASSERT_UNKNOWN( p <= q );

	// Taylor coefficients corresponding to argument and result
	Base* x = taylor + i_x * cap_order;
	Base* z = taylor + i_z * cap_order;

	size_t k;
	if( p == 0 )
	{	z[0] = exp( x[0] );
		p++;
	}
	for(size_t j = p; j <= q; j++)
	{
		z[j] = x[1] * z[j-1];
		for(k = 2; k <= j; k++)
			z[j] += Base(k) * x[k] * z[j-k];
		z[j] /= Base(j);
	}
}


/*!
Multiple direction forward mode Taylor coefficient for op = ExpOp.

The C++ source code corresponding to this operation is
\verbatim
	z = exp(x)
\endverbatim

\copydetails forward_unary1_op_dir
*/
template <class Base>
inline void forward_exp_op_dir(
	size_t q           ,
	size_t r           ,
	size_t i_z         ,
	size_t i_x         ,
	size_t cap_order   ,
	Base*  taylor      )
{
	// check assumptions
	CPPAD_ASSERT_UNKNOWN( NumArg(ExpOp) == 1 );
	CPPAD_ASSERT_UNKNOWN( NumRes(ExpOp) == 1 );
	CPPAD_ASSERT_UNKNOWN( q < cap_order );
	CPPAD_ASSERT_UNKNOWN( 0 < q );

	// Taylor coefficients corresponding to argument and result
	size_t num_taylor_per_var = (cap_order-1) * r + 1;
	Base* x = taylor + i_x * num_taylor_per_var;
	Base* z = taylor + i_z * num_taylor_per_var;

	size_t m = (q-1)*r + 1;
	for(size_t ell = 0; ell < r; ell++)
	{	z[m+ell] = Base(q) * x[m+ell] * z[0];
		for(size_t k = 1; k < q; k++)
			z[m+ell] += Base(k) * x[(k-1)*r+ell+1] * z[(q-k-1)*r+ell+1];
		z[m+ell] /= Base(q);
	}
}

/*!
Zero order forward mode Taylor coefficient for result of op = ExpOp.

The C++ source code corresponding to this operation is
\verbatim
	z = exp(x)
\endverbatim

\copydetails forward_unary1_op_0
*/
template <class Base>
inline void forward_exp_op_0(
	size_t i_z         ,
	size_t i_x         ,
	size_t cap_order   ,
	Base*  taylor      )
{
	// check assumptions
	CPPAD_ASSERT_UNKNOWN( NumArg(ExpOp) == 1 );
	CPPAD_ASSERT_UNKNOWN( NumRes(ExpOp) == 1 );
	CPPAD_ASSERT_UNKNOWN( 0 < cap_order );

	// Taylor coefficients corresponding to argument and result
	Base* x = taylor + i_x * cap_order;
	Base* z = taylor + i_z * cap_order;

	z[0] = exp( x[0] );
}
/*!
Reverse mode partial derivatives for result of op = ExpOp.

The C++ source code corresponding to this operation is
\verbatim
	z = exp(x)
\endverbatim

\copydetails reverse_unary1_op
*/

template <class Base>
inline void reverse_exp_op(
	size_t      d            ,
	size_t      i_z          ,
	size_t      i_x          ,
	size_t      cap_order    ,
	const Base* taylor       ,
	size_t      nc_partial   ,
	Base*       partial      )
{
	// check assumptions
	CPPAD_ASSERT_UNKNOWN( NumArg(ExpOp) == 1 );
	CPPAD_ASSERT_UNKNOWN( NumRes(ExpOp) == 1 );
	CPPAD_ASSERT_UNKNOWN( d < cap_order );
	CPPAD_ASSERT_UNKNOWN( d < nc_partial );

	// Taylor coefficients and partials corresponding to argument
	const Base* x  = taylor  + i_x * cap_order;
	Base* px       = partial + i_x * nc_partial;

	// Taylor coefficients and partials corresponding to result
	const Base* z  = taylor  + i_z * cap_order;
	Base* pz       = partial + i_z * nc_partial;

	// If pz is zero, make sure this operation has no effect
	// (zero times infinity or nan would be non-zero).
	bool skip(true);
	for(size_t i_d = 0; i_d <= d; i_d++)
		skip &= IdenticalZero(pz[i_d]);
	if( skip )
		return;

	// loop through orders in reverse
	size_t j, k;
	j = d;
	while(j)
	{	// scale partial w.r.t z[j]
		pz[j] /= Base(j);

		for(k = 1; k <= j; k++)
		{	px[k]   += Base(k) * azmul(pz[j], z[j-k]);
			pz[j-k] += Base(k) * azmul(pz[j], x[k]);
		}
		--j;
	}
	px[0] += azmul(pz[0], z[0]);
}

} // END_CPPAD_NAMESPACE
# endif