This file is indexed.

/usr/include/cppad/local/cos_op.hpp is in cppad 2016.00.00.1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
// $Id: cos_op.hpp 3757 2015-11-30 12:03:07Z bradbell $
# ifndef CPPAD_COS_OP_HPP
# define CPPAD_COS_OP_HPP

/* --------------------------------------------------------------------------
CppAD: C++ Algorithmic Differentiation: Copyright (C) 2003-15 Bradley M. Bell

CppAD is distributed under multiple licenses. This distribution is under
the terms of the
                    GNU General Public License Version 3.

A copy of this license is included in the COPYING file of this distribution.
Please visit http://www.coin-or.org/CppAD/ for information on other licenses.
-------------------------------------------------------------------------- */


namespace CppAD { // BEGIN_CPPAD_NAMESPACE
/*!
\file cos_op.hpp
Forward and reverse mode calculations for z = cos(x).
*/

/*!
Compute forward mode Taylor coefficient for result of op = CosOp.

The C++ source code corresponding to this operation is
\verbatim
	z = cos(x)
\endverbatim
The auxillary result is
\verbatim
	y = sin(x)
\endverbatim
The value of y, and its derivatives, are computed along with the value
and derivatives of z.

\copydetails forward_unary2_op
*/
template <class Base>
inline void forward_cos_op(
	size_t p           ,
	size_t q           ,
	size_t i_z         ,
	size_t i_x         ,
	size_t cap_order   ,
	Base*  taylor      )
{
	// check assumptions
	CPPAD_ASSERT_UNKNOWN( NumArg(CosOp) == 1 );
	CPPAD_ASSERT_UNKNOWN( NumRes(CosOp) == 2 );
	CPPAD_ASSERT_UNKNOWN( q < cap_order );
	CPPAD_ASSERT_UNKNOWN( p <= q );

	// Taylor coefficients corresponding to argument and result
	Base* x = taylor + i_x * cap_order;
	Base* c = taylor + i_z * cap_order;
	Base* s = c      -       cap_order;


	// rest of this routine is identical for the following cases:
	// forward_sin_op, forward_cos_op, forward_sinh_op, forward_cosh_op.
	// (except that there is a sign difference for the hyperbolic case).
	size_t k;
	if( p == 0 )
	{	s[0] = sin( x[0] );
		c[0] = cos( x[0] );
		p++;
	}
	for(size_t j = p; j <= q; j++)
	{
		s[j] = Base(0);
		c[j] = Base(0);
		for(k = 1; k <= j; k++)
		{	s[j] += Base(k) * x[k] * c[j-k];
			c[j] -= Base(k) * x[k] * s[j-k];
		}
		s[j] /= Base(j);
		c[j] /= Base(j);
	}
}
/*!
Compute forward mode Taylor coefficient for result of op = CosOp.

The C++ source code corresponding to this operation is
\verbatim
	z = cos(x)
\endverbatim
The auxillary result is
\verbatim
	y = sin(x)
\endverbatim
The value of y, and its derivatives, are computed along with the value
and derivatives of z.

\copydetails forward_unary2_op_dir
*/
template <class Base>
inline void forward_cos_op_dir(
	size_t q           ,
	size_t r           ,
	size_t i_z         ,
	size_t i_x         ,
	size_t cap_order   ,
	Base*  taylor      )
{
	// check assumptions
	CPPAD_ASSERT_UNKNOWN( NumArg(CosOp) == 1 );
	CPPAD_ASSERT_UNKNOWN( NumRes(CosOp) == 2 );
	CPPAD_ASSERT_UNKNOWN( 0 < q );
	CPPAD_ASSERT_UNKNOWN( q < cap_order );

	// Taylor coefficients corresponding to argument and result
	size_t num_taylor_per_var = (cap_order-1) * r + 1;
	Base* x = taylor + i_x * num_taylor_per_var;
	Base* c = taylor + i_z * num_taylor_per_var;
	Base* s = c      -       num_taylor_per_var;


	// rest of this routine is identical for the following cases:
	// forward_sin_op, forward_cos_op, forward_sinh_op, forward_cosh_op
	// (except that there is a sign difference for the hyperbolic case).
	size_t m = (q-1) * r + 1;
	for(size_t ell = 0; ell < r; ell++)
	{	s[m+ell] =   Base(q) * x[m + ell] * c[0];
		c[m+ell] = - Base(q) * x[m + ell] * s[0];
		for(size_t k = 1; k < q; k++)
		{	s[m+ell] += Base(k) * x[(k-1)*r+1+ell] * c[(q-k-1)*r+1+ell];
			c[m+ell] -= Base(k) * x[(k-1)*r+1+ell] * s[(q-k-1)*r+1+ell];
		}
		s[m+ell] /= Base(q);
		c[m+ell] /= Base(q);
	}
}

/*!
Compute zero order forward mode Taylor coefficient for result of op = CosOp.

The C++ source code corresponding to this operation is
\verbatim
	z = cos(x)
\endverbatim
The auxillary result is
\verbatim
	y = sin(x)
\endverbatim
The value of y is computed along with the value of z.

\copydetails forward_unary2_op_0
*/
template <class Base>
inline void forward_cos_op_0(
	size_t i_z         ,
	size_t i_x         ,
	size_t cap_order   ,
	Base*  taylor      )
{
	// check assumptions
	CPPAD_ASSERT_UNKNOWN( NumArg(CosOp) == 1 );
	CPPAD_ASSERT_UNKNOWN( NumRes(CosOp) == 2 );
	CPPAD_ASSERT_UNKNOWN( 0 < cap_order );

	// Taylor coefficients corresponding to argument and result
	Base* x = taylor + i_x * cap_order;
	Base* c = taylor + i_z * cap_order;  // called z in documentation
	Base* s = c      -       cap_order;  // called y in documentation

	c[0] = cos( x[0] );
	s[0] = sin( x[0] );
}
/*!
Compute reverse mode partial derivatives for result of op = CosOp.

The C++ source code corresponding to this operation is
\verbatim
	z = cos(x)
\endverbatim
The auxillary result is
\verbatim
	y = sin(x)
\endverbatim
The value of y is computed along with the value of z.

\copydetails reverse_unary2_op
*/

template <class Base>
inline void reverse_cos_op(
	size_t      d            ,
	size_t      i_z          ,
	size_t      i_x          ,
	size_t      cap_order    ,
	const Base* taylor       ,
	size_t      nc_partial   ,
	Base*       partial      )
{
	// check assumptions
	CPPAD_ASSERT_UNKNOWN( NumArg(CosOp) == 1 );
	CPPAD_ASSERT_UNKNOWN( NumRes(CosOp) == 2 );
	CPPAD_ASSERT_UNKNOWN( d < cap_order );
	CPPAD_ASSERT_UNKNOWN( d < nc_partial );

	// Taylor coefficients and partials corresponding to argument
	const Base* x  = taylor  + i_x * cap_order;
	Base* px       = partial + i_x * nc_partial;

	// Taylor coefficients and partials corresponding to first result
	const Base* c  = taylor  + i_z * cap_order; // called z in doc
	Base* pc       = partial + i_z * nc_partial;

	// Taylor coefficients and partials corresponding to auxillary result
	const Base* s  = c  - cap_order; // called y in documentation
	Base* ps       = pc - nc_partial;


	// rest of this routine is identical for the following cases:
	// reverse_sin_op, reverse_cos_op, reverse_sinh_op, reverse_cosh_op.
	size_t j = d;
	size_t k;
	while(j)
	{
		ps[j]   /= Base(j);
		pc[j]   /= Base(j);
		for(k = 1; k <= j; k++)
		{
			px[k]   += Base(k) * azmul(ps[j], c[j-k]);
			px[k]   -= Base(k) * azmul(pc[j], s[j-k]);

			ps[j-k] -= Base(k) * azmul(pc[j], x[k]);
			pc[j-k] += Base(k) * azmul(ps[j], x[k]);

		}
		--j;
	}
	px[0] += azmul(ps[0], c[0]);
	px[0] -= azmul(pc[0], s[0]);
}

} // END_CPPAD_NAMESPACE
# endif