This file is indexed.

/usr/lib/python2.7/dist-packages/ClusterShell/NodeSet.py-XD2.py is in clustershell 1.7-1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
#
# Copyright CEA/DAM/DIF (2007-2015)
#  Contributor: Stephane THIELL <stephane.thiell@cea.fr>
#  Contributor: Aurelien DEGREMONT <aurelien.degremont@cea.fr>
#
# This file is part of the ClusterShell library.
#
# This software is governed by the CeCILL-C license under French law and
# abiding by the rules of distribution of free software.  You can  use,
# modify and/ or redistribute the software under the terms of the CeCILL-C
# license as circulated by CEA, CNRS and INRIA at the following URL
# "http://www.cecill.info".
#
# As a counterpart to the access to the source code and  rights to copy,
# modify and redistribute granted by the license, users are provided only
# with a limited warranty  and the software's author,  the holder of the
# economic rights,  and the successive licensors  have only  limited
# liability.
#
# In this respect, the user's attention is drawn to the risks associated
# with loading,  using,  modifying and/or developing or reproducing the
# software by the user in light of its specific status of free software,
# that may mean  that it is complicated to manipulate,  and  that  also
# therefore means  that it is reserved for developers  and  experienced
# professionals having in-depth computer knowledge. Users are therefore
# encouraged to load and test the software's suitability as regards their
# requirements in conditions enabling the security of their systems and/or
# data to be ensured and,  more generally, to use and operate it in the
# same conditions as regards security.
#
# The fact that you are presently reading this means that you have had
# knowledge of the CeCILL-C license and that you accept its terms.

"""
Cluster node set module.

A module to efficiently deal with node sets and node groups.
Instances of NodeSet provide similar operations than the builtin set() type,
see http://www.python.org/doc/lib/set-objects.html

Usage example
=============
  >>> # Import NodeSet class
  ... from ClusterShell.NodeSet import NodeSet
  >>>
  >>> # Create a new nodeset from string
  ... nodeset = NodeSet("cluster[1-30]")
  >>> # Add cluster32 to nodeset
  ... nodeset.update("cluster32")
  >>> # Remove from nodeset
  ... nodeset.difference_update("cluster[2-5,8-31]")
  >>> # Print nodeset as a pdsh-like pattern
  ... print nodeset
  cluster[1,6-7,32]
  >>> # Iterate over node names in nodeset
  ... for node in nodeset:
  ...     print node
  cluster1
  cluster6
  cluster7
  cluster32
"""

import re
import sys

import ClusterShell.NodeUtils as NodeUtils

# Import all RangeSet module public objects
from ClusterShell.RangeSet import RangeSet, RangeSetND, AUTOSTEP_DISABLED
from ClusterShell.RangeSet import RangeSetException, RangeSetParseError
from ClusterShell.RangeSet import RangeSetPaddingError


# Define default GroupResolver object used by NodeSet
DEF_GROUPS_CONFIG = "/etc/clustershell/groups.conf"
ILLEGAL_GROUP_CHARS = set("@,!&^*")
_DEF_RESOLVER_STD_GROUP = NodeUtils.GroupResolverConfig(DEF_GROUPS_CONFIG, \
                                                        ILLEGAL_GROUP_CHARS)
# Standard group resolver
RESOLVER_STD_GROUP = _DEF_RESOLVER_STD_GROUP
# Special constants for NodeSet's resolver parameter
#   RESOLVER_NOGROUP => avoid any group resolution at all
#   RESOLVER_NOINIT  => reserved use for optimized copy()
RESOLVER_NOGROUP = -1
RESOLVER_NOINIT  = -2
# 1.5 compat (deprecated)
STD_GROUP_RESOLVER = RESOLVER_STD_GROUP
NOGROUP_RESOLVER = RESOLVER_NOGROUP


class NodeSetException(Exception):
    """Base NodeSet exception class."""

class NodeSetError(NodeSetException):
    """Raised when an error is encountered."""

class NodeSetParseError(NodeSetError):
    """Raised when NodeSet parsing cannot be done properly."""
    def __init__(self, part, msg):
        if part:
            msg = "%s : \"%s\"" % (msg, part)
        NodeSetError.__init__(self, msg)
        # faulty part; this allows you to target the error
        self.part = part

class NodeSetParseRangeError(NodeSetParseError):
    """Raised when bad range is encountered during NodeSet parsing."""
    def __init__(self, rset_exc):
        NodeSetParseError.__init__(self, str(rset_exc), "bad range")

class NodeSetExternalError(NodeSetError):
    """Raised when an external error is encountered."""


class NodeSetBase(object):
    """
    Base class for NodeSet.

    This class allows node set base object creation from specified string
    pattern and rangeset object.  If optional copy_rangeset boolean flag is
    set to True (default), provided rangeset object is copied (if needed),
    otherwise it may be referenced (should be seen as an ownership transfer
    upon creation).

    This class implements core node set arithmetics (no string parsing here).

    Example:
       >>> nsb = NodeSetBase('node%s-ipmi', RangeSet('1-5,7'), False)
       >>> str(nsb)
       'node[1-5,7]-ipmi'
       >>> nsb = NodeSetBase('node%s-ib%s', RangeSetND([['1-5,7', '1-2']]), False)
       >>> str(nsb)
       'node[1-5,7]-ib[1-2]'
    """
    def __init__(self, pattern=None, rangeset=None, copy_rangeset=True,
                 autostep=None):
        """New NodeSetBase object initializer"""
        self.fold_axis = None
        self._autostep = autostep
        self._length = 0
        self._patterns = {}
        if pattern:
            self._add(pattern, rangeset, copy_rangeset)
        elif rangeset:
            raise ValueError("missing pattern")

    def get_autostep(self):
        """Get autostep value (property)"""
        return self._autostep

    def set_autostep(self, val):
        """Set autostep value (property)"""
        if val is None:
            self._autostep = None
        else:
            # Work around the pickling issue of sys.maxint (+inf) in py2.4
            self._autostep = min(int(val), AUTOSTEP_DISABLED)

        # Update our RangeSet/RangeSetND objects
        for pat, rset in self._patterns.iteritems():
            if rset:
                rset.autostep = self._autostep

    autostep = property(get_autostep, set_autostep)

    def _iter(self):
        """Iterator on internal item tuples
            (pattern, indexes, padding, autostep)."""
        for pat, rset in sorted(self._patterns.iteritems()):
            if rset:
                autostep = rset.autostep
                if rset.dim() == 1:
                    assert isinstance(rset, RangeSet)
                    padding = rset.padding
                    for idx in rset:
                        yield pat, (idx,), (padding,), autostep
                else:
                    for args, padding in rset.iter_padding():
                        yield pat, args, padding, autostep
            else:
                yield pat, None, None, None

    def _iterbase(self):
        """Iterator on single, one-item NodeSetBase objects."""
        for pat, ivec, pad, autostep in self._iter():
            rset = None     # 'no node index' by default
            if ivec is not None:
                assert len(ivec) > 0
                if len(ivec) == 1:
                    rset = RangeSet.fromone(ivec[0], pad[0] or 0, autostep)
                else:
                    rset = RangeSetND([ivec], pad, autostep)
            yield NodeSetBase(pat, rset)

    def __iter__(self):
        """Iterator on single nodes as string."""
        # Does not call self._iterbase() + str() for better performance.
        for pat, ivec, pads, _ in self._iter():
            if ivec is not None:
                # For performance reasons, add a special case for 1D RangeSet
                if len(ivec) == 1:
                    yield pat % ("%0*d" % (pads[0] or 0, ivec[0]))
                else:
                    yield pat % tuple(["%0*d" % (pad or 0, i) \
                                      for pad, i in zip(pads, ivec)])
            else:
                yield pat % ()

    # define striter() alias for convenience (to match RangeSet.striter())
    striter = __iter__

    # define nsiter() as an object-based iterator that could be used for
    # __iter__() in the future...

    def nsiter(self):
        """Object-based NodeSet iterator on single nodes."""
        for pat, ivec, pad, autostep in self._iter():
            nodeset = self.__class__()
            if ivec is not None:
                if len(ivec) == 1:
                    nodeset._add_new(pat, \
                                     RangeSet.fromone(ivec[0], pad[0] or 0))
                else:
                    nodeset._add_new(pat, RangeSetND([ivec], None, autostep))
            else:
                nodeset._add_new(pat, None)
            yield nodeset

    def contiguous(self):
        """Object-based NodeSet iterator on contiguous node sets.

        Contiguous node set contains nodes with same pattern name and a
        contiguous range of indexes, like foobar[1-100]."""
        for pat, rangeset in sorted(self._patterns.iteritems()):
            if rangeset:
                for cont_rset in rangeset.contiguous():
                    nodeset = self.__class__()
                    nodeset._add_new(pat, cont_rset)
                    yield nodeset
            else:
                nodeset = self.__class__()
                nodeset._add_new(pat, None)
                yield nodeset

    def __len__(self):
        """Get the number of nodes in NodeSet."""
        cnt = 0
        for rangeset in self._patterns.itervalues():
            if rangeset:
                cnt += len(rangeset)
            else:
                cnt += 1
        return cnt

    def __str__(self):
        """Get ranges-based pattern of node list."""
        results = []
        try:
            for pat, rset in sorted(self._patterns.iteritems()):
                if not rset:
                    results.append(pat % ())
                elif rset.dim() == 1:
                    rgs = str(rset)
                    cnt = len(rset)
                    if cnt > 1:
                        rgs = "[%s]" % rgs
                    results.append(pat % rgs)
                elif rset.dim() > 1:
                    if self.fold_axis is not None:
                        try:
                            # user provided fold axis list
                            fold_axis = list(self.fold_axis)
                        except TypeError:
                            # user provided fold axis max count
                            max_dim = min(int(self.fold_axis), rset.dim())

                            # the following codeblock finds the best n fold axis ...

                            # create a matrix of rangeset length to select best axes
                            lenmat = [[len(rg) for rg in rgvec] for rgvec in rset.vectors()]
                            # sum columns
                            colsumvec = [sum(colitem) for colitem in zip(*lenmat)]
                            # get max_dim most used axes
                            # NOTE: could use heapq.nlargest() with py2.5+
                            fold_axis = sorted(range(len(colsumvec)),
                                               key=lambda k: colsumvec[k],
                                               reverse=True)[0:max_dim]

                    # cast NodeSet to string...
                    for rgvec in rset.vectors():

                        #print "rgvec", rgvec

                        rgnargs = []
                        i = 0
                        for rangeset in rgvec:

                            expand = self.fold_axis is not None and i not in fold_axis

                            i += 1
                            #print "i=%d" % i

                            cnt = len(rangeset)
                            if cnt > 1:
                                #print "cnt > 1"
                                if expand:
                                    new_rgnargs = []
                                    #print "expand"
                                    for idx in rangeset.striter():
                                        if rgnargs:
                                            for rga in rgnargs:
                                                new_rgnargs.append(rga + [idx])
                                        else:
                                            new_rgnargs.append([idx])
                                else:
                                    new_rgnargs = []
                                    if rgnargs:
                                        for rga in rgnargs:
                                            new_rgnargs.append(rga + ["[%s]" % rangeset])
                                    else:
                                        new_rgnargs.append(["[%s]" % rangeset])
                            else:
                                #print "cnt == 1"
                                new_rgnargs = []
                                if rgnargs:
                                    for rga in rgnargs:
                                        new_rgnargs.append(rga + [str(rangeset)])
                                else:
                                    new_rgnargs.append([str(rangeset)])
                            rgnargs = list(new_rgnargs)
                            #print "rgnargs", rgnargs
                        for rgargs in rgnargs:
                            #print "append", rgargs
                            results.append(pat % tuple(rgargs))
                        #print "results", results
        except TypeError:
            raise
            raise NodeSetParseError(pat, "Internal error: " \
                                         "node pattern and ranges mismatch")
        return ",".join(results)

    def copy(self):
        """Return a shallow copy."""
        cpy = self.__class__()
        cpy._autostep = self._autostep
        cpy._length = self._length
        dic = {}
        for pat, rangeset in self._patterns.iteritems():
            if rangeset is None:
                dic[pat] = None
            else:
                dic[pat] = rangeset.copy()
        cpy._patterns = dic
        return cpy

    def __contains__(self, other):
        """Is node contained in NodeSet ?"""
        return self.issuperset(other)

    def _binary_sanity_check(self, other):
        # check that the other argument to a binary operation is also
        # a NodeSet, raising a TypeError otherwise.
        if not isinstance(other, NodeSetBase):
            raise TypeError, \
                "Binary operation only permitted between NodeSetBase"

    def issubset(self, other):
        """Report whether another nodeset contains this nodeset."""
        self._binary_sanity_check(other)
        return other.issuperset(self)

    def issuperset(self, other):
        """Report whether this nodeset contains another nodeset."""
        self._binary_sanity_check(other)
        status = True
        for pat, erangeset in other._patterns.iteritems():
            rangeset = self._patterns.get(pat)
            if rangeset:
                status = rangeset.issuperset(erangeset)
            else:
                # might be an unnumbered node (key in dict but no value)
                status = self._patterns.has_key(pat)
            if not status:
                break
        return status

    def __eq__(self, other):
        """NodeSet equality comparison."""
        # See comment for for RangeSet.__eq__()
        if not isinstance(other, NodeSetBase):
            return NotImplemented
        return len(self) == len(other) and self.issuperset(other)

    # inequality comparisons using the is-subset relation
    __le__ = issubset
    __ge__ = issuperset

    def __lt__(self, other):
        """x.__lt__(y) <==> x<y"""
        self._binary_sanity_check(other)
        return len(self) < len(other) and self.issubset(other)

    def __gt__(self, other):
        """x.__gt__(y) <==> x>y"""
        self._binary_sanity_check(other)
        return len(self) > len(other) and self.issuperset(other)

    def _extractslice(self, index):
        """Private utility function: extract slice parameters from slice object
        `index` for an list-like object of size `length`."""
        length = len(self)
        if index.start is None:
            sl_start = 0
        elif index.start < 0:
            sl_start = max(0, length + index.start)
        else:
            sl_start = index.start
        if index.stop is None:
            sl_stop = sys.maxint
        elif index.stop < 0:
            sl_stop = max(0, length + index.stop)
        else:
            sl_stop = index.stop
        if index.step is None:
            sl_step = 1
        elif index.step < 0:
            # We support negative step slicing with no start/stop, ie. r[::-n].
            if index.start is not None or index.stop is not None:
                raise IndexError, \
                    "illegal start and stop when negative step is used"
            # As RangeSet elements are ordered internally, adjust sl_start
            # to fake backward stepping in case of negative slice step.
            stepmod = (length + -index.step - 1) % -index.step
            if stepmod > 0:
                sl_start += stepmod
            sl_step = -index.step
        else:
            sl_step = index.step
        if not isinstance(sl_start, int) or not isinstance(sl_stop, int) \
            or not isinstance(sl_step, int):
            raise TypeError, "slice indices must be integers"
        return sl_start, sl_stop, sl_step

    def __getitem__(self, index):
        """Return the node at specified index or a subnodeset when a slice is
        specified."""
        if isinstance(index, slice):
            inst = NodeSetBase()
            sl_start, sl_stop, sl_step = self._extractslice(index)
            sl_next = sl_start
            if sl_stop <= sl_next:
                return inst
            length = 0
            for pat, rangeset in sorted(self._patterns.iteritems()):
                if rangeset:
                    cnt = len(rangeset)
                    offset = sl_next - length
                    if offset < cnt:
                        num = min(sl_stop - sl_next, cnt - offset)
                        inst._add(pat, rangeset[offset:offset + num:sl_step])
                    else:
                        #skip until sl_next is reached
                        length += cnt
                        continue
                else:
                    cnt = num = 1
                    if sl_next > length:
                        length += cnt
                        continue
                    inst._add(pat, None)
                # adjust sl_next...
                sl_next += num
                if (sl_next - sl_start) % sl_step:
                    sl_next = sl_start + \
                        ((sl_next - sl_start)/sl_step + 1) * sl_step
                if sl_next >= sl_stop:
                    break
                length += cnt
            return inst
        elif isinstance(index, int):
            if index < 0:
                length = len(self)
                if index >= -length:
                    index = length + index # - -index
                else:
                    raise IndexError, "%d out of range" % index
            length = 0
            for pat, rangeset in sorted(self._patterns.iteritems()):
                if rangeset:
                    cnt = len(rangeset)
                    if index < length + cnt:
                        # return a subrangeset of size 1 to manage padding
                        if rangeset.dim() == 1:
                            return pat % rangeset[index-length:index-length+1]
                        else:
                            sub = rangeset[index-length:index-length+1]
                            for rgvec in sub.vectors():
                                return pat % (tuple(rgvec))
                else:
                    cnt = 1
                    if index == length:
                        return pat
                length += cnt
            raise IndexError, "%d out of range" % index
        else:
            raise TypeError, "NodeSet indices must be integers"

    def _add_new(self, pat, rangeset):
        """Add nodes from a (pat, rangeset) tuple.
        Predicate: pattern does not exist in current set. RangeSet object is
        referenced (not copied)."""
        assert pat not in self._patterns
        self._patterns[pat] = rangeset

    def _add(self, pat, rangeset, copy_rangeset=True):
        """Add nodes from a (pat, rangeset) tuple.
        `pat' may be an existing pattern and `rangeset' may be None.
        RangeSet or RangeSetND objects are copied if re-used internally
        when provided and if copy_rangeset flag is set.
        """
        if pat in self._patterns:
            # existing pattern: get RangeSet or RangeSetND entry...
            pat_e = self._patterns[pat]
            # sanity checks
            if (pat_e is None) is not (rangeset is None):
                raise NodeSetError("Invalid operation")
            # entry may exist but set to None (single node)
            if pat_e:
                pat_e.update(rangeset)
        else:
            # new pattern...
            if rangeset and copy_rangeset:
                # default is to inherit rangeset autostep value
                rangeset = rangeset.copy()
                # but if set, self._autostep does override it
                if self._autostep is not None:
                    # works with rangeset 1D or nD
                    rangeset.autostep = self._autostep
            self._add_new(pat, rangeset)

    def union(self, other):
        """
        s.union(t) returns a new set with elements from both s and t.
        """
        self_copy = self.copy()
        self_copy.update(other)
        return self_copy

    def __or__(self, other):
        """
        Implements the | operator. So s | t returns a new nodeset with
        elements from both s and t.
        """
        if not isinstance(other, NodeSetBase):
            return NotImplemented
        return self.union(other)

    def add(self, other):
        """
        Add node to NodeSet.
        """
        self.update(other)

    def update(self, other):
        """
        s.update(t) returns nodeset s with elements added from t.
        """
        for pat, rangeset in other._patterns.iteritems():
            self._add(pat, rangeset)

    def updaten(self, others):
        """
        s.updaten(list) returns nodeset s with elements added from given list.
        """
        for other in others:
            self.update(other)

    def clear(self):
        """
        Remove all nodes from this nodeset.
        """
        self._patterns.clear()

    def __ior__(self, other):
        """
        Implements the |= operator. So s |= t returns nodeset s with
        elements added from t. (Python version 2.5+ required)
        """
        self._binary_sanity_check(other)
        self.update(other)
        return self

    def intersection(self, other):
        """
        s.intersection(t) returns a new set with elements common to s
        and t.
        """
        self_copy = self.copy()
        self_copy.intersection_update(other)
        return self_copy

    def __and__(self, other):
        """
        Implements the & operator. So s & t returns a new nodeset with
        elements common to s and t.
        """
        if not isinstance(other, NodeSet):
            return NotImplemented
        return self.intersection(other)

    def intersection_update(self, other):
        """
        s.intersection_update(t) returns nodeset s keeping only
        elements also found in t.
        """
        if other is self:
            return

        tmp_ns = NodeSetBase()

        for pat, irangeset in other._patterns.iteritems():
            rangeset = self._patterns.get(pat)
            if rangeset:
                irset = rangeset.intersection(irangeset)
                # ignore pattern if empty rangeset
                if len(irset) > 0:
                    tmp_ns._add(pat, irset, copy_rangeset=False)
            elif not irangeset and pat in self._patterns:
                # intersect two nodes with no rangeset
                tmp_ns._add(pat, None)

        # Substitute
        self._patterns = tmp_ns._patterns

    def __iand__(self, other):
        """
        Implements the &= operator. So s &= t returns nodeset s keeping
        only elements also found in t. (Python version 2.5+ required)
        """
        self._binary_sanity_check(other)
        self.intersection_update(other)
        return self

    def difference(self, other):
        """
        s.difference(t) returns a new NodeSet with elements in s but not
        in t.
        """
        self_copy = self.copy()
        self_copy.difference_update(other)
        return self_copy

    def __sub__(self, other):
        """
        Implement the - operator. So s - t returns a new nodeset with
        elements in s but not in t.
        """
        if not isinstance(other, NodeSetBase):
            return NotImplemented
        return self.difference(other)

    def difference_update(self, other, strict=False):
        """
        s.difference_update(t) returns nodeset s after removing
        elements found in t. If strict is True, raise KeyError
        if an element cannot be removed.
        """
        # the purge of each empty pattern is done afterward to allow self = ns
        purge_patterns = []

        # iterate first over exclude nodeset rangesets which is usually smaller
        for pat, erangeset in other._patterns.iteritems():
            # if pattern is found, deal with it
            rangeset = self._patterns.get(pat)
            if rangeset:
                # sub rangeset, raise KeyError if not found
                rangeset.difference_update(erangeset, strict)

                # check if no range left and add pattern to purge list
                if len(rangeset) == 0:
                    purge_patterns.append(pat)
            else:
                # unnumbered node exclusion
                if self._patterns.has_key(pat):
                    purge_patterns.append(pat)
                elif strict:
                    raise KeyError, pat

        for pat in purge_patterns:
            del self._patterns[pat]

    def __isub__(self, other):
        """
        Implement the -= operator. So s -= t returns nodeset s after
        removing elements found in t. (Python version 2.5+ required)
        """
        self._binary_sanity_check(other)
        self.difference_update(other)
        return self

    def remove(self, elem):
        """
        Remove element elem from the nodeset. Raise KeyError if elem
        is not contained in the nodeset.
        """
        self.difference_update(elem, True)

    def symmetric_difference(self, other):
        """
        s.symmetric_difference(t) returns the symmetric difference of
        two nodesets as a new NodeSet.

        (ie. all nodes that are in exactly one of the nodesets.)
        """
        self_copy = self.copy()
        self_copy.symmetric_difference_update(other)
        return self_copy

    def __xor__(self, other):
        """
        Implement the ^ operator. So s ^ t returns a new NodeSet with
        nodes that are in exactly one of the nodesets.
        """
        if not isinstance(other, NodeSet):
            return NotImplemented
        return self.symmetric_difference(other)

    def symmetric_difference_update(self, other):
        """
        s.symmetric_difference_update(t) returns nodeset s keeping all
        nodes that are in exactly one of the nodesets.
        """
        purge_patterns = []

        # iterate over our rangesets
        for pat, rangeset in self._patterns.iteritems():
            brangeset = other._patterns.get(pat)
            if brangeset:
                rangeset.symmetric_difference_update(brangeset)
            else:
                if other._patterns.has_key(pat):
                    purge_patterns.append(pat)

        # iterate over other's rangesets
        for pat, brangeset in other._patterns.iteritems():
            rangeset = self._patterns.get(pat)
            if not rangeset and not pat in self._patterns:
                self._add(pat, brangeset)

        # check for patterns cleanup
        for pat, rangeset in self._patterns.iteritems():
            if rangeset is not None and len(rangeset) == 0:
                purge_patterns.append(pat)

        # cleanup
        for pat in purge_patterns:
            del self._patterns[pat]

    def __ixor__(self, other):
        """
        Implement the ^= operator. So s ^= t returns nodeset s after
        keeping all nodes that are in exactly one of the nodesets.
        (Python version 2.5+ required)
        """
        self._binary_sanity_check(other)
        self.symmetric_difference_update(other)
        return self


class ParsingEngine(object):
    """
    Class that is able to transform a source into a NodeSetBase.
    """
    OP_CODES = { 'update': ',',
                 'difference_update': '!',
                 'intersection_update': '&',
                 'symmetric_difference_update': '^' }

    BRACKET_OPEN = '['
    BRACKET_CLOSE = ']'

    def __init__(self, group_resolver):
        """
        Initialize Parsing Engine.
        """
        self.group_resolver = group_resolver
        self.base_node_re = re.compile("(\D*)(\d*)")

    def parse(self, nsobj, autostep):
        """
        Parse provided object if possible and return a NodeSetBase object.
        """
        # passing None is supported
        if nsobj is None:
            return NodeSetBase()

        # is nsobj a NodeSetBase instance?
        if isinstance(nsobj, NodeSetBase):
            return nsobj

        # or is nsobj a string?
        if type(nsobj) is str:
            try:
                return self.parse_string(str(nsobj), autostep)
            except (NodeUtils.GroupSourceQueryFailed, RuntimeError), exc:
                raise NodeSetParseError(nsobj, str(exc))

        raise TypeError("Unsupported NodeSet input %s" % type(nsobj))

    def parse_string(self, nsstr, autostep, namespace=None):
        """Parse provided string in optional namespace.

        This method parses string, resolves all node groups, and
        computes set operations.

        Return a NodeSetBase object.
        """
        nodeset = NodeSetBase()

        for opc, pat, rgnd in self._scan_string(nsstr, autostep):
            # Parser main debugging:
            #print "OPC %s PAT %s RANGESETS %s" % (opc, pat, rgnd)
            if self.group_resolver and pat[0] == '@':
                ns_group = NodeSetBase()
                for nodegroup in NodeSetBase(pat, rgnd):
                    # parse/expand nodes group: get group string and namespace
                    ns_str_ext, ns_nsp_ext = self.parse_group_string(nodegroup,
                                                                     namespace)
                    if ns_str_ext: # may still contain groups
                        # recursively parse and aggregate result
                        ns_group.update(self.parse_string(ns_str_ext,
                                                          autostep,
                                                          ns_nsp_ext))
                # perform operation
                getattr(nodeset, opc)(ns_group)
            else:
                getattr(nodeset, opc)(NodeSetBase(pat, rgnd, False))

        return nodeset

    def parse_string_single(self, nsstr, autostep):
        """Parse provided string and return a NodeSetBase object."""
        # ignore node boundary whitespace(s)
        pat, rangesets = self._scan_string_single(nsstr.strip(), autostep)
        if len(rangesets) > 1:
            rgobj = RangeSetND([rangesets], None, autostep, copy_rangeset=False)
        elif len(rangesets) == 1:
            rgobj = rangesets[0]
        else: # non-indexed nodename
            rgobj = None
        return NodeSetBase(pat, rgobj, False)

    def parse_group(self, group, namespace=None, autostep=None):
        """Parse provided single group name (without @ prefix)."""
        assert self.group_resolver is not None
        nodestr = self.group_resolver.group_nodes(group, namespace)
        return self.parse(",".join(nodestr), autostep)

    def parse_group_string(self, nodegroup, namespace=None):
        """Parse provided raw nodegroup string in optional namespace.

        Warning: 1 pass only, may still return groups.

        Return a tuple (grp_resolved_string, namespace).
        """
        assert nodegroup[0] == '@'
        assert self.group_resolver is not None
        grpstr = group = nodegroup[1:]
        if grpstr.find(':') >= 0:
            # specified namespace does always override
            namespace, group = grpstr.split(':', 1)
        if group == '*': # @* or @source:* magic
            reslist = self.all_nodes(namespace)
        else:
            reslist = self.group_resolver.group_nodes(group, namespace)
        return ','.join(reslist), namespace

    def grouplist(self, namespace=None):
        """Return a sorted list of groups from current resolver (in optional
        group source / namespace)."""
        grpset = NodeSetBase()
        for grpstr in self.group_resolver.grouplist(namespace):
            # We scan each group string to expand any range seen...
            for opc, pat, rgnd in self._scan_string(grpstr, None):
                getattr(grpset, opc)(NodeSetBase(pat, rgnd, False))
        return list(grpset)

    def all_nodes(self, namespace=None):
        """Get all nodes from group resolver as a list of strings."""
        # namespace is the optional group source
        assert self.group_resolver is not None
        all = []
        try:
            # Ask resolver to provide all nodes.
            all = self.group_resolver.all_nodes(namespace)
        except NodeUtils.GroupSourceNoUpcall:
            try:
                # As the resolver is not able to provide all nodes directly,
                # failback to list + map(s) method:
                for grp in self.grouplist(namespace):
                    all += self.group_resolver.group_nodes(grp, namespace)
            except NodeUtils.GroupSourceNoUpcall:
                # We are not able to find "all" nodes, definitely.
                raise NodeSetExternalError("Not enough working external " \
                    "calls (all, or map + list) defined to get all nodes")
        except NodeUtils.GroupSourceQueryFailed, exc:
            raise NodeSetExternalError("Unable to get all nodes due to the " \
                "following external failure:\n\t%s" % exc)
        return all

    def _next_op(self, pat):
        """Opcode parsing subroutine."""
        op_idx = -1
        next_op_code = None
        for opc, idx in [(k, pat.find(v)) \
                            for k, v in ParsingEngine.OP_CODES.iteritems()]:
            if idx >= 0 and (op_idx < 0 or idx <= op_idx):
                next_op_code = opc
                op_idx = idx
        return op_idx, next_op_code

    def _scan_string_single(self, nsstr, autostep):
        """Single node scan, returns (pat, list of rangesets)"""
        if len(nsstr) == 0:
            raise NodeSetParseError(nsstr, "empty node name")

        # single node parsing
        pfx_nd = [mobj.groups() for mobj in self.base_node_re.finditer(nsstr)]
        pfx_nd = pfx_nd[:-1]
        if not pfx_nd:
            raise NodeSetParseError(nsstr, "parse error")

        # pfx+sfx cannot be empty
        if len(pfx_nd) == 1 and len(pfx_nd[0][0]) == 0:
            raise NodeSetParseError(nsstr, "empty node name")

        pat = ""
        rangesets = []
        for pfx, idx in pfx_nd:
            if idx:
                # optimization: process single index padding directly
                pad = 0
                if int(idx) != 0:
                    idxs = idx.lstrip("0")
                    if len(idx) - len(idxs) > 0:
                        pad = len(idx)
                    idxint = int(idxs)
                else:
                    if len(idx) > 1:
                        pad = len(idx)
                    idxint = 0
                if idxint > 1e100:
                    raise NodeSetParseRangeError( \
                        RangeSetParseError(idx, "invalid rangeset index"))
                # optimization: use numerical RangeSet constructor
                pat += "%s%%s" % pfx
                rangesets.append(RangeSet.fromone(idxint, pad, autostep))
            else:
                # undefined pad means no node index
                pat += pfx
        return pat, rangesets

    def _scan_string(self, nsstr, autostep):
        """Parsing engine's string scanner method (iterator)."""
        pat = nsstr.strip()
        # avoid misformatting
        if pat.find('%') >= 0:
            pat = pat.replace('%', '%%')
        next_op_code = 'update'
        while pat is not None:
            # Ignore whitespace(s) for convenience
            pat = pat.lstrip()

            rsets = []
            op_code = next_op_code

            op_idx, next_op_code = self._next_op(pat)
            bracket_idx = pat.find(self.BRACKET_OPEN)

            # Check if the operator is after the bracket, or if there
            # is no operator at all but some brackets.
            if bracket_idx >= 0 and (op_idx > bracket_idx or op_idx < 0):
                # In this case, we have a pattern of potentially several
                # nodes.
                # Fill prefix, range and suffix from pattern
                # eg. "forbin[3,4-10]-ilo" -> "forbin", "3,4-10", "-ilo"
                newpat = ""
                sfx = pat
                while bracket_idx >= 0 and (op_idx > bracket_idx or op_idx < 0):
                    pfx, sfx = sfx.split(self.BRACKET_OPEN, 1)
                    try:
                        rng, sfx = sfx.split(self.BRACKET_CLOSE, 1)
                    except ValueError:
                        raise NodeSetParseError(pat, "missing bracket")

                    # illegal closing bracket checks
                    if pfx.find(self.BRACKET_CLOSE) > -1:
                        raise NodeSetParseError(pfx, "illegal closing bracket")

                    if len(sfx) > 0:
                        bra_end = sfx.find(self.BRACKET_CLOSE)
                        bra_start = sfx.find(self.BRACKET_OPEN)
                        if bra_start == -1:
                            bra_start = bra_end + 1
                        if bra_end >= 0 and bra_end < bra_start:
                            raise NodeSetParseError(sfx, \
                                                    "illegal closing bracket")
                    pfxlen = len(pfx)

                    # pfx + sfx cannot be empty
                    if pfxlen + len(sfx) == 0:
                        raise NodeSetParseError(pat, "empty node name")

                    # but pfx itself can
                    if pfxlen > 0:
                        if pfx[-1] in "0123456789":
                            raise NodeSetParseError(pfx + "[", "illegal opening"
                                                    " bracket after digit")
                        pfx, pfxrvec = self._scan_string_single(pfx, autostep)
                        rsets += pfxrvec

                    # readahead for sanity check
                    bracket_idx = sfx.find(self.BRACKET_OPEN,
                                           bracket_idx - pfxlen)
                    op_idx, next_op_code = self._next_op(sfx)

                    # Check for empty component or sequenced ranges
                    if len(pfx) == 0 and op_idx == 0:
                        raise NodeSetParseError(sfx, "empty node name before")\

                    if len(sfx) > 0 and sfx[0] in "0123456789[":
                        raise NodeSetParseError(sfx, \
                                "illegal sequenced numeric ranges")

                    newpat += "%s%%s" % pfx
                    try:
                        rsets.append(RangeSet(rng, autostep))
                    except RangeSetParseError, ex:
                        raise NodeSetParseRangeError(ex)

                # Check if we have a next op-separated node or pattern
                op_idx, next_op_code = self._next_op(sfx)
                if op_idx < 0:
                    pat = None
                else:
                    opc = self.OP_CODES[next_op_code]
                    sfx, pat = sfx.split(opc, 1)
                    # Detected character operator so right operand is mandatory
                    if not pat:
                        msg = "missing nodeset operand with '%s' operator" % opc
                        raise NodeSetParseError(None, msg)

                # Ignore whitespace(s)
                sfx = sfx.rstrip()
                if sfx:
                    sfx, sfxrvec = self._scan_string_single(sfx, autostep)
                    newpat += sfx
                    rsets += sfxrvec

                # pfx + sfx cannot be empty
                if len(newpat) == 0:
                    raise NodeSetParseError(pat, "empty node name")

            else:
                # In this case, either there is no comma and no bracket,
                # or the bracket is after the comma, then just return
                # the node.
                if op_idx < 0:
                    node = pat
                    pat = None # break next time
                else:
                    opc = self.OP_CODES[next_op_code]
                    node, pat = pat.split(opc, 1)
                    # Detected character operator so both operands are mandatory
                    if not node or not pat:
                        msg = "missing nodeset operand with '%s' operator" % opc
                        raise NodeSetParseError(node or pat, msg)

                # Check for illegal closing bracket
                if node.find(self.BRACKET_CLOSE) > -1:
                    raise NodeSetParseError(node, "illegal closing bracket")

                # Ignore whitespace(s)
                node = node.rstrip()
                newpat, rsets = self._scan_string_single(node, autostep)

            if len(rsets) > 1:
                yield op_code, newpat, RangeSetND([rsets], None, autostep,
                                                  copy_rangeset=False)
            elif len(rsets) == 1:
                yield op_code, newpat, rsets[0]
            else:
                yield op_code, newpat, None


class NodeSet(NodeSetBase):
    """
    Iterable class of nodes with node ranges support.

    NodeSet creation examples:
       >>> nodeset = NodeSet()               # empty NodeSet
       >>> nodeset = NodeSet("cluster3")     # contains only cluster3
       >>> nodeset = NodeSet("cluster[5,10-42]")
       >>> nodeset = NodeSet("cluster[0-10/2]")
       >>> nodeset = NodeSet("cluster[0-10/2],othername[7-9,120-300]")

    NodeSet provides methods like update(), intersection_update() or
    difference_update() methods, which conform to the Python Set API.
    However, unlike RangeSet or standard Set, NodeSet is somewhat not
    so strict for convenience, and understands NodeSet instance or
    NodeSet string as argument. Also, there is no strict definition of
    one element, for example, it IS allowed to do:
        >>> nodeset = NodeSet("blue[1-50]")
        >>> nodeset.remove("blue[36-40]")
        >>> print nodeset
        blue[1-35,41-50]

    Additionally, the NodeSet class recognizes the "extended string
    pattern" which adds support for union (special character ","),
    difference ("!"), intersection ("&") and symmetric difference ("^")
    operations. String patterns are read from left to right, by
    proceeding any character operators accordinately.

    Extended string pattern usage examples:
        >>> nodeset = NodeSet("node[0-10],node[14-16]") # union
        >>> nodeset = NodeSet("node[0-10]!node[8-10]")  # difference
        >>> nodeset = NodeSet("node[0-10]&node[5-13]")  # intersection
        >>> nodeset = NodeSet("node[0-10]^node[5-13]")  # xor
    """

    _VERSION = 2

    def __init__(self, nodes=None, autostep=None, resolver=None):
        """Initialize a NodeSet object.

        The `nodes' argument may be a valid nodeset string or a NodeSet
        object. If no nodes are specified, an empty NodeSet is created.

        The optional `autostep' argument is passed to underlying RangeSet
        objects and aims to enable and make use of the range/step syntax
        (eg. node[1-9/2]) when converting NodeSet to string (using folding).
        To enable this feature, autostep must be set there to the min number of
        indexes that are found at equal distance of each other inside a range
        before NodeSet starts to use this syntax. For example, autostep=3 (or
        less) will pack n[2,4,6] into n[2-6/2]. Default autostep value is None
        which means "inherit whenever possible", ie. do not enable it unless
        set in NodeSet objects passed as `nodes' here or during arithmetic
        operations.
        You may however use the special AUTOSTEP_DISABLED constant to force
        turning off autostep feature.

        The optional `resolver' argument may be used to override the group
        resolving behavior for this NodeSet object. It can either be set to a
        GroupResolver object, to the RESOLVER_NOGROUP constant to disable any
        group resolution, or to None (default) to use standard NodeSet group
        resolver (see set_std_group_resolver() at the module level to change
        it if needed).
        """
        NodeSetBase.__init__(self, autostep=autostep)

        # Set group resolver.
        if resolver in (RESOLVER_NOGROUP, RESOLVER_NOINIT):
            self._resolver = None
        else:
            self._resolver = resolver or RESOLVER_STD_GROUP

        # Initialize default parser.
        if resolver == RESOLVER_NOINIT:
            self._parser = None
        else:
            self._parser = ParsingEngine(self._resolver)
            self.update(nodes)

    @classmethod
    def _fromlist1(cls, nodelist, autostep=None, resolver=None):
        """Class method that returns a new NodeSet with single nodes from
        provided list (optimized constructor)."""
        inst = NodeSet(autostep=autostep, resolver=resolver)
        for single in nodelist:
            inst.update(inst._parser.parse_string_single(single, autostep))
        return inst

    @classmethod
    def fromlist(cls, nodelist, autostep=None, resolver=None):
        """Class method that returns a new NodeSet with nodes from provided
        list."""
        inst = NodeSet(autostep=autostep, resolver=resolver)
        inst.updaten(nodelist)
        return inst

    @classmethod
    def fromall(cls, groupsource=None, autostep=None, resolver=None):
        """Class method that returns a new NodeSet with all nodes from optional
        groupsource."""
        inst = NodeSet(autostep=autostep, resolver=resolver)
        if not inst._resolver:
            raise NodeSetExternalError("No node group resolver")
        # Fill this nodeset with all nodes found by resolver
        inst.updaten(inst._parser.all_nodes(groupsource))
        return inst

    def __getstate__(self):
        """Called when pickling: remove references to group resolver."""
        odict = self.__dict__.copy()
        odict['_version'] = NodeSet._VERSION
        del odict['_resolver']
        del odict['_parser']
        return odict

    def __setstate__(self, dic):
        """Called when unpickling: restore parser using non group
        resolver."""
        self.__dict__.update(dic)
        self._resolver = None
        self._parser = ParsingEngine(None)
        if getattr(self, '_version', 1) <= 1:
            self.fold_axis = None
            # if setting state from first version, a conversion is needed to
            # support native RangeSetND
            old_patterns = self._patterns
            self._patterns = {}
            for pat, rangeset in sorted(old_patterns.iteritems()):
                if rangeset:
                    assert isinstance(rangeset, RangeSet)
                    rgs = str(rangeset)
                    if len(rangeset) > 1:
                        rgs = "[%s]" % rgs
                    self.update(pat % rgs)
                else:
                    self.update(pat)

    def copy(self):
        """Return a shallow copy of a NodeSet."""
        cpy = self.__class__(resolver=RESOLVER_NOINIT)
        dic = {}
        for pat, rangeset in self._patterns.iteritems():
            if rangeset is None:
                dic[pat] = None
            else:
                dic[pat] = rangeset.copy()
        cpy._patterns = dic
        cpy._autostep = self._autostep
        cpy._resolver = self._resolver
        cpy._parser = self._parser
        return cpy

    __copy__ = copy # For the copy module

    def _find_groups(self, node, namespace, allgroups):
        """Find groups of node by namespace."""
        if allgroups:
            # find node groups using in-memory allgroups
            for grp, nodeset in allgroups.iteritems():
                if node in nodeset:
                    yield grp
        else:
            # find node groups using resolver
            for group in self._resolver.node_groups(node, namespace):
                yield group

    def _groups2(self, groupsource=None, autostep=None):
        """Find node groups this nodeset belongs to. [private]"""
        if not self._resolver:
            raise NodeSetExternalError("No node group resolver")
        try:
            # Get all groups in specified group source.
            allgrplist = self._parser.grouplist(groupsource)
        except NodeUtils.GroupSourceError:
            # If list query failed, we still might be able to regroup
            # using reverse.
            allgrplist = None
        groups_info = {}
        allgroups = {}
        # Check for external reverse presence, and also use the
        # following heuristic: external reverse is used only when number
        # of groups is greater than the NodeSet size.
        if self._resolver.has_node_groups(groupsource) and \
            (not allgrplist or len(allgrplist) >= len(self)):
            # use external reverse
            pass
        else:
            if not allgrplist: # list query failed and no way to reverse!
                return groups_info # empty
            try:
                # use internal reverse: populate allgroups
                for grp in allgrplist:
                    nodelist = self._resolver.group_nodes(grp, groupsource)
                    allgroups[grp] = NodeSet(",".join(nodelist),
                                             resolver=self._resolver)
            except NodeUtils.GroupSourceQueryFailed, exc:
                # External result inconsistency
                raise NodeSetExternalError("Unable to map a group " \
                        "previously listed\n\tFailed command: %s" % exc)

        # For each NodeSetBase in self, find its groups.
        for node in self._iterbase():
            for grp in self._find_groups(node, groupsource, allgroups):
                if grp not in groups_info:
                    nodes = self._parser.parse_group(grp, groupsource, autostep)
                    groups_info[grp] = (1, nodes)
                else:
                    i, nodes = groups_info[grp]
                    groups_info[grp] = (i + 1, nodes)
        return groups_info

    def groups(self, groupsource=None, noprefix=False):
        """Find node groups this nodeset belongs to.

        Return a dictionary of the form:
            group_name => (group_nodeset, contained_nodeset)

        Group names are always prefixed with "@". If groupsource is provided,
        they are prefixed with "@groupsource:", unless noprefix is True.
        """
        groups = self._groups2(groupsource, self._autostep)
        result = {}
        for grp, (_, nsb) in groups.iteritems():
            if groupsource and not noprefix:
                key = "@%s:%s" % (groupsource, grp)
            else:
                key = "@" + grp
            result[key] = (NodeSet(nsb, resolver=self._resolver),
                           self.intersection(nsb))
        return result

    def regroup(self, groupsource=None, autostep=None, overlap=False,
                noprefix=False):
        """Regroup nodeset using node groups.

        Try to find fully matching node groups (within specified groupsource)
        and return a string that represents this node set (containing these
        potential node groups). When no matching node groups are found, this
        method returns the same result as str()."""
        groups = self._groups2(groupsource, autostep)
        if not groups:
            return str(self)

        # Keep only groups that are full.
        fulls = []
        for k, (i, nodes) in groups.iteritems():
            assert i <= len(nodes)
            if i == len(nodes):
                fulls.append((i, k))

        rest = NodeSet(self, resolver=RESOLVER_NOGROUP)
        regrouped = NodeSet(resolver=RESOLVER_NOGROUP)

        bigalpha = lambda x, y: cmp(y[0], x[0]) or cmp(x[1], y[1])

        # Build regrouped NodeSet by selecting largest groups first.
        for _, grp in sorted(fulls, cmp=bigalpha):
            if not overlap and groups[grp][1] not in rest:
                continue
            if groupsource and not noprefix:
                regrouped.update("@%s:%s" % (groupsource, grp))
            else:
                regrouped.update("@" + grp)
            rest.difference_update(groups[grp][1])
            if not rest:
                return str(regrouped)

        if regrouped:
            return "%s,%s" % (regrouped, rest)

        return str(rest)

    def issubset(self, other):
        """
        Report whether another nodeset contains this nodeset.
        """
        nodeset = self._parser.parse(other, self._autostep)
        return NodeSetBase.issuperset(nodeset, self)

    def issuperset(self, other):
        """
        Report whether this nodeset contains another nodeset.
        """
        nodeset = self._parser.parse(other, self._autostep)
        return NodeSetBase.issuperset(self, nodeset)

    def __getitem__(self, index):
        """
        Return the node at specified index or a subnodeset when a slice
        is specified.
        """
        base = NodeSetBase.__getitem__(self, index)
        if not isinstance(base, NodeSetBase):
            return base
        # return a real NodeSet
        inst = NodeSet(autostep=self._autostep, resolver=self._resolver)
        inst._patterns = base._patterns
        return inst

    def split(self, nbr):
        """
        Split the nodeset into nbr sub-nodesets (at most). Each
        sub-nodeset will have the same number of elements more or
        less 1. Current nodeset remains unmodified.

        >>> for nodeset in NodeSet("foo[1-5]").split(3):
        ...     print nodeset
        foo[1-2]
        foo[3-4]
        foo5
        """
        assert(nbr > 0)

        # We put the same number of element in each sub-nodeset.
        slice_size = len(self) / nbr
        left = len(self) % nbr

        begin = 0
        for i in range(0, min(nbr, len(self))):
            length = slice_size + int(i < left)
            yield self[begin:begin + length]
            begin += length

    def update(self, other):
        """
        s.update(t) returns nodeset s with elements added from t.
        """
        nodeset = self._parser.parse(other, self._autostep)
        NodeSetBase.update(self, nodeset)

    def intersection_update(self, other):
        """
        s.intersection_update(t) returns nodeset s keeping only
        elements also found in t.
        """
        nodeset = self._parser.parse(other, self._autostep)
        NodeSetBase.intersection_update(self, nodeset)

    def difference_update(self, other, strict=False):
        """
        s.difference_update(t) returns nodeset s after removing
        elements found in t. If strict is True, raise KeyError
        if an element cannot be removed.
        """
        nodeset = self._parser.parse(other, self._autostep)
        NodeSetBase.difference_update(self, nodeset, strict)

    def symmetric_difference_update(self, other):
        """
        s.symmetric_difference_update(t) returns nodeset s keeping all
        nodes that are in exactly one of the nodesets.
        """
        nodeset = self._parser.parse(other, self._autostep)
        NodeSetBase.symmetric_difference_update(self, nodeset)


def expand(pat):
    """
    Commodity function that expands a nodeset pattern into a list of nodes.
    """
    return list(NodeSet(pat))

def fold(pat):
    """
    Commodity function that clean dups and fold provided pattern with ranges
    and "/step" support.
    """
    return str(NodeSet(pat))

def grouplist(namespace=None, resolver=None):
    """
    Commodity function that retrieves the list of raw groups for a specified
    group namespace (or use default namespace).
    Group names are not prefixed with "@".
    """
    return ParsingEngine(resolver or RESOLVER_STD_GROUP).grouplist(namespace)

def std_group_resolver():
    """
    Get the current resolver used for standard "@" group resolution.
    """
    return RESOLVER_STD_GROUP

def set_std_group_resolver(new_resolver):
    """
    Override the resolver used for standard "@" group resolution. The
    new resolver should be either an instance of
    NodeUtils.GroupResolver or None. In the latter case, the group
    resolver is restored to the default one.
    """
    global RESOLVER_STD_GROUP
    RESOLVER_STD_GROUP = new_resolver or _DEF_RESOLVER_STD_GROUP