/usr/include/cppad/local/exp_op.hpp is in cppad 2016.00.00.1-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 | // $Id: exp_op.hpp 3757 2015-11-30 12:03:07Z bradbell $
# ifndef CPPAD_EXP_OP_HPP
# define CPPAD_EXP_OP_HPP
/* --------------------------------------------------------------------------
CppAD: C++ Algorithmic Differentiation: Copyright (C) 2003-15 Bradley M. Bell
CppAD is distributed under multiple licenses. This distribution is under
the terms of the
GNU General Public License Version 3.
A copy of this license is included in the COPYING file of this distribution.
Please visit http://www.coin-or.org/CppAD/ for information on other licenses.
-------------------------------------------------------------------------- */
namespace CppAD { // BEGIN_CPPAD_NAMESPACE
/*!
\file exp_op.hpp
Forward and reverse mode calculations for z = exp(x).
*/
/*!
Forward mode Taylor coefficient for result of op = ExpOp.
The C++ source code corresponding to this operation is
\verbatim
z = exp(x)
\endverbatim
\copydetails forward_unary1_op
*/
template <class Base>
inline void forward_exp_op(
size_t p ,
size_t q ,
size_t i_z ,
size_t i_x ,
size_t cap_order ,
Base* taylor )
{
// check assumptions
CPPAD_ASSERT_UNKNOWN( NumArg(ExpOp) == 1 );
CPPAD_ASSERT_UNKNOWN( NumRes(ExpOp) == 1 );
CPPAD_ASSERT_UNKNOWN( q < cap_order );
CPPAD_ASSERT_UNKNOWN( p <= q );
// Taylor coefficients corresponding to argument and result
Base* x = taylor + i_x * cap_order;
Base* z = taylor + i_z * cap_order;
size_t k;
if( p == 0 )
{ z[0] = exp( x[0] );
p++;
}
for(size_t j = p; j <= q; j++)
{
z[j] = x[1] * z[j-1];
for(k = 2; k <= j; k++)
z[j] += Base(k) * x[k] * z[j-k];
z[j] /= Base(j);
}
}
/*!
Multiple direction forward mode Taylor coefficient for op = ExpOp.
The C++ source code corresponding to this operation is
\verbatim
z = exp(x)
\endverbatim
\copydetails forward_unary1_op_dir
*/
template <class Base>
inline void forward_exp_op_dir(
size_t q ,
size_t r ,
size_t i_z ,
size_t i_x ,
size_t cap_order ,
Base* taylor )
{
// check assumptions
CPPAD_ASSERT_UNKNOWN( NumArg(ExpOp) == 1 );
CPPAD_ASSERT_UNKNOWN( NumRes(ExpOp) == 1 );
CPPAD_ASSERT_UNKNOWN( q < cap_order );
CPPAD_ASSERT_UNKNOWN( 0 < q );
// Taylor coefficients corresponding to argument and result
size_t num_taylor_per_var = (cap_order-1) * r + 1;
Base* x = taylor + i_x * num_taylor_per_var;
Base* z = taylor + i_z * num_taylor_per_var;
size_t m = (q-1)*r + 1;
for(size_t ell = 0; ell < r; ell++)
{ z[m+ell] = Base(q) * x[m+ell] * z[0];
for(size_t k = 1; k < q; k++)
z[m+ell] += Base(k) * x[(k-1)*r+ell+1] * z[(q-k-1)*r+ell+1];
z[m+ell] /= Base(q);
}
}
/*!
Zero order forward mode Taylor coefficient for result of op = ExpOp.
The C++ source code corresponding to this operation is
\verbatim
z = exp(x)
\endverbatim
\copydetails forward_unary1_op_0
*/
template <class Base>
inline void forward_exp_op_0(
size_t i_z ,
size_t i_x ,
size_t cap_order ,
Base* taylor )
{
// check assumptions
CPPAD_ASSERT_UNKNOWN( NumArg(ExpOp) == 1 );
CPPAD_ASSERT_UNKNOWN( NumRes(ExpOp) == 1 );
CPPAD_ASSERT_UNKNOWN( 0 < cap_order );
// Taylor coefficients corresponding to argument and result
Base* x = taylor + i_x * cap_order;
Base* z = taylor + i_z * cap_order;
z[0] = exp( x[0] );
}
/*!
Reverse mode partial derivatives for result of op = ExpOp.
The C++ source code corresponding to this operation is
\verbatim
z = exp(x)
\endverbatim
\copydetails reverse_unary1_op
*/
template <class Base>
inline void reverse_exp_op(
size_t d ,
size_t i_z ,
size_t i_x ,
size_t cap_order ,
const Base* taylor ,
size_t nc_partial ,
Base* partial )
{
// check assumptions
CPPAD_ASSERT_UNKNOWN( NumArg(ExpOp) == 1 );
CPPAD_ASSERT_UNKNOWN( NumRes(ExpOp) == 1 );
CPPAD_ASSERT_UNKNOWN( d < cap_order );
CPPAD_ASSERT_UNKNOWN( d < nc_partial );
// Taylor coefficients and partials corresponding to argument
const Base* x = taylor + i_x * cap_order;
Base* px = partial + i_x * nc_partial;
// Taylor coefficients and partials corresponding to result
const Base* z = taylor + i_z * cap_order;
Base* pz = partial + i_z * nc_partial;
// If pz is zero, make sure this operation has no effect
// (zero times infinity or nan would be non-zero).
bool skip(true);
for(size_t i_d = 0; i_d <= d; i_d++)
skip &= IdenticalZero(pz[i_d]);
if( skip )
return;
// loop through orders in reverse
size_t j, k;
j = d;
while(j)
{ // scale partial w.r.t z[j]
pz[j] /= Base(j);
for(k = 1; k <= j; k++)
{ px[k] += Base(k) * azmul(pz[j], z[j-k]);
pz[j-k] += Base(k) * azmul(pz[j], x[k]);
}
--j;
}
px[0] += azmul(pz[0], z[0]);
}
} // END_CPPAD_NAMESPACE
# endif
|