/usr/include/cppad/local/cos_op.hpp is in cppad 2016.00.00.1-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 | // $Id: cos_op.hpp 3757 2015-11-30 12:03:07Z bradbell $
# ifndef CPPAD_COS_OP_HPP
# define CPPAD_COS_OP_HPP
/* --------------------------------------------------------------------------
CppAD: C++ Algorithmic Differentiation: Copyright (C) 2003-15 Bradley M. Bell
CppAD is distributed under multiple licenses. This distribution is under
the terms of the
GNU General Public License Version 3.
A copy of this license is included in the COPYING file of this distribution.
Please visit http://www.coin-or.org/CppAD/ for information on other licenses.
-------------------------------------------------------------------------- */
namespace CppAD { // BEGIN_CPPAD_NAMESPACE
/*!
\file cos_op.hpp
Forward and reverse mode calculations for z = cos(x).
*/
/*!
Compute forward mode Taylor coefficient for result of op = CosOp.
The C++ source code corresponding to this operation is
\verbatim
z = cos(x)
\endverbatim
The auxillary result is
\verbatim
y = sin(x)
\endverbatim
The value of y, and its derivatives, are computed along with the value
and derivatives of z.
\copydetails forward_unary2_op
*/
template <class Base>
inline void forward_cos_op(
size_t p ,
size_t q ,
size_t i_z ,
size_t i_x ,
size_t cap_order ,
Base* taylor )
{
// check assumptions
CPPAD_ASSERT_UNKNOWN( NumArg(CosOp) == 1 );
CPPAD_ASSERT_UNKNOWN( NumRes(CosOp) == 2 );
CPPAD_ASSERT_UNKNOWN( q < cap_order );
CPPAD_ASSERT_UNKNOWN( p <= q );
// Taylor coefficients corresponding to argument and result
Base* x = taylor + i_x * cap_order;
Base* c = taylor + i_z * cap_order;
Base* s = c - cap_order;
// rest of this routine is identical for the following cases:
// forward_sin_op, forward_cos_op, forward_sinh_op, forward_cosh_op.
// (except that there is a sign difference for the hyperbolic case).
size_t k;
if( p == 0 )
{ s[0] = sin( x[0] );
c[0] = cos( x[0] );
p++;
}
for(size_t j = p; j <= q; j++)
{
s[j] = Base(0);
c[j] = Base(0);
for(k = 1; k <= j; k++)
{ s[j] += Base(k) * x[k] * c[j-k];
c[j] -= Base(k) * x[k] * s[j-k];
}
s[j] /= Base(j);
c[j] /= Base(j);
}
}
/*!
Compute forward mode Taylor coefficient for result of op = CosOp.
The C++ source code corresponding to this operation is
\verbatim
z = cos(x)
\endverbatim
The auxillary result is
\verbatim
y = sin(x)
\endverbatim
The value of y, and its derivatives, are computed along with the value
and derivatives of z.
\copydetails forward_unary2_op_dir
*/
template <class Base>
inline void forward_cos_op_dir(
size_t q ,
size_t r ,
size_t i_z ,
size_t i_x ,
size_t cap_order ,
Base* taylor )
{
// check assumptions
CPPAD_ASSERT_UNKNOWN( NumArg(CosOp) == 1 );
CPPAD_ASSERT_UNKNOWN( NumRes(CosOp) == 2 );
CPPAD_ASSERT_UNKNOWN( 0 < q );
CPPAD_ASSERT_UNKNOWN( q < cap_order );
// Taylor coefficients corresponding to argument and result
size_t num_taylor_per_var = (cap_order-1) * r + 1;
Base* x = taylor + i_x * num_taylor_per_var;
Base* c = taylor + i_z * num_taylor_per_var;
Base* s = c - num_taylor_per_var;
// rest of this routine is identical for the following cases:
// forward_sin_op, forward_cos_op, forward_sinh_op, forward_cosh_op
// (except that there is a sign difference for the hyperbolic case).
size_t m = (q-1) * r + 1;
for(size_t ell = 0; ell < r; ell++)
{ s[m+ell] = Base(q) * x[m + ell] * c[0];
c[m+ell] = - Base(q) * x[m + ell] * s[0];
for(size_t k = 1; k < q; k++)
{ s[m+ell] += Base(k) * x[(k-1)*r+1+ell] * c[(q-k-1)*r+1+ell];
c[m+ell] -= Base(k) * x[(k-1)*r+1+ell] * s[(q-k-1)*r+1+ell];
}
s[m+ell] /= Base(q);
c[m+ell] /= Base(q);
}
}
/*!
Compute zero order forward mode Taylor coefficient for result of op = CosOp.
The C++ source code corresponding to this operation is
\verbatim
z = cos(x)
\endverbatim
The auxillary result is
\verbatim
y = sin(x)
\endverbatim
The value of y is computed along with the value of z.
\copydetails forward_unary2_op_0
*/
template <class Base>
inline void forward_cos_op_0(
size_t i_z ,
size_t i_x ,
size_t cap_order ,
Base* taylor )
{
// check assumptions
CPPAD_ASSERT_UNKNOWN( NumArg(CosOp) == 1 );
CPPAD_ASSERT_UNKNOWN( NumRes(CosOp) == 2 );
CPPAD_ASSERT_UNKNOWN( 0 < cap_order );
// Taylor coefficients corresponding to argument and result
Base* x = taylor + i_x * cap_order;
Base* c = taylor + i_z * cap_order; // called z in documentation
Base* s = c - cap_order; // called y in documentation
c[0] = cos( x[0] );
s[0] = sin( x[0] );
}
/*!
Compute reverse mode partial derivatives for result of op = CosOp.
The C++ source code corresponding to this operation is
\verbatim
z = cos(x)
\endverbatim
The auxillary result is
\verbatim
y = sin(x)
\endverbatim
The value of y is computed along with the value of z.
\copydetails reverse_unary2_op
*/
template <class Base>
inline void reverse_cos_op(
size_t d ,
size_t i_z ,
size_t i_x ,
size_t cap_order ,
const Base* taylor ,
size_t nc_partial ,
Base* partial )
{
// check assumptions
CPPAD_ASSERT_UNKNOWN( NumArg(CosOp) == 1 );
CPPAD_ASSERT_UNKNOWN( NumRes(CosOp) == 2 );
CPPAD_ASSERT_UNKNOWN( d < cap_order );
CPPAD_ASSERT_UNKNOWN( d < nc_partial );
// Taylor coefficients and partials corresponding to argument
const Base* x = taylor + i_x * cap_order;
Base* px = partial + i_x * nc_partial;
// Taylor coefficients and partials corresponding to first result
const Base* c = taylor + i_z * cap_order; // called z in doc
Base* pc = partial + i_z * nc_partial;
// Taylor coefficients and partials corresponding to auxillary result
const Base* s = c - cap_order; // called y in documentation
Base* ps = pc - nc_partial;
// rest of this routine is identical for the following cases:
// reverse_sin_op, reverse_cos_op, reverse_sinh_op, reverse_cosh_op.
size_t j = d;
size_t k;
while(j)
{
ps[j] /= Base(j);
pc[j] /= Base(j);
for(k = 1; k <= j; k++)
{
px[k] += Base(k) * azmul(ps[j], c[j-k]);
px[k] -= Base(k) * azmul(pc[j], s[j-k]);
ps[j-k] -= Base(k) * azmul(pc[j], x[k]);
pc[j-k] += Base(k) * azmul(ps[j], x[k]);
}
--j;
}
px[0] += azmul(ps[0], c[0]);
px[0] -= azmul(pc[0], s[0]);
}
} // END_CPPAD_NAMESPACE
# endif
|