This file is indexed.

/usr/lib/python2.7/dist-packages/ClusterShell/RangeSet.py is in clustershell 1.7-1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
#
# Copyright CEA/DAM/DIF (2012-2015)
#  Contributor: Stephane THIELL <sthiell@stanford.edu>
#  Contributor: Aurelien DEGREMONT <aurelien.degremont@cea.fr>
#
# This file is part of the ClusterShell library.
#
# This software is governed by the CeCILL-C license under French law and
# abiding by the rules of distribution of free software.  You can  use,
# modify and/ or redistribute the software under the terms of the CeCILL-C
# license as circulated by CEA, CNRS and INRIA at the following URL
# "http://www.cecill.info".
#
# As a counterpart to the access to the source code and  rights to copy,
# modify and redistribute granted by the license, users are provided only
# with a limited warranty  and the software's author,  the holder of the
# economic rights,  and the successive licensors  have only  limited
# liability.
#
# In this respect, the user's attention is drawn to the risks associated
# with loading,  using,  modifying and/or developing or reproducing the
# software by the user in light of its specific status of free software,
# that may mean  that it is complicated to manipulate,  and  that  also
# therefore means  that it is reserved for developers  and  experienced
# professionals having in-depth computer knowledge. Users are therefore
# encouraged to load and test the software's suitability as regards their
# requirements in conditions enabling the security of their systems and/or
# data to be ensured and,  more generally, to use and operate it in the
# same conditions as regards security.
#
# The fact that you are presently reading this means that you have had
# knowledge of the CeCILL-C license and that you accept its terms.

"""
Cluster range set module.

Instances of RangeSet provide similar operations than the builtin set type,
extended to support cluster ranges-like format and stepping support ("0-8/2").
"""

from operator import mul

try:
    from itertools import product
except:
    # itertools.product : new in Python 2.6
    def product(*args, **kwds):
        """Cartesian product of input iterables."""
        pools = map(tuple, args) * kwds.get('repeat', 1)
        result = [[]]
        for pool in pools:
            result = [x+[y] for x in result for y in pool]
        for prod in result:
            yield tuple(prod)

__all__ = ['RangeSetException',
           'RangeSetParseError',
           'RangeSetPaddingError',
           'RangeSet',
           'RangeSetND',
           'AUTOSTEP_DISABLED']

# Special constant used to force turn off autostep feature.
# Note: +inf is 1E400, but a bug in python 2.4 makes it impossible to be
# pickled, so we use less. Later, we could consider sys.maxint here.
AUTOSTEP_DISABLED = 1E100


class RangeSetException(Exception):
    """Base RangeSet exception class."""

class RangeSetParseError(RangeSetException):
    """Raised when RangeSet parsing cannot be done properly."""
    def __init__(self, part, msg):
        if part:
            msg = "%s : \"%s\"" % (msg, part)
        RangeSetException.__init__(self, msg)
        # faulty subrange; this allows you to target the error
        self.part = part

class RangeSetPaddingError(RangeSetParseError):
    """Raised when a fatal padding incoherency occurs"""
    def __init__(self, part, msg):
        RangeSetParseError.__init__(self, part, "padding mismatch (%s)" % msg)


class RangeSet(set):
    """
    Mutable set of cluster node indexes featuring a fast range-based API.

    This class aims to ease the management of potentially large cluster range
    sets and is used by the :class:`.NodeSet` class.

    RangeSet basic constructors:

       >>> rset = RangeSet()            # empty RangeSet
       >>> rset = RangeSet("5,10-42")   # contains 5, 10 to 42
       >>> rset = RangeSet("0-10/2")    # contains 0, 2, 4, 6, 8, 10

    Also any iterable of integers can be specified as first argument:

       >>> RangeSet([3, 6, 8, 7, 1])
       1,3,6-8
       >>> rset2 = RangeSet(rset)

    Padding of ranges (eg. "003-009") can be managed through a public RangeSet
    instance variable named padding. It may be changed at any time. Padding is
    a simple display feature per RangeSet object, thus current padding value is
    not taken into account when computing set operations.
    RangeSet is itself an iterator over its items as integers (instead of
    strings). To iterate over string items with optional padding, you can use
    the :meth:`RangeSet.striter`: method.

    RangeSet provides methods like :meth:`RangeSet.union`,
    :meth:`RangeSet.intersection`, :meth:`RangeSet.difference`,
    :meth:`RangeSet.symmetric_difference` and their in-place versions
    :meth:`RangeSet.update`, :meth:`RangeSet.intersection_update`,
    :meth:`RangeSet.difference_update`,
    :meth:`RangeSet.symmetric_difference_update` which conform to the Python
    Set API.
    """
    _VERSION = 3    # serial version number

    # define __new__() to workaround built-in set subclassing with Python 2.4
    def __new__(cls, pattern=None, autostep=None):
        """Object constructor"""
        return set.__new__(cls)

    def __init__(self, pattern=None, autostep=None):
        """Initialize RangeSet object.

        :param pattern: optional string pattern
        :param autostep: optional autostep threshold
        """
        if pattern is None or isinstance(pattern, str):
            set.__init__(self)
        else:
            set.__init__(self, pattern)

        if isinstance(pattern, RangeSet):
            self._autostep = pattern._autostep
            self.padding = pattern.padding
        else:
            self._autostep = None
            self.padding = None
        self.autostep = autostep #: autostep threshold public instance attribute

        if isinstance(pattern, str):
            self._parse(pattern)

    def _parse(self, pattern):
        """Parse string of comma-separated x-y/step -like ranges"""
        # Comma separated ranges
        if pattern.find(',') < 0:
            subranges = [pattern]
        else:
            subranges = pattern.split(',')

        for subrange in subranges:
            if subrange.find('/') < 0:
                step = 1
                baserange = subrange
            else:
                baserange, step = subrange.split('/', 1)

            try:
                step = int(step)
            except ValueError:
                raise RangeSetParseError(subrange,
                        "cannot convert string to integer")

            if baserange.find('-') < 0:
                if step != 1:
                    raise RangeSetParseError(subrange,
                            "invalid step usage")
                begin = end = baserange
            else:
                begin, end = baserange.split('-', 1)

            # compute padding and return node range info tuple
            try:
                pad = 0
                if int(begin) != 0:
                    begins = begin.lstrip("0")
                    if len(begin) - len(begins) > 0:
                        pad = len(begin)
                    start = int(begins)
                else:
                    if len(begin) > 1:
                        pad = len(begin)
                    start = 0
                if int(end) != 0:
                    ends = end.lstrip("0")
                else:
                    ends = end
                stop = int(ends)
            except ValueError:
                raise RangeSetParseError(subrange,
                        "cannot convert string to integer")

            # check preconditions
            if stop > 1e100 or start > stop or step < 1:
                raise RangeSetParseError(subrange,
                                         "invalid values in range")

            self.add_range(start, stop + 1, step, pad)

    @classmethod
    def fromlist(cls, rnglist, autostep=None):
        """Class method that returns a new RangeSet with ranges from provided
        list."""
        inst = RangeSet(autostep=autostep)
        inst.updaten(rnglist)
        return inst

    @classmethod
    def fromone(cls, index, pad=0, autostep=None):
        """Class method that returns a new RangeSet of one single item or
        a single range (from integer or slice object)."""
        inst = RangeSet(autostep=autostep)
        # support slice object with duck-typing
        try:
            inst.add(index, pad)
        except TypeError:
            if not index.stop:
                raise ValueError("Invalid range upper limit (%s)" % index.stop)
            inst.add_range(index.start or 0, index.stop, index.step or 1, pad)
        return inst

    def get_autostep(self):
        """Get autostep value (property)"""
        if self._autostep >= AUTOSTEP_DISABLED:
            return None
        else:
            # +1 as user wants node count but it means real steps here
            return self._autostep + 1

    def set_autostep(self, val):
        """Set autostep value (property)"""
        if val is None:
            # disabled by default for compat with other cluster tools
            self._autostep = AUTOSTEP_DISABLED
        else:
            # - 1 because user means node count, but we mean real steps
            # (this operation has no effect on AUTOSTEP_DISABLED value)
            self._autostep = int(val) - 1

    autostep = property(get_autostep, set_autostep)

    def dim(self):
        """Get the number of dimensions of this RangeSet object. Common
        method with RangeSetND.  Here, it will always return 1 unless
        the object is empty, in that case it will return 0."""
        return int(len(self) > 0)

    def _sorted(self):
        """Get sorted list from inner set."""
        return sorted(set.__iter__(self))

    def __iter__(self):
        """Iterate over each element in RangeSet."""
        return iter(self._sorted())

    def striter(self):
        """Iterate over each (optionally padded) string element in RangeSet."""
        pad = self.padding or 0
        for i in self._sorted():
            yield "%0*d" % (pad, i)

    def contiguous(self):
        """Object-based iterator over contiguous range sets."""
        pad = self.padding or 0
        for sli in self._contiguous_slices():
            yield RangeSet.fromone(slice(sli.start, sli.stop, sli.step), pad)

    def __reduce__(self):
        """Return state information for pickling."""
        return self.__class__, (str(self),), \
            { 'padding': self.padding, \
              '_autostep': self._autostep, \
              '_version' : RangeSet._VERSION }

    def __setstate__(self, dic):
        """called upon unpickling"""
        self.__dict__.update(dic)
        if getattr(self, '_version', 0) < RangeSet._VERSION:
            # unpickle from old version?
            if getattr(self, '_version', 0) <= 1:
                # v1 (no object versioning) - CSv1.3
                setattr(self, '_ranges', [(slice(start, stop + 1, step), pad) \
                    for start, stop, step, pad in getattr(self, '_ranges')])
            elif hasattr(self, '_ranges'):
                # v2 - CSv1.4-1.5
                self_ranges = getattr(self, '_ranges')
                if self_ranges and type(self_ranges[0][0]) is not slice:
                    # workaround for object pickled from Python < 2.5
                    setattr(self, '_ranges', [(slice(start, stop, step), pad) \
                        for (start, stop, step), pad in self_ranges])
            # convert to v3
            for sli, pad in getattr(self, '_ranges'):
                self.add_range(sli.start, sli.stop, sli.step, pad)
            delattr(self, '_ranges')
            delattr(self, '_length')

    def _strslices(self):
        """Stringify slices list (x-y/step format)"""
        pad = self.padding or 0
        for sli in self.slices():
            if sli.start + 1 == sli.stop:
                yield "%0*d" % (pad, sli.start)
            else:
                assert sli.step >= 0, "Internal error: sli.step < 0"
                if sli.step == 1:
                    yield "%0*d-%0*d" % (pad, sli.start, pad, sli.stop - 1)
                else:
                    yield "%0*d-%0*d/%d" % (pad, sli.start, pad, sli.stop - 1, \
                                            sli.step)

    def __str__(self):
        """Get comma-separated range-based string (x-y/step format)."""
        return ','.join(self._strslices())

    # __repr__ is the same as __str__ as it is a valid expression that
    # could be used to recreate a RangeSet with the same value
    __repr__ = __str__

    def _contiguous_slices(self):
        """Internal iterator over contiguous slices in RangeSet."""
        k = j = None
        for i in self._sorted():
            if k is None:
                k = j = i
            if i - j > 1:
                yield slice(k, j + 1, 1)
                k = i
            j = i
        if k is not None:
            yield slice(k, j + 1, 1)

    def _folded_slices(self):
        """Internal generator that is able to retrieve ranges organized by
        step."""
        if len(self) == 0:
            return

        prng = None         # pending range
        istart = None       # processing starting indice
        step = 0            # processing step
        for sli in self._contiguous_slices():
            start = sli.start
            stop = sli.stop
            unitary = (start + 1 == stop)   # one indice?
            if istart is None:  # first loop
                if unitary:
                    istart = start
                else:
                    prng = [start, stop, 1]
                    istart = stop - 1
                i = k = istart
            elif step == 0:        # istart is set but step is unknown
                if not unitary:
                    if prng is not None:
                        # yield and replace pending range
                        yield slice(*prng)
                    else:
                        yield slice(istart, istart + 1, 1)
                    prng = [start, stop, 1]
                    istart = k = stop - 1
                    continue
                i = start
            else:               # step > 0
                assert step > 0
                i = start
                # does current range lead to broken step?
                if step != i - k or not unitary:
                    #Python2.6+: j = i if step == i - k else k
                    if step == i - k:
                        j = i
                    else:
                        j = k
                    # stepped is True when autostep setting does apply
                    stepped = (j - istart >= self._autostep * step)
                    if prng:    # yield pending range?
                        if stepped:
                            prng[1] -= 1
                        else:
                            istart += step
                        yield slice(*prng)
                        prng = None
                if step != i - k:
                    # case: step value has changed
                    if stepped:
                        yield slice(istart, k + 1, step)
                    else:
                        for j in range(istart, k - step + 1, step):
                            yield slice(j, j + 1, 1)
                        if not unitary:
                            yield slice(k, k + 1, 1)
                    if unitary:
                        if stepped:
                            istart = i = k = start
                        else:
                            istart = k
                    else:
                        prng = [start, stop, 1]
                        istart = i = k = stop - 1
                elif not unitary:
                    # case: broken step by contiguous range
                    if stepped:
                        # yield 'range/step' by taking first indice of new range
                        yield slice(istart, i + 1, step)
                        i += 1
                    else:
                        # autostep setting does not apply in that case
                        for j in range(istart, i - step + 1, step):
                            yield slice(j, j + 1, 1)
                    if stop > i + 1:    # current->pending only if not unitary
                        prng = [i, stop, 1]
                    istart = i = k = stop - 1
            step = i - k
            k = i
        # exited loop, process pending range or indice...
        if step == 0:
            if prng:
                yield slice(*prng)
            else:
                yield slice(istart, istart + 1, 1)
        else:
            assert step > 0
            stepped = (k - istart >= self._autostep * step)
            if prng:
                if stepped:
                    prng[1] -= 1
                else:
                    istart += step
                yield slice(*prng)
                prng = None
            if stepped:
                yield slice(istart, i + 1, step)
            else:
                for j in range(istart, i + 1, step):
                    yield slice(j, j + 1, 1)

    def slices(self):
        """
        Iterate over RangeSet ranges as Python slice objects.
        """
        # return an iterator
        if self._autostep >= AUTOSTEP_DISABLED:
            # autostep disabled: call simpler method to return only a:b slices
            return self._contiguous_slices()
        else:
            # autostep enabled: call generic method to return a:b:step slices
            return self._folded_slices()

    def __getitem__(self, index):
        """
        Return the element at index or a subrange when a slice is specified.
        """
        if isinstance(index, slice):
            inst = RangeSet()
            inst._autostep = self._autostep
            inst.padding = self.padding
            inst.update(self._sorted()[index])
            return inst
        elif isinstance(index, int):
            return self._sorted()[index]
        else:
            raise TypeError, \
                "%s indices must be integers" % self.__class__.__name__

    def split(self, nbr):
        """
        Split the rangeset into nbr sub-rangesets (at most). Each
        sub-rangeset will have the same number of elements more or
        less 1. Current rangeset remains unmodified. Returns an
        iterator.

        >>> RangeSet("1-5").split(3) 
        RangeSet("1-2")
        RangeSet("3-4")
        RangeSet("foo5")
        """
        assert(nbr > 0)

        # We put the same number of element in each sub-nodeset.
        slice_size = len(self) / nbr
        left = len(self) % nbr

        begin = 0
        for i in range(0, min(nbr, len(self))):
            length = slice_size + int(i < left)
            yield self[begin:begin + length]
            begin += length

    def add_range(self, start, stop, step=1, pad=0):
        """
        Add a range (start, stop, step and padding length) to RangeSet.
        Like the Python built-in function *range()*, the last element
        is the largest start + i * step less than stop.
        """
        assert start < stop, "please provide ordered node index ranges"
        assert step > 0
        assert pad >= 0
        assert stop - start < 1e9, "range too large"

        if pad > 0 and self.padding is None:
            self.padding = pad
        set.update(self, range(start, stop, step))

    def copy(self):
        """Return a shallow copy of a RangeSet."""
        cpy = self.__class__()
        cpy._autostep = self._autostep
        cpy.padding = self.padding
        cpy.update(self)
        return cpy

    __copy__ = copy # For the copy module

    def __eq__(self, other):
        """
        RangeSet equality comparison.
        """
        # Return NotImplemented instead of raising TypeError, to
        # indicate that the comparison is not implemented with respect
        # to the other type (the other comparand then gets a change to
        # determine the result, then it falls back to object address
        # comparison).
        if not isinstance(other, RangeSet):
            return NotImplemented
        return len(self) == len(other) and self.issubset(other)

    # Standard set operations: union, intersection, both differences.
    # Each has an operator version (e.g. __or__, invoked with |) and a
    # method version (e.g. union).
    # Subtle:  Each pair requires distinct code so that the outcome is
    # correct when the type of other isn't suitable.  For example, if
    # we did "union = __or__" instead, then Set().union(3) would return
    # NotImplemented instead of raising TypeError (albeit that *why* it
    # raises TypeError as-is is also a bit subtle).

    def _wrap_set_op(self, fun, arg):
        """Wrap built-in set operations for RangeSet to workaround built-in set
        base class issues (RangeSet.__new/init__ not called)"""
        result = fun(self, arg)
        result._autostep = self._autostep
        result.padding = self.padding
        return result

    def __or__(self, other):
        """Return the union of two RangeSets as a new RangeSet.

        (I.e. all elements that are in either set.)
        """
        if not isinstance(other, set):
            return NotImplemented
        return self.union(other)

    def union(self, other):
        """Return the union of two RangeSets as a new RangeSet.

        (I.e. all elements that are in either set.)
        """
        return self._wrap_set_op(set.union, other)

    def __and__(self, other):
        """Return the intersection of two RangeSets as a new RangeSet.

        (I.e. all elements that are in both sets.)
        """
        if not isinstance(other, set):
            return NotImplemented
        return self.intersection(other)

    def intersection(self, other):
        """Return the intersection of two RangeSets as a new RangeSet.

        (I.e. all elements that are in both sets.)
        """
        return self._wrap_set_op(set.intersection, other)

    def __xor__(self, other):
        """Return the symmetric difference of two RangeSets as a new RangeSet.

        (I.e. all elements that are in exactly one of the sets.)
        """
        if not isinstance(other, set):
            return NotImplemented
        return self.symmetric_difference(other)

    def symmetric_difference(self, other):
        """Return the symmetric difference of two RangeSets as a new RangeSet.
        
        (ie. all elements that are in exactly one of the sets.)
        """
        return self._wrap_set_op(set.symmetric_difference, other)

    def __sub__(self, other):
        """Return the difference of two RangeSets as a new RangeSet.

        (I.e. all elements that are in this set and not in the other.)
        """
        if not isinstance(other, set):
            return NotImplemented
        return self.difference(other)

    def difference(self, other):
        """Return the difference of two RangeSets as a new RangeSet.

        (I.e. all elements that are in this set and not in the other.)
        """
        return self._wrap_set_op(set.difference, other)

    # Membership test

    def __contains__(self, element):
        """Report whether an element is a member of a RangeSet.
        Element can be either another RangeSet object, a string or an
        integer.

        Called in response to the expression ``element in self``.
        """
        if isinstance(element, set):
            return element.issubset(self)

        return set.__contains__(self, int(element))

    # Subset and superset test

    def issubset(self, other):
        """Report whether another set contains this RangeSet."""
        self._binary_sanity_check(other)
        return set.issubset(self, other)

    def issuperset(self, other):
        """Report whether this RangeSet contains another set."""
        self._binary_sanity_check(other)
        return set.issuperset(self, other)

    # Inequality comparisons using the is-subset relation.
    __le__ = issubset
    __ge__ = issuperset

    def __lt__(self, other):
        self._binary_sanity_check(other)
        return len(self) < len(other) and self.issubset(other)

    def __gt__(self, other):
        self._binary_sanity_check(other)
        return len(self) > len(other) and self.issuperset(other)

    # Assorted helpers

    def _binary_sanity_check(self, other):
        """Check that the other argument to a binary operation is also  a set,
        raising a TypeError otherwise."""
        if not isinstance(other, set):
            raise TypeError, "Binary operation only permitted between sets"

    # In-place union, intersection, differences.
    # Subtle:  The xyz_update() functions deliberately return None,
    # as do all mutating operations on built-in container types.
    # The __xyz__ spellings have to return self, though.
    
    def __ior__(self, other):
        """Update a RangeSet with the union of itself and another."""
        self._binary_sanity_check(other)
        set.__ior__(self, other)
        return self

    def union_update(self, other):
        """Update a RangeSet with the union of itself and another."""
        self.update(other)

    def __iand__(self, other):
        """Update a RangeSet with the intersection of itself and another."""
        self._binary_sanity_check(other)
        set.__iand__(self, other)
        return self

    def intersection_update(self, other):
        """Update a RangeSet with the intersection of itself and another."""
        set.intersection_update(self, other)

    def __ixor__(self, other):
        """Update a RangeSet with the symmetric difference of itself and
        another."""
        self._binary_sanity_check(other)
        set.symmetric_difference_update(self, other)
        return self

    def symmetric_difference_update(self, other):
        """Update a RangeSet with the symmetric difference of itself and
        another."""
        set.symmetric_difference_update(self, other)
        
    def __isub__(self, other):
        """Remove all elements of another set from this RangeSet."""
        self._binary_sanity_check(other)
        set.difference_update(self, other)
        return self

    def difference_update(self, other, strict=False):
        """Remove all elements of another set from this RangeSet.
        
        If strict is True, raise KeyError if an element cannot be removed.
        (strict is a RangeSet addition)"""
        if strict and other not in self:
            raise KeyError(other.difference(self)[0])
        set.difference_update(self, other)

    # Python dict-like mass mutations: update, clear

    def update(self, iterable):
        """Add all integers from an iterable (such as a list)."""
        if isinstance(iterable, RangeSet):
            # keep padding unless it has not been defined yet
            if self.padding is None and iterable.padding is not None:
                self.padding = iterable.padding
        assert type(iterable) is not str
        set.update(self, iterable)

    def updaten(self, rangesets):
        """
        Update a rangeset with the union of itself and several others.
        """
        for rng in rangesets:
            if isinstance(rng, set):
                self.update(rng)
            else:
                self.update(RangeSet(rng))
            # py2.5+
            #self.update(rng if isinstance(rng, set) else RangeSet(rng))

    def clear(self):
        """Remove all elements from this RangeSet."""
        set.clear(self)
        self.padding = None

    # Single-element mutations: add, remove, discard

    def add(self, element, pad=0):
        """Add an element to a RangeSet.
        This has no effect if the element is already present.
        """
        set.add(self, int(element))
        if pad > 0 and self.padding is None:
            self.padding = pad

    def remove(self, element):
        """Remove an element from a RangeSet; it must be a member.

        :param element: the element to remove
        :raises KeyError: element is not contained in RangeSet
        :raises ValueError: element is not castable to integer
        """
        set.remove(self, int(element))

    def discard(self, element):
        """Remove element from the RangeSet if it is a member.

        If the element is not a member, do nothing.
        """
        try:
            i = int(element)
            set.discard(self, i)
        except ValueError:
            pass # ignore other object types


class RangeSetND(object):
    """
    Build a N-dimensional RangeSet object.

    .. warning:: You don't usually need to use this class directly, use
        :class:`.NodeSet` instead that has ND support.

    Empty constructor::

        RangeSetND()

    Build from a list of list of :class:`RangeSet` objects::

        RangeSetND([[rs1, rs2, rs3, ...], ...])

    Strings are also supported::

        RangeSetND([["0-3", "4-10", ...], ...])

    Integers are also supported::

        RangeSetND([(0, 4), (0, 5), (1, 4), (1, 5), ...]
    """
    def __init__(self, args=None, pads=None, autostep=None, copy_rangeset=True):
        """RangeSetND initializer

        All parameters are optional.

        :param args: generic "list of list" input argument (default is None)
        :param pads: list of 0-padding length (default is to not pad any
                     dimensions)
        :param autostep: autostep threshold (use range/step notation if more
                         than #autostep items meet the condition) - default is
                         off (None)
        :param copy_rangeset: (advanced) if set to False, do not copy RangeSet
                              objects from args (transfer ownership), which is
                              faster. In that case, you should not modify these
                              objects afterwards (default is True).
        """
        # RangeSetND are arranged as a list of N-dimensional RangeSet vectors
        self._veclist = []
        # Dirty flag to avoid doing veclist folding too often
        self._dirty = True
        # Initialize autostep through property
        self._autostep = None
        self.autostep = autostep #: autostep threshold public instance attribute
        # Hint on whether several dimensions are varying or not
        self._multivar_hint = False
        if args is None:
            return
        for rgvec in args:
            if rgvec:
                if type(rgvec[0]) is str:
                    self._veclist.append([RangeSet(rg, autostep=autostep) \
                                          for rg in rgvec])
                elif isinstance(rgvec[0], RangeSet):
                    if copy_rangeset:
                        self._veclist.append([rg.copy() for rg in rgvec])
                    else:
                        self._veclist.append(rgvec)
                else:
                    if pads is None:
                        self._veclist.append( \
                            [RangeSet.fromone(rg, autostep=autostep) \
                                for rg in rgvec])
                    else:
                        self._veclist.append( \
                            [RangeSet.fromone(rg, pad, autostep) \
                                for rg, pad in zip(rgvec, pads)])

    class precond_fold(object):
        """Decorator to ease internal folding management"""
        def __call__(self, func):
            def inner(*args, **kwargs):
                rgnd, fargs = args[0], args[1:]
                if rgnd._dirty:
                    rgnd._fold()
                return func(rgnd, *fargs, **kwargs)
            # modify the decorator meta-data for pydoc
            # Note: should be later replaced  by @wraps (functools)
            # as of Python 2.5
            inner.__name__ = func.__name__
            inner.__doc__ = func.__doc__
            inner.__dict__ = func.__dict__
            inner.__module__ = func.__module__
            return inner

    @precond_fold()
    def copy(self):
        """Return a new, mutable shallow copy of a RangeSetND."""
        cpy = self.__class__()
        # Shallow "to the extent possible" says the copy module, so here that
        # means calling copy() on each sub-RangeSet to keep mutability.
        cpy._veclist = [[rg.copy() for rg in rgvec] for rgvec in self._veclist]
        cpy._dirty = self._dirty
        return cpy

    __copy__ = copy # For the copy module

    def __eq__(self, other):
        """RangeSetND equality comparison."""
        # Return NotImplemented instead of raising TypeError, to
        # indicate that the comparison is not implemented with respect
        # to the other type (the other comparand then gets a change to
        # determine the result, then it falls back to object address
        # comparison).
        if not isinstance(other, RangeSetND):
            return NotImplemented
        return len(self) == len(other) and self.issubset(other)

    def __nonzero__(self):
        return bool(self._veclist)

    def __len__(self):
        """Count unique elements in N-dimensional rangeset."""
        return sum([reduce(mul, [len(rg) for rg in rgvec]) \
                                 for rgvec in self.veclist])

    @precond_fold()
    def __str__(self):
        """String representation of N-dimensional RangeSet."""
        result = ""
        for rgvec in self._veclist:
            result += "; ".join([str(rg) for rg in rgvec])
            result += "\n"
        return result

    @precond_fold()
    def __iter__(self):
        return self._iter()

    def _iter(self):
        """Iterate through individual items as tuples."""
        for vec in self._veclist:
            for ivec in product(*vec):
                yield ivec

    @precond_fold()
    def iter_padding(self):
        """Iterate through individual items as tuples with padding info."""
        for vec in self._veclist:
            for ivec in product(*vec):
                yield ivec, [rg.padding for rg in vec]

    @precond_fold()
    def _get_veclist(self):
        """Get folded veclist"""
        return self._veclist

    def _set_veclist(self, val):
        """Set veclist and set dirty flag for deferred folding."""
        self._veclist = val
        self._dirty = True

    veclist = property(_get_veclist, _set_veclist)

    def vectors(self):
        """Get underlying :class:`RangeSet` vectors"""
        return iter(self.veclist)

    def dim(self):
        """Get the current number of dimensions of this RangeSetND
        object.  Return 0 when object is empty."""
        try:
            return len(self._veclist[0])
        except IndexError:
            return 0

    def pads(self):
        """Get a tuple of padding length info for each dimension."""
        try:
            return tuple(rg.padding for rg in self._veclist[0])
        except IndexError:
            return ()

    def get_autostep(self):
        """Get autostep value (property)"""
        if self._autostep >= AUTOSTEP_DISABLED:
            return None
        else:
            # +1 as user wants node count but _autostep means real steps here
            return self._autostep + 1

    def set_autostep(self, val):
        """Set autostep value (property)"""
        # Must conform to RangeSet.autostep logic
        if val is None:
            self._autostep = AUTOSTEP_DISABLED
        else:
            # Like in RangeSet.set_autostep(): -1 because user means node count,
            # but we mean real steps (this operation has no effect on
            # AUTOSTEP_DISABLED value)
            self._autostep = int(val) - 1

        # Update our RangeSet objects
        for rgvec in self._veclist:
            for rg in rgvec:
                rg._autostep = self._autostep

    autostep = property(get_autostep, set_autostep)

    @precond_fold()
    def __getitem__(self, index):
        """
        Return the element at index or a subrange when a slice is specified.
        """
        if isinstance(index, slice):
            iveclist = []
            for rgvec in self._veclist:
                iveclist += product(*rgvec)
            assert(len(iveclist) == len(self))
            rnd = RangeSetND(iveclist[index],
                             pads=[rg.padding for rg in self._veclist[0]],
                             autostep=self.autostep)
            return rnd

        elif isinstance(index, int):
            # find a tuple of integer (multi-dimensional) at position index
            if index < 0:
                length = len(self)
                if index >= -length:
                    index = length + index
                else:
                    raise IndexError, "%d out of range" % index
            length = 0
            for rgvec in self._veclist:
                cnt = reduce(mul, [len(rg) for rg in rgvec])
                if length + cnt < index:
                    length += cnt
                else:
                    for ivec in product(*rgvec):
                        if index == length:
                            return ivec
                        length += 1
            raise IndexError, "%d out of range" % index
        else:
            raise TypeError, \
                "%s indices must be integers" % self.__class__.__name__

    @precond_fold()
    def contiguous(self):
        """Object-based iterator over contiguous range sets."""
        veclist = self._veclist
        try:
            dim = len(veclist[0])
        except IndexError:
            return
        for dimidx in range(dim):
            new_veclist = []
            for rgvec in veclist:
                for rgsli in rgvec[dimidx].contiguous():
                    rgvec = list(rgvec)
                    rgvec[dimidx] = rgsli
                    new_veclist.append(rgvec)
            veclist = new_veclist
        for rgvec in veclist:
            yield RangeSetND([rgvec])

    # Membership test

    @precond_fold()
    def __contains__(self, element):
        """Report whether an element is a member of a RangeSetND.
        Element can be either another RangeSetND object, a string or
        an integer.

        Called in response to the expression ``element in self``.
        """
        if isinstance(element, RangeSetND):
            rgnd_element = element
        else:
            rgnd_element = RangeSetND([[str(element)]])
        return rgnd_element.issubset(self)

    # Subset and superset test

    def issubset(self, other):
        """Report whether another set contains this RangeSetND."""
        self._binary_sanity_check(other)
        return other.issuperset(self)

    @precond_fold()
    def issuperset(self, other):
        """Report whether this RangeSetND contains another RangeSetND."""
        self._binary_sanity_check(other)
        if self.dim() == 1 and other.dim() == 1:
            return self._veclist[0][0].issuperset(other._veclist[0][0])
        if not other._veclist:
            return True
        test = other.copy()
        test.difference_update(self)
        return not bool(test)

    # Inequality comparisons using the is-subset relation.
    __le__ = issubset
    __ge__ = issuperset

    def __lt__(self, other):
        self._binary_sanity_check(other)
        return len(self) < len(other) and self.issubset(other)

    def __gt__(self, other):
        self._binary_sanity_check(other)
        return len(self) > len(other) and self.issuperset(other)

    # Assorted helpers

    def _binary_sanity_check(self, other):
        """Check that the other argument to a binary operation is also a
        RangeSetND, raising a TypeError otherwise."""
        if not isinstance(other, RangeSetND):
            raise TypeError, \
                "Binary operation only permitted between RangeSetND"

    def _sort(self):
        """N-dimensional sorting."""
        def rgveckeyfunc(rgvec):
            # key used for sorting purposes, based on the following
            # conditions:
            #   (1) larger vector first (#elements)
            #   (2) larger dim first  (#elements)
            #   (3) lower first index first
            #   (4) lower last index first
            return (-reduce(mul, [len(rg) for rg in rgvec]), \
                    tuple((-len(rg), rg[0], rg[-1]) for rg in rgvec))
        self._veclist.sort(key=rgveckeyfunc)

    @precond_fold()
    def fold(self):
        """Explicit folding call. Please note that folding of RangeSetND
        nD vectors are automatically managed, so you should not have to
        call this method. It may be still useful in some extreme cases
        where the RangeSetND is heavily modified."""
        pass

    def _fold(self):
        """In-place N-dimensional folding."""
        assert self._dirty
        if len(self._veclist) > 1:
            self._fold_univariate() or self._fold_multivariate()
        else:
            self._dirty = False

    def _fold_univariate(self):
        """Univariate nD folding. Return True on success and False when
        a multivariate folding is required."""
        dim = self.dim()
        vardim = dimdiff = 0
        if dim > 1:
            # We got more than one dimension, see if only one is changing...
            for i in range(dim):
                # Are all rangesets on this dimension the same?
                slist = [vec[i] for vec in self._veclist]
                if slist.count(slist[0]) != len(slist):
                    dimdiff += 1
                    if dimdiff > 1:
                        break
                    vardim = i
        univar = (dim == 1 or dimdiff == 1)
        if univar:
            # Eligible for univariate folding (faster!)
            for vec in self._veclist[1:]:
                self._veclist[0][vardim].update(vec[vardim])
            del self._veclist[1:]
            self._dirty = False
        self._multivar_hint = not univar
        return univar

    def _fold_multivariate(self):
        """Multivariate nD folding"""
        # PHASE 1: expand with respect to uniqueness
        self._fold_multivariate_expand()
        self._sort()
        # PHASE 2: merge
        self._fold_multivariate_merge()
        self._sort()
        self._dirty = False

    def _fold_multivariate_expand(self):
        """Multivariate nD folding: expand [phase 1]"""
        max_length = sum([reduce(mul, [len(rg) for rg in rgvec]) \
                                       for rgvec in self._veclist])
        # Simple heuristic that makes us faster
        if len(self._veclist) * (len(self._veclist) - 1) / 2 > max_length * 10:
            # *** nD full expand is preferred ***
            self._veclist = [[RangeSet.fromone(i) for i in tvec] \
                             for tvec in set(self._iter())]
            return

        # *** nD compare algorithm is preferred ***
        index1, index2 = 0, 1
        while (index1 + 1) < len(self._veclist):
            # use 2 references on iterator to compare items by couples
            item1 = self._veclist[index1]
            index2 = index1 + 1
            index1 += 1
            while index2 < len(self._veclist):
                item2 = self._veclist[index2]
                index2 += 1
                new_item = None
                disjoint = False
                suppl = []
                for pos, (rg1, rg2) in enumerate(zip(item1, item2)):
                    if not rg1 & rg2:
                        disjoint = True
                        break

                    if new_item is None:
                        new_item = [None] * len(item1)

                    if rg1 == rg2:
                        new_item[pos] = rg1
                    else:
                        assert rg1 & rg2
                        # intersection
                        new_item[pos] = rg1 & rg2
                        # create part 1
                        if rg1 - rg2:
                            item1_p = item1[0:pos] + [rg1 - rg2] + item1[pos+1:]
                            suppl.append(item1_p)
                        # create part 2
                        if rg2 - rg1:
                            item2_p = item2[0:pos] + [rg2 - rg1] + item2[pos+1:]
                            suppl.append(item2_p)
                if not disjoint:
                    assert new_item is not None
                    assert suppl is not None
                    item1 = self._veclist[index1 - 1] = new_item
                    index2 -= 1
                    self._veclist.pop(index2)
                    self._veclist += suppl

    def _fold_multivariate_merge(self):
        """Multivariate nD folding: merge [phase 2]"""
        chg = True
        while chg:
            chg = False
            index1, index2 = 0, 1
            while (index1 + 1) < len(self._veclist):
                # use 2 references on iterator to compare items by couples
                item1 = self._veclist[index1]
                index2 = index1 + 1
                index1 += 1
                while index2 < len(self._veclist):
                    item2 = self._veclist[index2]
                    index2 += 1
                    new_item = [None] * len(item1)
                    nb_diff = 0
                    # compare 2 rangeset vector, item by item, the idea being
                    # to merge vectors if they differ only by one item
                    for pos, (rg1, rg2) in enumerate(zip(item1, item2)):
                        if rg1 == rg2:
                            new_item[pos] = rg1
                        elif not rg1 & rg2: # merge on disjoint ranges
                            nb_diff += 1
                            if nb_diff > 1:
                                break
                            new_item[pos] = rg1 | rg2
                        # if fully contained, keep the largest one
                        elif (rg1 > rg2 or rg1 < rg2): # and nb_diff == 0:
                            nb_diff += 1
                            if nb_diff > 1:
                                break
                            new_item[pos] = max(rg1, rg2)
                        # otherwise, compute rangeset intersection and
                        # keep the two disjoint part to be handled
                        # later...
                        else:
                            # intersection but do nothing
                            nb_diff = 2
                            break
                    # one change has been done: use this new item to compare
                    # with other
                    if nb_diff <= 1:
                        chg = True
                        item1 = self._veclist[index1 - 1] = new_item
                        index2 -= 1
                        self._veclist.pop(index2)

    def __or__(self, other):
        """Return the union of two RangeSetNDs as a new RangeSetND.

        (I.e. all elements that are in either set.)
        """
        if not isinstance(other, RangeSetND):
            return NotImplemented
        return self.union(other)

    def union(self, other):
        """Return the union of two RangeSetNDs as a new RangeSetND.

        (I.e. all elements that are in either set.)
        """
        rgnd_copy = self.copy()
        rgnd_copy.update(other)
        return rgnd_copy

    def update(self, other):
        """Add all RangeSetND elements to this RangeSetND."""
        if isinstance(other, RangeSetND):
            iterable = other._veclist
        else:
            iterable = other
        for vec in iterable:
            # copy rangesets and set custom autostep
            assert isinstance(vec[0], RangeSet)
            cpyvec = []
            for rg in vec:
                cpyrg = rg.copy()
                cpyrg.autostep = self.autostep
                cpyvec.append(cpyrg)
            self._veclist.append(cpyvec)
        self._dirty = True
        if not self._multivar_hint:
            self._fold_univariate()

    union_update = update

    def __ior__(self, other):
        """Update a RangeSetND with the union of itself and another."""
        self._binary_sanity_check(other)
        self.update(other)
        return self

    def __isub__(self, other):
        """Remove all elements of another set from this RangeSetND."""
        self._binary_sanity_check(other)
        self.difference_update(other)
        return self

    def difference_update(self, other, strict=False):
        """Remove all elements of another set from this RangeSetND.

        If strict is True, raise KeyError if an element cannot be removed
        (strict is a RangeSet addition)"""
        if strict and not other in self:
            raise KeyError(other.difference(self)[0])

        ergvx = other._veclist # read only
        rgnd_new = []
        index1 = 0
        while index1 < len(self._veclist):
            rgvec1 = self._veclist[index1]
            procvx1 = [ rgvec1 ]
            nextvx1 = []
            index2 = 0
            while index2 < len(ergvx):
                rgvec2 = ergvx[index2]
                while len(procvx1) > 0: # refine diff for each resulting vector
                    rgproc1 = procvx1.pop(0)
                    tmpvx = []
                    for pos, (rg1, rg2) in enumerate(zip(rgproc1, rgvec2)):
                        if rg1 == rg2 or rg1 < rg2: # issubset
                            pass
                        elif rg1 & rg2:             # intersect
                            tmpvec = list(rgproc1)
                            tmpvec[pos] = rg1.difference(rg2)
                            tmpvx.append(tmpvec)
                        else:                       # disjoint
                            tmpvx = [ rgproc1 ]     # reset previous work
                            break
                    if tmpvx:
                        nextvx1 += tmpvx
                if nextvx1:
                    procvx1 = nextvx1
                    nextvx1 = []
                index2 += 1
            if procvx1:
                rgnd_new += procvx1
            index1 += 1
        self.veclist = rgnd_new

    def __sub__(self, other):
        """Return the difference of two RangeSetNDs as a new RangeSetND.

        (I.e. all elements that are in this set and not in the other.)
        """
        if not isinstance(other, RangeSetND):
            return NotImplemented
        return self.difference(other)

    def difference(self, other):
        """
        ``s.difference(t)`` returns a new object with elements in s
        but not in t.
        """
        self_copy = self.copy()
        self_copy.difference_update(other)
        return self_copy

    def intersection(self, other):
        """
        ``s.intersection(t)`` returns a new object with elements common
        to s and t.
        """
        self_copy = self.copy()
        self_copy.intersection_update(other)
        return self_copy

    def __and__(self, other):
        """
        Implements the & operator. So ``s & t`` returns a new object
        with elements common to s and t.
        """
        if not isinstance(other, RangeSetND):
            return NotImplemented
        return self.intersection(other)

    def intersection_update(self, other):
        """
        ``s.intersection_update(t)`` returns nodeset s keeping only
        elements also found in t.
        """
        if other is self:
            return

        tmp_rnd = RangeSetND()

        empty_rset = RangeSet()

        for rgvec in self._veclist:
            for ergvec in other._veclist:
                irgvec = [rg.intersection(erg) \
                            for rg, erg in zip(rgvec, ergvec)]
                if not empty_rset in irgvec:
                    tmp_rnd.update([irgvec])
        # substitute
        self.veclist = tmp_rnd.veclist

    def __iand__(self, other):
        """
        Implements the &= operator. So ``s &= t`` returns object s
        keeping only elements also found in t (Python 2.5+ required).
        """
        self._binary_sanity_check(other)
        self.intersection_update(other)
        return self

    def symmetric_difference(self, other):
        """
        ``s.symmetric_difference(t)`` returns the symmetric difference
        of two objects as a new RangeSetND.

        (ie. all items that are in exactly one of the RangeSetND.)
        """
        self_copy = self.copy()
        self_copy.symmetric_difference_update(other)
        return self_copy

    def __xor__(self, other):
        """
        Implement the ^ operator. So ``s ^ t`` returns a new RangeSetND
        with nodes that are in exactly one of the RangeSetND.
        """
        if not isinstance(other, RangeSetND):
            return NotImplemented
        return self.symmetric_difference(other)

    def symmetric_difference_update(self, other):
        """
        ``s.symmetric_difference_update(t)`` returns RangeSetND s
        keeping all nodes that are in exactly one of the objects.
        """
        diff2 = other.difference(self)
        self.difference_update(other)
        self.update(diff2)

    def __ixor__(self, other):
        """
        Implement the ^= operator. So ``s ^= t`` returns object s after
        keeping all items that are in exactly one of the RangeSetND
        (Python 2.5+ required).
        """
        self._binary_sanity_check(other)
        self.symmetric_difference_update(other)
        return self