This file is indexed.

/usr/share/doc/clang-3.5-doc/html/LanguageExtensions.html is in clang-3.5-doc 1:3.5.2-3ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
  "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">


<html xmlns="http://www.w3.org/1999/xhtml">
  <head>
    <meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
    
    <title>Clang Language Extensions &mdash; Clang 3.5 documentation</title>
    
    <link rel="stylesheet" href="_static/haiku.css" type="text/css" />
    <link rel="stylesheet" href="_static/pygments.css" type="text/css" />
    
    <script type="text/javascript">
      var DOCUMENTATION_OPTIONS = {
        URL_ROOT:    './',
        VERSION:     '3.5',
        COLLAPSE_INDEX: false,
        FILE_SUFFIX: '.html',
        HAS_SOURCE:  true
      };
    </script>
    <script type="text/javascript" src="_static/jquery.js"></script>
    <script type="text/javascript" src="_static/underscore.js"></script>
    <script type="text/javascript" src="_static/doctools.js"></script>
    <script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML"></script>
    <link rel="top" title="Clang 3.5 documentation" href="index.html" />
    <link rel="next" title="Objective-C Literals" href="ObjectiveCLiterals.html" />
    <link rel="prev" title="Clang Compiler User’s Manual" href="UsersManual.html" /> 
  </head>
  <body role="document">
      <div class="header" role="banner"><h1 class="heading"><a href="index.html">
          <span>Clang 3.5 documentation</span></a></h1>
        <h2 class="heading"><span>Clang Language Extensions</span></h2>
      </div>
      <div class="topnav" role="navigation" aria-label="top navigation">
      
        <p>
        «&#160;&#160;<a href="UsersManual.html">Clang Compiler User&#8217;s Manual</a>
        &#160;&#160;::&#160;&#160;
        <a class="uplink" href="index.html">Contents</a>
        &#160;&#160;::&#160;&#160;
        <a href="ObjectiveCLiterals.html">Objective-C Literals</a>&#160;&#160;»
        </p>

      </div>
      <div class="content">
        
        
  <div class="section" id="clang-language-extensions">
<h1>Clang Language Extensions<a class="headerlink" href="#clang-language-extensions" title="Permalink to this headline"></a></h1>
<div class="contents local topic" id="contents">
<ul class="simple">
<li><a class="reference internal" href="#introduction" id="id1">Introduction</a></li>
<li><a class="reference internal" href="#feature-checking-macros" id="id2">Feature Checking Macros</a></li>
<li><a class="reference internal" href="#include-file-checking-macros" id="id3">Include File Checking Macros</a></li>
<li><a class="reference internal" href="#builtin-macros" id="id4">Builtin Macros</a></li>
<li><a class="reference internal" href="#vectors-and-extended-vectors" id="id5">Vectors and Extended Vectors</a></li>
<li><a class="reference internal" href="#messages-on-deprecated-and-unavailable-attributes" id="id6">Messages on <code class="docutils literal"><span class="pre">deprecated</span></code> and <code class="docutils literal"><span class="pre">unavailable</span></code> Attributes</a></li>
<li><a class="reference internal" href="#attributes-on-enumerators" id="id7">Attributes on Enumerators</a></li>
<li><a class="reference internal" href="#user-specified-system-frameworks" id="id8">&#8216;User-Specified&#8217; System Frameworks</a></li>
<li><a class="reference internal" href="#checks-for-standard-language-features" id="id9">Checks for Standard Language Features</a></li>
<li><a class="reference internal" href="#checks-for-type-trait-primitives" id="id10">Checks for Type Trait Primitives</a></li>
<li><a class="reference internal" href="#blocks" id="id11">Blocks</a></li>
<li><a class="reference internal" href="#objective-c-features" id="id12">Objective-C Features</a></li>
<li><a class="reference internal" href="#initializer-lists-for-complex-numbers-in-c" id="id13">Initializer lists for complex numbers in C</a></li>
<li><a class="reference internal" href="#builtin-functions" id="id14">Builtin Functions</a></li>
<li><a class="reference internal" href="#non-standard-c-11-attributes" id="id15">Non-standard C++11 Attributes</a></li>
<li><a class="reference internal" href="#target-specific-extensions" id="id16">Target-Specific Extensions</a></li>
<li><a class="reference internal" href="#extensions-for-static-analysis" id="id17">Extensions for Static Analysis</a></li>
<li><a class="reference internal" href="#extensions-for-dynamic-analysis" id="id18">Extensions for Dynamic Analysis</a></li>
<li><a class="reference internal" href="#extensions-for-selectively-disabling-optimization" id="id19">Extensions for selectively disabling optimization</a></li>
<li><a class="reference internal" href="#extensions-for-loop-hint-optimizations" id="id20">Extensions for loop hint optimizations</a></li>
</ul>
</div>
<div class="toctree-wrapper compound">
</div>
<div class="section" id="introduction">
<h2><a class="toc-backref" href="#id1">Introduction</a><a class="headerlink" href="#introduction" title="Permalink to this headline"></a></h2>
<p>This document describes the language extensions provided by Clang.  In addition
to the language extensions listed here, Clang aims to support a broad range of
GCC extensions.  Please see the <a class="reference external" href="http://gcc.gnu.org/onlinedocs/gcc/C-Extensions.html">GCC manual</a> for more information on
these extensions.</p>
</div>
<div class="section" id="feature-checking-macros">
<span id="langext-feature-check"></span><h2><a class="toc-backref" href="#id2">Feature Checking Macros</a><a class="headerlink" href="#feature-checking-macros" title="Permalink to this headline"></a></h2>
<p>Language extensions can be very useful, but only if you know you can depend on
them.  In order to allow fine-grain features checks, we support three builtin
function-like macros.  This allows you to directly test for a feature in your
code without having to resort to something like autoconf or fragile &#8220;compiler
version checks&#8221;.</p>
<div class="section" id="has-builtin">
<h3><code class="docutils literal"><span class="pre">__has_builtin</span></code><a class="headerlink" href="#has-builtin" title="Permalink to this headline"></a></h3>
<p>This function-like macro takes a single identifier argument that is the name of
a builtin function.  It evaluates to 1 if the builtin is supported or 0 if not.
It can be used like this:</p>
<div class="highlight-c++"><div class="highlight"><pre><span class="cp">#ifndef __has_builtin         </span><span class="c1">// Optional of course.</span>
  <span class="cp">#define __has_builtin(x) 0  </span><span class="c1">// Compatibility with non-clang compilers.</span>
<span class="cp">#endif</span>

<span class="p">...</span>
<span class="cp">#if __has_builtin(__builtin_trap)</span>
  <span class="n">__builtin_trap</span><span class="p">();</span>
<span class="cp">#else</span>
  <span class="n">abort</span><span class="p">();</span>
<span class="cp">#endif</span>
<span class="p">...</span>
</pre></div>
</div>
</div>
<div class="section" id="has-feature-and-has-extension">
<span id="langext-has-feature-has-extension"></span><h3><code class="docutils literal"><span class="pre">__has_feature</span></code> and <code class="docutils literal"><span class="pre">__has_extension</span></code><a class="headerlink" href="#has-feature-and-has-extension" title="Permalink to this headline"></a></h3>
<p>These function-like macros take a single identifier argument that is the name
of a feature.  <code class="docutils literal"><span class="pre">__has_feature</span></code> evaluates to 1 if the feature is both
supported by Clang and standardized in the current language standard or 0 if
not (but see <a class="reference internal" href="#langext-has-feature-back-compat"><span>below</span></a>), while
<code class="docutils literal"><span class="pre">__has_extension</span></code> evaluates to 1 if the feature is supported by Clang in the
current language (either as a language extension or a standard language
feature) or 0 if not.  They can be used like this:</p>
<div class="highlight-c++"><div class="highlight"><pre><span class="cp">#ifndef __has_feature         </span><span class="c1">// Optional of course.</span>
  <span class="cp">#define __has_feature(x) 0  </span><span class="c1">// Compatibility with non-clang compilers.</span>
<span class="cp">#endif</span>
<span class="cp">#ifndef __has_extension</span>
  <span class="cp">#define __has_extension __has_feature </span><span class="c1">// Compatibility with pre-3.0 compilers.</span>
<span class="cp">#endif</span>

<span class="p">...</span>
<span class="cp">#if __has_feature(cxx_rvalue_references)</span>
<span class="c1">// This code will only be compiled with the -std=c++11 and -std=gnu++11</span>
<span class="c1">// options, because rvalue references are only standardized in C++11.</span>
<span class="cp">#endif</span>

<span class="cp">#if __has_extension(cxx_rvalue_references)</span>
<span class="c1">// This code will be compiled with the -std=c++11, -std=gnu++11, -std=c++98</span>
<span class="c1">// and -std=gnu++98 options, because rvalue references are supported as a</span>
<span class="c1">// language extension in C++98.</span>
<span class="cp">#endif</span>
</pre></div>
</div>
<p id="langext-has-feature-back-compat">For backward compatibility, <code class="docutils literal"><span class="pre">__has_feature</span></code> can also be used to test
for support for non-standardized features, i.e. features not prefixed <code class="docutils literal"><span class="pre">c_</span></code>,
<code class="docutils literal"><span class="pre">cxx_</span></code> or <code class="docutils literal"><span class="pre">objc_</span></code>.</p>
<p>Another use of <code class="docutils literal"><span class="pre">__has_feature</span></code> is to check for compiler features not related
to the language standard, such as e.g. <a class="reference internal" href="AddressSanitizer.html"><em>AddressSanitizer</em></a>.</p>
<p>If the <code class="docutils literal"><span class="pre">-pedantic-errors</span></code> option is given, <code class="docutils literal"><span class="pre">__has_extension</span></code> is equivalent
to <code class="docutils literal"><span class="pre">__has_feature</span></code>.</p>
<p>The feature tag is described along with the language feature below.</p>
<p>The feature name or extension name can also be specified with a preceding and
following <code class="docutils literal"><span class="pre">__</span></code> (double underscore) to avoid interference from a macro with
the same name.  For instance, <code class="docutils literal"><span class="pre">__cxx_rvalue_references__</span></code> can be used instead
of <code class="docutils literal"><span class="pre">cxx_rvalue_references</span></code>.</p>
</div>
<div class="section" id="has-attribute">
<h3><code class="docutils literal"><span class="pre">__has_attribute</span></code><a class="headerlink" href="#has-attribute" title="Permalink to this headline"></a></h3>
<p>This function-like macro takes a single identifier argument that is the name of
an attribute.  It evaluates to 1 if the attribute is supported by the current
compilation target, or 0 if not.  It can be used like this:</p>
<div class="highlight-c++"><div class="highlight"><pre><span class="cp">#ifndef __has_attribute         </span><span class="c1">// Optional of course.</span>
  <span class="cp">#define __has_attribute(x) 0  </span><span class="c1">// Compatibility with non-clang compilers.</span>
<span class="cp">#endif</span>

<span class="p">...</span>
<span class="cp">#if __has_attribute(always_inline)</span>
<span class="cp">#define ALWAYS_INLINE __attribute__((always_inline))</span>
<span class="cp">#else</span>
<span class="cp">#define ALWAYS_INLINE</span>
<span class="cp">#endif</span>
<span class="p">...</span>
</pre></div>
</div>
<p>The attribute name can also be specified with a preceding and following <code class="docutils literal"><span class="pre">__</span></code>
(double underscore) to avoid interference from a macro with the same name.  For
instance, <code class="docutils literal"><span class="pre">__always_inline__</span></code> can be used instead of <code class="docutils literal"><span class="pre">always_inline</span></code>.</p>
</div>
<div class="section" id="is-identifier">
<h3><code class="docutils literal"><span class="pre">__is_identifier</span></code><a class="headerlink" href="#is-identifier" title="Permalink to this headline"></a></h3>
<p>This function-like macro takes a single identifier argument that might be either
a reserved word or a regular identifier. It evaluates to 1 if the argument is just
a regular identifier and not a reserved word, in the sense that it can then be
used as the name of a user-defined function or variable. Otherwise it evaluates
to 0.  It can be used like this:</p>
<div class="highlight-c++"><div class="highlight"><pre><span class="p">...</span>
<span class="cp">#ifdef __is_identifier          </span><span class="c1">// Compatibility with non-clang compilers.</span>
  <span class="cp">#if __is_identifier(__wchar_t)</span>
    <span class="k">typedef</span> <span class="kt">wchar_t</span> <span class="kr">__wchar_t</span><span class="p">;</span>
  <span class="cp">#endif</span>
<span class="cp">#endif</span>

<span class="kr">__wchar_t</span> <span class="n">WideCharacter</span><span class="p">;</span>
<span class="p">...</span>
</pre></div>
</div>
</div>
</div>
<div class="section" id="include-file-checking-macros">
<h2><a class="toc-backref" href="#id3">Include File Checking Macros</a><a class="headerlink" href="#include-file-checking-macros" title="Permalink to this headline"></a></h2>
<p>Not all developments systems have the same include files.  The
<a class="reference internal" href="#langext-has-include"><span>__has_include</span></a> and <a class="reference internal" href="#langext-has-include-next"><span>__has_include_next</span></a> macros allow
you to check for the existence of an include file before doing a possibly
failing <code class="docutils literal"><span class="pre">#include</span></code> directive.  Include file checking macros must be used
as expressions in <code class="docutils literal"><span class="pre">#if</span></code> or <code class="docutils literal"><span class="pre">#elif</span></code> preprocessing directives.</p>
<div class="section" id="has-include">
<span id="langext-has-include"></span><h3><code class="docutils literal"><span class="pre">__has_include</span></code><a class="headerlink" href="#has-include" title="Permalink to this headline"></a></h3>
<p>This function-like macro takes a single file name string argument that is the
name of an include file.  It evaluates to 1 if the file can be found using the
include paths, or 0 otherwise:</p>
<div class="highlight-c++"><div class="highlight"><pre><span class="c1">// Note the two possible file name string formats.</span>
<span class="cp">#if __has_include(&quot;myinclude.h&quot;) &amp;&amp; __has_include(&lt;stdint.h&gt;)</span>
<span class="cp"># include &quot;myinclude.h&quot;</span>
<span class="cp">#endif</span>
</pre></div>
</div>
<p>To test for this feature, use <code class="docutils literal"><span class="pre">#if</span> <span class="pre">defined(__has_include)</span></code>:</p>
<div class="highlight-c++"><div class="highlight"><pre><span class="c1">// To avoid problem with non-clang compilers not having this macro.</span>
<span class="cp">#if defined(__has_include)</span>
<span class="cp">#if __has_include(&quot;myinclude.h&quot;)</span>
<span class="cp"># include &quot;myinclude.h&quot;</span>
<span class="cp">#endif</span>
<span class="cp">#endif</span>
</pre></div>
</div>
</div>
<div class="section" id="has-include-next">
<span id="langext-has-include-next"></span><h3><code class="docutils literal"><span class="pre">__has_include_next</span></code><a class="headerlink" href="#has-include-next" title="Permalink to this headline"></a></h3>
<p>This function-like macro takes a single file name string argument that is the
name of an include file.  It is like <code class="docutils literal"><span class="pre">__has_include</span></code> except that it looks for
the second instance of the given file found in the include paths.  It evaluates
to 1 if the second instance of the file can be found using the include paths,
or 0 otherwise:</p>
<div class="highlight-c++"><div class="highlight"><pre><span class="c1">// Note the two possible file name string formats.</span>
<span class="cp">#if __has_include_next(&quot;myinclude.h&quot;) &amp;&amp; __has_include_next(&lt;stdint.h&gt;)</span>
<span class="cp"># include_next &quot;myinclude.h&quot;</span>
<span class="cp">#endif</span>

<span class="c1">// To avoid problem with non-clang compilers not having this macro.</span>
<span class="cp">#if defined(__has_include_next)</span>
<span class="cp">#if __has_include_next(&quot;myinclude.h&quot;)</span>
<span class="cp"># include_next &quot;myinclude.h&quot;</span>
<span class="cp">#endif</span>
<span class="cp">#endif</span>
</pre></div>
</div>
<p>Note that <code class="docutils literal"><span class="pre">__has_include_next</span></code>, like the GNU extension <code class="docutils literal"><span class="pre">#include_next</span></code>
directive, is intended for use in headers only, and will issue a warning if
used in the top-level compilation file.  A warning will also be issued if an
absolute path is used in the file argument.</p>
</div>
<div class="section" id="has-warning">
<h3><code class="docutils literal"><span class="pre">__has_warning</span></code><a class="headerlink" href="#has-warning" title="Permalink to this headline"></a></h3>
<p>This function-like macro takes a string literal that represents a command line
option for a warning and returns true if that is a valid warning option.</p>
<div class="highlight-c++"><div class="highlight"><pre><span class="cp">#if __has_warning(&quot;-Wformat&quot;)</span>
<span class="p">...</span>
<span class="cp">#endif</span>
</pre></div>
</div>
</div>
</div>
<div class="section" id="builtin-macros">
<h2><a class="toc-backref" href="#id4">Builtin Macros</a><a class="headerlink" href="#builtin-macros" title="Permalink to this headline"></a></h2>
<dl class="docutils">
<dt><code class="docutils literal"><span class="pre">__BASE_FILE__</span></code></dt>
<dd>Defined to a string that contains the name of the main input file passed to
Clang.</dd>
<dt><code class="docutils literal"><span class="pre">__COUNTER__</span></code></dt>
<dd>Defined to an integer value that starts at zero and is incremented each time
the <code class="docutils literal"><span class="pre">__COUNTER__</span></code> macro is expanded.</dd>
<dt><code class="docutils literal"><span class="pre">__INCLUDE_LEVEL__</span></code></dt>
<dd>Defined to an integral value that is the include depth of the file currently
being translated.  For the main file, this value is zero.</dd>
<dt><code class="docutils literal"><span class="pre">__TIMESTAMP__</span></code></dt>
<dd>Defined to the date and time of the last modification of the current source
file.</dd>
<dt><code class="docutils literal"><span class="pre">__clang__</span></code></dt>
<dd>Defined when compiling with Clang</dd>
<dt><code class="docutils literal"><span class="pre">__clang_major__</span></code></dt>
<dd>Defined to the major marketing version number of Clang (e.g., the 2 in
2.0.1).  Note that marketing version numbers should not be used to check for
language features, as different vendors use different numbering schemes.
Instead, use the <a class="reference internal" href="#langext-feature-check"><span>Feature Checking Macros</span></a>.</dd>
<dt><code class="docutils literal"><span class="pre">__clang_minor__</span></code></dt>
<dd>Defined to the minor version number of Clang (e.g., the 0 in 2.0.1).  Note
that marketing version numbers should not be used to check for language
features, as different vendors use different numbering schemes.  Instead, use
the <a class="reference internal" href="#langext-feature-check"><span>Feature Checking Macros</span></a>.</dd>
<dt><code class="docutils literal"><span class="pre">__clang_patchlevel__</span></code></dt>
<dd>Defined to the marketing patch level of Clang (e.g., the 1 in 2.0.1).</dd>
<dt><code class="docutils literal"><span class="pre">__clang_version__</span></code></dt>
<dd>Defined to a string that captures the Clang marketing version, including the
Subversion tag or revision number, e.g., &#8220;<code class="docutils literal"><span class="pre">1.5</span> <span class="pre">(trunk</span> <span class="pre">102332)</span></code>&#8221;.</dd>
</dl>
</div>
<div class="section" id="vectors-and-extended-vectors">
<span id="langext-vectors"></span><h2><a class="toc-backref" href="#id5">Vectors and Extended Vectors</a><a class="headerlink" href="#vectors-and-extended-vectors" title="Permalink to this headline"></a></h2>
<p>Supports the GCC, OpenCL, AltiVec and NEON vector extensions.</p>
<p>OpenCL vector types are created using <code class="docutils literal"><span class="pre">ext_vector_type</span></code> attribute.  It
support for <code class="docutils literal"><span class="pre">V.xyzw</span></code> syntax and other tidbits as seen in OpenCL.  An example
is:</p>
<div class="highlight-c++"><div class="highlight"><pre><span class="k">typedef</span> <span class="kt">float</span> <span class="n">float4</span> <span class="nf">__attribute__</span><span class="p">((</span><span class="n">ext_vector_type</span><span class="p">(</span><span class="mi">4</span><span class="p">)));</span>
<span class="k">typedef</span> <span class="kt">float</span> <span class="n">float2</span> <span class="nf">__attribute__</span><span class="p">((</span><span class="n">ext_vector_type</span><span class="p">(</span><span class="mi">2</span><span class="p">)));</span>

<span class="n">float4</span> <span class="nf">foo</span><span class="p">(</span><span class="n">float2</span> <span class="n">a</span><span class="p">,</span> <span class="n">float2</span> <span class="n">b</span><span class="p">)</span> <span class="p">{</span>
  <span class="n">float4</span> <span class="n">c</span><span class="p">;</span>
  <span class="n">c</span><span class="p">.</span><span class="n">xz</span> <span class="o">=</span> <span class="n">a</span><span class="p">;</span>
  <span class="n">c</span><span class="p">.</span><span class="n">yw</span> <span class="o">=</span> <span class="n">b</span><span class="p">;</span>
  <span class="k">return</span> <span class="n">c</span><span class="p">;</span>
<span class="p">}</span>
</pre></div>
</div>
<p>Query for this feature with <code class="docutils literal"><span class="pre">__has_extension(attribute_ext_vector_type)</span></code>.</p>
<p>Giving <code class="docutils literal"><span class="pre">-faltivec</span></code> option to clang enables support for AltiVec vector syntax
and functions.  For example:</p>
<div class="highlight-c++"><div class="highlight"><pre><span class="n">vector</span> <span class="kt">float</span> <span class="nf">foo</span><span class="p">(</span><span class="n">vector</span> <span class="kt">int</span> <span class="n">a</span><span class="p">)</span> <span class="p">{</span>
  <span class="n">vector</span> <span class="kt">int</span> <span class="n">b</span><span class="p">;</span>
  <span class="n">b</span> <span class="o">=</span> <span class="n">vec_add</span><span class="p">(</span><span class="n">a</span><span class="p">,</span> <span class="n">a</span><span class="p">)</span> <span class="o">+</span> <span class="n">a</span><span class="p">;</span>
  <span class="k">return</span> <span class="p">(</span><span class="n">vector</span> <span class="kt">float</span><span class="p">)</span><span class="n">b</span><span class="p">;</span>
<span class="p">}</span>
</pre></div>
</div>
<p>NEON vector types are created using <code class="docutils literal"><span class="pre">neon_vector_type</span></code> and
<code class="docutils literal"><span class="pre">neon_polyvector_type</span></code> attributes.  For example:</p>
<div class="highlight-c++"><div class="highlight"><pre><span class="k">typedef</span> <span class="nf">__attribute__</span><span class="p">((</span><span class="n">neon_vector_type</span><span class="p">(</span><span class="mi">8</span><span class="p">)))</span> <span class="kt">int8_t</span> <span class="n">int8x8_t</span><span class="p">;</span>
<span class="k">typedef</span> <span class="nf">__attribute__</span><span class="p">((</span><span class="n">neon_polyvector_type</span><span class="p">(</span><span class="mi">16</span><span class="p">)))</span> <span class="n">poly8_t</span> <span class="n">poly8x16_t</span><span class="p">;</span>

<span class="n">int8x8_t</span> <span class="nf">foo</span><span class="p">(</span><span class="n">int8x8_t</span> <span class="n">a</span><span class="p">)</span> <span class="p">{</span>
  <span class="n">int8x8_t</span> <span class="n">v</span><span class="p">;</span>
  <span class="n">v</span> <span class="o">=</span> <span class="n">a</span><span class="p">;</span>
  <span class="k">return</span> <span class="n">v</span><span class="p">;</span>
<span class="p">}</span>
</pre></div>
</div>
<div class="section" id="vector-literals">
<h3>Vector Literals<a class="headerlink" href="#vector-literals" title="Permalink to this headline"></a></h3>
<p>Vector literals can be used to create vectors from a set of scalars, or
vectors.  Either parentheses or braces form can be used.  In the parentheses
form the number of literal values specified must be one, i.e. referring to a
scalar value, or must match the size of the vector type being created.  If a
single scalar literal value is specified, the scalar literal value will be
replicated to all the components of the vector type.  In the brackets form any
number of literals can be specified.  For example:</p>
<div class="highlight-c++"><div class="highlight"><pre><span class="k">typedef</span> <span class="kt">int</span> <span class="n">v4si</span> <span class="nf">__attribute__</span><span class="p">((</span><span class="n">__vector_size__</span><span class="p">(</span><span class="mi">16</span><span class="p">)));</span>
<span class="k">typedef</span> <span class="kt">float</span> <span class="n">float4</span> <span class="nf">__attribute__</span><span class="p">((</span><span class="n">ext_vector_type</span><span class="p">(</span><span class="mi">4</span><span class="p">)));</span>
<span class="k">typedef</span> <span class="kt">float</span> <span class="n">float2</span> <span class="nf">__attribute__</span><span class="p">((</span><span class="n">ext_vector_type</span><span class="p">(</span><span class="mi">2</span><span class="p">)));</span>

<span class="n">v4si</span> <span class="n">vsi</span> <span class="o">=</span> <span class="p">(</span><span class="n">v4si</span><span class="p">){</span><span class="mi">1</span><span class="p">,</span> <span class="mi">2</span><span class="p">,</span> <span class="mi">3</span><span class="p">,</span> <span class="mi">4</span><span class="p">};</span>
<span class="n">float4</span> <span class="n">vf</span> <span class="o">=</span> <span class="p">(</span><span class="n">float4</span><span class="p">)(</span><span class="mf">1.0f</span><span class="p">,</span> <span class="mf">2.0f</span><span class="p">,</span> <span class="mf">3.0f</span><span class="p">,</span> <span class="mf">4.0f</span><span class="p">);</span>
<span class="n">vector</span> <span class="kt">int</span> <span class="n">vi1</span> <span class="o">=</span> <span class="p">(</span><span class="n">vector</span> <span class="kt">int</span><span class="p">)(</span><span class="mi">1</span><span class="p">);</span>    <span class="c1">// vi1 will be (1, 1, 1, 1).</span>
<span class="n">vector</span> <span class="kt">int</span> <span class="n">vi2</span> <span class="o">=</span> <span class="p">(</span><span class="n">vector</span> <span class="kt">int</span><span class="p">){</span><span class="mi">1</span><span class="p">};</span>    <span class="c1">// vi2 will be (1, 0, 0, 0).</span>
<span class="n">vector</span> <span class="kt">int</span> <span class="n">vi3</span> <span class="o">=</span> <span class="p">(</span><span class="n">vector</span> <span class="kt">int</span><span class="p">)(</span><span class="mi">1</span><span class="p">,</span> <span class="mi">2</span><span class="p">);</span> <span class="c1">// error</span>
<span class="n">vector</span> <span class="kt">int</span> <span class="n">vi4</span> <span class="o">=</span> <span class="p">(</span><span class="n">vector</span> <span class="kt">int</span><span class="p">){</span><span class="mi">1</span><span class="p">,</span> <span class="mi">2</span><span class="p">};</span> <span class="c1">// vi4 will be (1, 2, 0, 0).</span>
<span class="n">vector</span> <span class="kt">int</span> <span class="n">vi5</span> <span class="o">=</span> <span class="p">(</span><span class="n">vector</span> <span class="kt">int</span><span class="p">)(</span><span class="mi">1</span><span class="p">,</span> <span class="mi">2</span><span class="p">,</span> <span class="mi">3</span><span class="p">,</span> <span class="mi">4</span><span class="p">);</span>
<span class="n">float4</span> <span class="n">vf</span> <span class="o">=</span> <span class="p">(</span><span class="n">float4</span><span class="p">)((</span><span class="n">float2</span><span class="p">)(</span><span class="mf">1.0f</span><span class="p">,</span> <span class="mf">2.0f</span><span class="p">),</span> <span class="p">(</span><span class="n">float2</span><span class="p">)(</span><span class="mf">3.0f</span><span class="p">,</span> <span class="mf">4.0f</span><span class="p">));</span>
</pre></div>
</div>
</div>
<div class="section" id="vector-operations">
<h3>Vector Operations<a class="headerlink" href="#vector-operations" title="Permalink to this headline"></a></h3>
<p>The table below shows the support for each operation by vector extension.  A
dash indicates that an operation is not accepted according to a corresponding
specification.</p>
<table border="1" class="docutils">
<colgroup>
<col width="60%" />
<col width="12%" />
<col width="14%" />
<col width="6%" />
<col width="8%" />
</colgroup>
<thead valign="bottom">
<tr class="row-odd"><th class="head">Opeator</th>
<th class="head">OpenCL</th>
<th class="head">AltiVec</th>
<th class="head">GCC</th>
<th class="head">NEON</th>
</tr>
</thead>
<tbody valign="top">
<tr class="row-even"><td>[]</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>&#8211;</td>
</tr>
<tr class="row-odd"><td>unary operators +, &#8211;</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>&#8211;</td>
</tr>
<tr class="row-even"><td>++, &#8211; &#8211;</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>&#8211;</td>
</tr>
<tr class="row-odd"><td>+,&#8211;,*,/,%</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>&#8211;</td>
</tr>
<tr class="row-even"><td>bitwise operators &amp;,|,^,~</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>&#8211;</td>
</tr>
<tr class="row-odd"><td>&gt;&gt;,&lt;&lt;</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>&#8211;</td>
</tr>
<tr class="row-even"><td>!, &amp;&amp;, ||</td>
<td>no</td>
<td>&#8211;</td>
<td>&#8211;</td>
<td>&#8211;</td>
</tr>
<tr class="row-odd"><td>==, !=, &gt;, &lt;, &gt;=, &lt;=</td>
<td>yes</td>
<td>yes</td>
<td>&#8211;</td>
<td>&#8211;</td>
</tr>
<tr class="row-even"><td>=</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr class="row-odd"><td>:?</td>
<td>yes</td>
<td>&#8211;</td>
<td>&#8211;</td>
<td>&#8211;</td>
</tr>
<tr class="row-even"><td>sizeof</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
</tbody>
</table>
<p>See also <a class="reference internal" href="#langext-builtin-shufflevector"><span>__builtin_shufflevector</span></a>.</p>
</div>
</div>
<div class="section" id="messages-on-deprecated-and-unavailable-attributes">
<h2><a class="toc-backref" href="#id6">Messages on <code class="docutils literal"><span class="pre">deprecated</span></code> and <code class="docutils literal"><span class="pre">unavailable</span></code> Attributes</a><a class="headerlink" href="#messages-on-deprecated-and-unavailable-attributes" title="Permalink to this headline"></a></h2>
<p>An optional string message can be added to the <code class="docutils literal"><span class="pre">deprecated</span></code> and
<code class="docutils literal"><span class="pre">unavailable</span></code> attributes.  For example:</p>
<div class="highlight-c++"><div class="highlight"><pre><span class="kt">void</span> <span class="nf">explode</span><span class="p">(</span><span class="kt">void</span><span class="p">)</span> <span class="n">__attribute__</span><span class="p">((</span><span class="n">deprecated</span><span class="p">(</span><span class="s">&quot;extremely unsafe, use &#39;combust&#39; instead!!!&quot;</span><span class="p">)));</span>
</pre></div>
</div>
<p>If the deprecated or unavailable declaration is used, the message will be
incorporated into the appropriate diagnostic:</p>
<div class="highlight-c++"><div class="highlight"><pre>harmless.c:4:3: warning: &#39;explode&#39; is deprecated: extremely unsafe, use &#39;combust&#39; instead!!!
      [-Wdeprecated-declarations]
  explode();
  ^
</pre></div>
</div>
<p>Query for this feature with
<code class="docutils literal"><span class="pre">__has_extension(attribute_deprecated_with_message)</span></code> and
<code class="docutils literal"><span class="pre">__has_extension(attribute_unavailable_with_message)</span></code>.</p>
</div>
<div class="section" id="attributes-on-enumerators">
<h2><a class="toc-backref" href="#id7">Attributes on Enumerators</a><a class="headerlink" href="#attributes-on-enumerators" title="Permalink to this headline"></a></h2>
<p>Clang allows attributes to be written on individual enumerators.  This allows
enumerators to be deprecated, made unavailable, etc.  The attribute must appear
after the enumerator name and before any initializer, like so:</p>
<div class="highlight-c++"><div class="highlight"><pre><span class="k">enum</span> <span class="n">OperationMode</span> <span class="p">{</span>
  <span class="n">OM_Invalid</span><span class="p">,</span>
  <span class="n">OM_Normal</span><span class="p">,</span>
  <span class="n">OM_Terrified</span> <span class="n">__attribute__</span><span class="p">((</span><span class="n">deprecated</span><span class="p">)),</span>
  <span class="n">OM_AbortOnError</span> <span class="n">__attribute__</span><span class="p">((</span><span class="n">deprecated</span><span class="p">))</span> <span class="o">=</span> <span class="mi">4</span>
<span class="p">};</span>
</pre></div>
</div>
<p>Attributes on the <code class="docutils literal"><span class="pre">enum</span></code> declaration do not apply to individual enumerators.</p>
<p>Query for this feature with <code class="docutils literal"><span class="pre">__has_extension(enumerator_attributes)</span></code>.</p>
</div>
<div class="section" id="user-specified-system-frameworks">
<h2><a class="toc-backref" href="#id8">&#8216;User-Specified&#8217; System Frameworks</a><a class="headerlink" href="#user-specified-system-frameworks" title="Permalink to this headline"></a></h2>
<p>Clang provides a mechanism by which frameworks can be built in such a way that
they will always be treated as being &#8220;system frameworks&#8221;, even if they are not
present in a system framework directory.  This can be useful to system
framework developers who want to be able to test building other applications
with development builds of their framework, including the manner in which the
compiler changes warning behavior for system headers.</p>
<p>Framework developers can opt-in to this mechanism by creating a
&#8220;<code class="docutils literal"><span class="pre">.system_framework</span></code>&#8221; file at the top-level of their framework.  That is, the
framework should have contents like:</p>
<div class="highlight-none"><div class="highlight"><pre>.../TestFramework.framework
.../TestFramework.framework/.system_framework
.../TestFramework.framework/Headers
.../TestFramework.framework/Headers/TestFramework.h
...
</pre></div>
</div>
<p>Clang will treat the presence of this file as an indicator that the framework
should be treated as a system framework, regardless of how it was found in the
framework search path.  For consistency, we recommend that such files never be
included in installed versions of the framework.</p>
</div>
<div class="section" id="checks-for-standard-language-features">
<h2><a class="toc-backref" href="#id9">Checks for Standard Language Features</a><a class="headerlink" href="#checks-for-standard-language-features" title="Permalink to this headline"></a></h2>
<p>The <code class="docutils literal"><span class="pre">__has_feature</span></code> macro can be used to query if certain standard language
features are enabled.  The <code class="docutils literal"><span class="pre">__has_extension</span></code> macro can be used to query if
language features are available as an extension when compiling for a standard
which does not provide them.  The features which can be tested are listed here.</p>
<div class="section" id="c-98">
<h3>C++98<a class="headerlink" href="#c-98" title="Permalink to this headline"></a></h3>
<p>The features listed below are part of the C++98 standard.  These features are
enabled by default when compiling C++ code.</p>
<div class="section" id="c-exceptions">
<h4>C++ exceptions<a class="headerlink" href="#c-exceptions" title="Permalink to this headline"></a></h4>
<p>Use <code class="docutils literal"><span class="pre">__has_feature(cxx_exceptions)</span></code> to determine if C++ exceptions have been
enabled.  For example, compiling code with <code class="docutils literal"><span class="pre">-fno-exceptions</span></code> disables C++
exceptions.</p>
</div>
<div class="section" id="c-rtti">
<h4>C++ RTTI<a class="headerlink" href="#c-rtti" title="Permalink to this headline"></a></h4>
<p>Use <code class="docutils literal"><span class="pre">__has_feature(cxx_rtti)</span></code> to determine if C++ RTTI has been enabled.  For
example, compiling code with <code class="docutils literal"><span class="pre">-fno-rtti</span></code> disables the use of RTTI.</p>
</div>
</div>
<div class="section" id="c-11">
<h3>C++11<a class="headerlink" href="#c-11" title="Permalink to this headline"></a></h3>
<p>The features listed below are part of the C++11 standard.  As a result, all
these features are enabled with the <code class="docutils literal"><span class="pre">-std=c++11</span></code> or <code class="docutils literal"><span class="pre">-std=gnu++11</span></code> option
when compiling C++ code.</p>
<div class="section" id="c-11-sfinae-includes-access-control">
<h4>C++11 SFINAE includes access control<a class="headerlink" href="#c-11-sfinae-includes-access-control" title="Permalink to this headline"></a></h4>
<p>Use <code class="docutils literal"><span class="pre">__has_feature(cxx_access_control_sfinae)</span></code> or
<code class="docutils literal"><span class="pre">__has_extension(cxx_access_control_sfinae)</span></code> to determine whether
access-control errors (e.g., calling a private constructor) are considered to
be template argument deduction errors (aka SFINAE errors), per <a class="reference external" href="http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#1170">C++ DR1170</a>.</p>
</div>
<div class="section" id="c-11-alias-templates">
<h4>C++11 alias templates<a class="headerlink" href="#c-11-alias-templates" title="Permalink to this headline"></a></h4>
<p>Use <code class="docutils literal"><span class="pre">__has_feature(cxx_alias_templates)</span></code> or
<code class="docutils literal"><span class="pre">__has_extension(cxx_alias_templates)</span></code> to determine if support for C++11&#8217;s
alias declarations and alias templates is enabled.</p>
</div>
<div class="section" id="c-11-alignment-specifiers">
<h4>C++11 alignment specifiers<a class="headerlink" href="#c-11-alignment-specifiers" title="Permalink to this headline"></a></h4>
<p>Use <code class="docutils literal"><span class="pre">__has_feature(cxx_alignas)</span></code> or <code class="docutils literal"><span class="pre">__has_extension(cxx_alignas)</span></code> to
determine if support for alignment specifiers using <code class="docutils literal"><span class="pre">alignas</span></code> is enabled.</p>
</div>
<div class="section" id="c-11-attributes">
<h4>C++11 attributes<a class="headerlink" href="#c-11-attributes" title="Permalink to this headline"></a></h4>
<p>Use <code class="docutils literal"><span class="pre">__has_feature(cxx_attributes)</span></code> or <code class="docutils literal"><span class="pre">__has_extension(cxx_attributes)</span></code> to
determine if support for attribute parsing with C++11&#8217;s square bracket notation
is enabled.</p>
</div>
<div class="section" id="c-11-generalized-constant-expressions">
<h4>C++11 generalized constant expressions<a class="headerlink" href="#c-11-generalized-constant-expressions" title="Permalink to this headline"></a></h4>
<p>Use <code class="docutils literal"><span class="pre">__has_feature(cxx_constexpr)</span></code> to determine if support for generalized
constant expressions (e.g., <code class="docutils literal"><span class="pre">constexpr</span></code>) is enabled.</p>
</div>
<div class="section" id="c-11-decltype">
<h4>C++11 <code class="docutils literal"><span class="pre">decltype()</span></code><a class="headerlink" href="#c-11-decltype" title="Permalink to this headline"></a></h4>
<p>Use <code class="docutils literal"><span class="pre">__has_feature(cxx_decltype)</span></code> or <code class="docutils literal"><span class="pre">__has_extension(cxx_decltype)</span></code> to
determine if support for the <code class="docutils literal"><span class="pre">decltype()</span></code> specifier is enabled.  C++11&#8217;s
<code class="docutils literal"><span class="pre">decltype</span></code> does not require type-completeness of a function call expression.
Use <code class="docutils literal"><span class="pre">__has_feature(cxx_decltype_incomplete_return_types)</span></code> or
<code class="docutils literal"><span class="pre">__has_extension(cxx_decltype_incomplete_return_types)</span></code> to determine if
support for this feature is enabled.</p>
</div>
<div class="section" id="c-11-default-template-arguments-in-function-templates">
<h4>C++11 default template arguments in function templates<a class="headerlink" href="#c-11-default-template-arguments-in-function-templates" title="Permalink to this headline"></a></h4>
<p>Use <code class="docutils literal"><span class="pre">__has_feature(cxx_default_function_template_args)</span></code> or
<code class="docutils literal"><span class="pre">__has_extension(cxx_default_function_template_args)</span></code> to determine if support
for default template arguments in function templates is enabled.</p>
</div>
<div class="section" id="c-11-defaulted-functions">
<h4>C++11 <code class="docutils literal"><span class="pre">default</span></code>ed functions<a class="headerlink" href="#c-11-defaulted-functions" title="Permalink to this headline"></a></h4>
<p>Use <code class="docutils literal"><span class="pre">__has_feature(cxx_defaulted_functions)</span></code> or
<code class="docutils literal"><span class="pre">__has_extension(cxx_defaulted_functions)</span></code> to determine if support for
defaulted function definitions (with <code class="docutils literal"><span class="pre">=</span> <span class="pre">default</span></code>) is enabled.</p>
</div>
<div class="section" id="c-11-delegating-constructors">
<h4>C++11 delegating constructors<a class="headerlink" href="#c-11-delegating-constructors" title="Permalink to this headline"></a></h4>
<p>Use <code class="docutils literal"><span class="pre">__has_feature(cxx_delegating_constructors)</span></code> to determine if support for
delegating constructors is enabled.</p>
</div>
<div class="section" id="c-11-deleted-functions">
<h4>C++11 <code class="docutils literal"><span class="pre">deleted</span></code> functions<a class="headerlink" href="#c-11-deleted-functions" title="Permalink to this headline"></a></h4>
<p>Use <code class="docutils literal"><span class="pre">__has_feature(cxx_deleted_functions)</span></code> or
<code class="docutils literal"><span class="pre">__has_extension(cxx_deleted_functions)</span></code> to determine if support for deleted
function definitions (with <code class="docutils literal"><span class="pre">=</span> <span class="pre">delete</span></code>) is enabled.</p>
</div>
<div class="section" id="c-11-explicit-conversion-functions">
<h4>C++11 explicit conversion functions<a class="headerlink" href="#c-11-explicit-conversion-functions" title="Permalink to this headline"></a></h4>
<p>Use <code class="docutils literal"><span class="pre">__has_feature(cxx_explicit_conversions)</span></code> to determine if support for
<code class="docutils literal"><span class="pre">explicit</span></code> conversion functions is enabled.</p>
</div>
<div class="section" id="c-11-generalized-initializers">
<h4>C++11 generalized initializers<a class="headerlink" href="#c-11-generalized-initializers" title="Permalink to this headline"></a></h4>
<p>Use <code class="docutils literal"><span class="pre">__has_feature(cxx_generalized_initializers)</span></code> to determine if support for
generalized initializers (using braced lists and <code class="docutils literal"><span class="pre">std::initializer_list</span></code>) is
enabled.</p>
</div>
<div class="section" id="c-11-implicit-move-constructors-assignment-operators">
<h4>C++11 implicit move constructors/assignment operators<a class="headerlink" href="#c-11-implicit-move-constructors-assignment-operators" title="Permalink to this headline"></a></h4>
<p>Use <code class="docutils literal"><span class="pre">__has_feature(cxx_implicit_moves)</span></code> to determine if Clang will implicitly
generate move constructors and move assignment operators where needed.</p>
</div>
<div class="section" id="c-11-inheriting-constructors">
<h4>C++11 inheriting constructors<a class="headerlink" href="#c-11-inheriting-constructors" title="Permalink to this headline"></a></h4>
<p>Use <code class="docutils literal"><span class="pre">__has_feature(cxx_inheriting_constructors)</span></code> to determine if support for
inheriting constructors is enabled.</p>
</div>
<div class="section" id="c-11-inline-namespaces">
<h4>C++11 inline namespaces<a class="headerlink" href="#c-11-inline-namespaces" title="Permalink to this headline"></a></h4>
<p>Use <code class="docutils literal"><span class="pre">__has_feature(cxx_inline_namespaces)</span></code> or
<code class="docutils literal"><span class="pre">__has_extension(cxx_inline_namespaces)</span></code> to determine if support for inline
namespaces is enabled.</p>
</div>
<div class="section" id="c-11-lambdas">
<h4>C++11 lambdas<a class="headerlink" href="#c-11-lambdas" title="Permalink to this headline"></a></h4>
<p>Use <code class="docutils literal"><span class="pre">__has_feature(cxx_lambdas)</span></code> or <code class="docutils literal"><span class="pre">__has_extension(cxx_lambdas)</span></code> to
determine if support for lambdas is enabled.</p>
</div>
<div class="section" id="c-11-local-and-unnamed-types-as-template-arguments">
<h4>C++11 local and unnamed types as template arguments<a class="headerlink" href="#c-11-local-and-unnamed-types-as-template-arguments" title="Permalink to this headline"></a></h4>
<p>Use <code class="docutils literal"><span class="pre">__has_feature(cxx_local_type_template_args)</span></code> or
<code class="docutils literal"><span class="pre">__has_extension(cxx_local_type_template_args)</span></code> to determine if support for
local and unnamed types as template arguments is enabled.</p>
</div>
<div class="section" id="c-11-noexcept">
<h4>C++11 noexcept<a class="headerlink" href="#c-11-noexcept" title="Permalink to this headline"></a></h4>
<p>Use <code class="docutils literal"><span class="pre">__has_feature(cxx_noexcept)</span></code> or <code class="docutils literal"><span class="pre">__has_extension(cxx_noexcept)</span></code> to
determine if support for noexcept exception specifications is enabled.</p>
</div>
<div class="section" id="c-11-in-class-non-static-data-member-initialization">
<h4>C++11 in-class non-static data member initialization<a class="headerlink" href="#c-11-in-class-non-static-data-member-initialization" title="Permalink to this headline"></a></h4>
<p>Use <code class="docutils literal"><span class="pre">__has_feature(cxx_nonstatic_member_init)</span></code> to determine whether in-class
initialization of non-static data members is enabled.</p>
</div>
<div class="section" id="c-11-nullptr">
<h4>C++11 <code class="docutils literal"><span class="pre">nullptr</span></code><a class="headerlink" href="#c-11-nullptr" title="Permalink to this headline"></a></h4>
<p>Use <code class="docutils literal"><span class="pre">__has_feature(cxx_nullptr)</span></code> or <code class="docutils literal"><span class="pre">__has_extension(cxx_nullptr)</span></code> to
determine if support for <code class="docutils literal"><span class="pre">nullptr</span></code> is enabled.</p>
</div>
<div class="section" id="c-11-override-control">
<h4>C++11 <code class="docutils literal"><span class="pre">override</span> <span class="pre">control</span></code><a class="headerlink" href="#c-11-override-control" title="Permalink to this headline"></a></h4>
<p>Use <code class="docutils literal"><span class="pre">__has_feature(cxx_override_control)</span></code> or
<code class="docutils literal"><span class="pre">__has_extension(cxx_override_control)</span></code> to determine if support for the
override control keywords is enabled.</p>
</div>
<div class="section" id="c-11-reference-qualified-functions">
<h4>C++11 reference-qualified functions<a class="headerlink" href="#c-11-reference-qualified-functions" title="Permalink to this headline"></a></h4>
<p>Use <code class="docutils literal"><span class="pre">__has_feature(cxx_reference_qualified_functions)</span></code> or
<code class="docutils literal"><span class="pre">__has_extension(cxx_reference_qualified_functions)</span></code> to determine if support
for reference-qualified functions (e.g., member functions with <code class="docutils literal"><span class="pre">&amp;</span></code> or <code class="docutils literal"><span class="pre">&amp;&amp;</span></code>
applied to <code class="docutils literal"><span class="pre">*this</span></code>) is enabled.</p>
</div>
<div class="section" id="c-11-range-based-for-loop">
<h4>C++11 range-based <code class="docutils literal"><span class="pre">for</span></code> loop<a class="headerlink" href="#c-11-range-based-for-loop" title="Permalink to this headline"></a></h4>
<p>Use <code class="docutils literal"><span class="pre">__has_feature(cxx_range_for)</span></code> or <code class="docutils literal"><span class="pre">__has_extension(cxx_range_for)</span></code> to
determine if support for the range-based for loop is enabled.</p>
</div>
<div class="section" id="c-11-raw-string-literals">
<h4>C++11 raw string literals<a class="headerlink" href="#c-11-raw-string-literals" title="Permalink to this headline"></a></h4>
<p>Use <code class="docutils literal"><span class="pre">__has_feature(cxx_raw_string_literals)</span></code> to determine if support for raw
string literals (e.g., <code class="docutils literal"><span class="pre">R&quot;x(foo\bar)x&quot;</span></code>) is enabled.</p>
</div>
<div class="section" id="c-11-rvalue-references">
<h4>C++11 rvalue references<a class="headerlink" href="#c-11-rvalue-references" title="Permalink to this headline"></a></h4>
<p>Use <code class="docutils literal"><span class="pre">__has_feature(cxx_rvalue_references)</span></code> or
<code class="docutils literal"><span class="pre">__has_extension(cxx_rvalue_references)</span></code> to determine if support for rvalue
references is enabled.</p>
</div>
<div class="section" id="c-11-static-assert">
<h4>C++11 <code class="docutils literal"><span class="pre">static_assert()</span></code><a class="headerlink" href="#c-11-static-assert" title="Permalink to this headline"></a></h4>
<p>Use <code class="docutils literal"><span class="pre">__has_feature(cxx_static_assert)</span></code> or
<code class="docutils literal"><span class="pre">__has_extension(cxx_static_assert)</span></code> to determine if support for compile-time
assertions using <code class="docutils literal"><span class="pre">static_assert</span></code> is enabled.</p>
</div>
<div class="section" id="c-11-thread-local">
<h4>C++11 <code class="docutils literal"><span class="pre">thread_local</span></code><a class="headerlink" href="#c-11-thread-local" title="Permalink to this headline"></a></h4>
<p>Use <code class="docutils literal"><span class="pre">__has_feature(cxx_thread_local)</span></code> to determine if support for
<code class="docutils literal"><span class="pre">thread_local</span></code> variables is enabled.</p>
</div>
<div class="section" id="c-11-type-inference">
<h4>C++11 type inference<a class="headerlink" href="#c-11-type-inference" title="Permalink to this headline"></a></h4>
<p>Use <code class="docutils literal"><span class="pre">__has_feature(cxx_auto_type)</span></code> or <code class="docutils literal"><span class="pre">__has_extension(cxx_auto_type)</span></code> to
determine C++11 type inference is supported using the <code class="docutils literal"><span class="pre">auto</span></code> specifier.  If
this is disabled, <code class="docutils literal"><span class="pre">auto</span></code> will instead be a storage class specifier, as in C
or C++98.</p>
</div>
<div class="section" id="c-11-strongly-typed-enumerations">
<h4>C++11 strongly typed enumerations<a class="headerlink" href="#c-11-strongly-typed-enumerations" title="Permalink to this headline"></a></h4>
<p>Use <code class="docutils literal"><span class="pre">__has_feature(cxx_strong_enums)</span></code> or
<code class="docutils literal"><span class="pre">__has_extension(cxx_strong_enums)</span></code> to determine if support for strongly
typed, scoped enumerations is enabled.</p>
</div>
<div class="section" id="c-11-trailing-return-type">
<h4>C++11 trailing return type<a class="headerlink" href="#c-11-trailing-return-type" title="Permalink to this headline"></a></h4>
<p>Use <code class="docutils literal"><span class="pre">__has_feature(cxx_trailing_return)</span></code> or
<code class="docutils literal"><span class="pre">__has_extension(cxx_trailing_return)</span></code> to determine if support for the
alternate function declaration syntax with trailing return type is enabled.</p>
</div>
<div class="section" id="c-11-unicode-string-literals">
<h4>C++11 Unicode string literals<a class="headerlink" href="#c-11-unicode-string-literals" title="Permalink to this headline"></a></h4>
<p>Use <code class="docutils literal"><span class="pre">__has_feature(cxx_unicode_literals)</span></code> to determine if support for Unicode
string literals is enabled.</p>
</div>
<div class="section" id="c-11-unrestricted-unions">
<h4>C++11 unrestricted unions<a class="headerlink" href="#c-11-unrestricted-unions" title="Permalink to this headline"></a></h4>
<p>Use <code class="docutils literal"><span class="pre">__has_feature(cxx_unrestricted_unions)</span></code> to determine if support for
unrestricted unions is enabled.</p>
</div>
<div class="section" id="c-11-user-defined-literals">
<h4>C++11 user-defined literals<a class="headerlink" href="#c-11-user-defined-literals" title="Permalink to this headline"></a></h4>
<p>Use <code class="docutils literal"><span class="pre">__has_feature(cxx_user_literals)</span></code> to determine if support for
user-defined literals is enabled.</p>
</div>
<div class="section" id="c-11-variadic-templates">
<h4>C++11 variadic templates<a class="headerlink" href="#c-11-variadic-templates" title="Permalink to this headline"></a></h4>
<p>Use <code class="docutils literal"><span class="pre">__has_feature(cxx_variadic_templates)</span></code> or
<code class="docutils literal"><span class="pre">__has_extension(cxx_variadic_templates)</span></code> to determine if support for
variadic templates is enabled.</p>
</div>
</div>
<div class="section" id="c-1y">
<h3>C++1y<a class="headerlink" href="#c-1y" title="Permalink to this headline"></a></h3>
<p>The features listed below are part of the committee draft for the C++1y
standard.  As a result, all these features are enabled with the <code class="docutils literal"><span class="pre">-std=c++1y</span></code>
or <code class="docutils literal"><span class="pre">-std=gnu++1y</span></code> option when compiling C++ code.</p>
<div class="section" id="c-1y-binary-literals">
<h4>C++1y binary literals<a class="headerlink" href="#c-1y-binary-literals" title="Permalink to this headline"></a></h4>
<p>Use <code class="docutils literal"><span class="pre">__has_feature(cxx_binary_literals)</span></code> or
<code class="docutils literal"><span class="pre">__has_extension(cxx_binary_literals)</span></code> to determine whether
binary literals (for instance, <code class="docutils literal"><span class="pre">0b10010</span></code>) are recognized. Clang supports this
feature as an extension in all language modes.</p>
</div>
<div class="section" id="c-1y-contextual-conversions">
<h4>C++1y contextual conversions<a class="headerlink" href="#c-1y-contextual-conversions" title="Permalink to this headline"></a></h4>
<p>Use <code class="docutils literal"><span class="pre">__has_feature(cxx_contextual_conversions)</span></code> or
<code class="docutils literal"><span class="pre">__has_extension(cxx_contextual_conversions)</span></code> to determine if the C++1y rules
are used when performing an implicit conversion for an array bound in a
<em>new-expression</em>, the operand of a <em>delete-expression</em>, an integral constant
expression, or a condition in a <code class="docutils literal"><span class="pre">switch</span></code> statement.</p>
</div>
<div class="section" id="c-1y-decltype-auto">
<h4>C++1y decltype(auto)<a class="headerlink" href="#c-1y-decltype-auto" title="Permalink to this headline"></a></h4>
<p>Use <code class="docutils literal"><span class="pre">__has_feature(cxx_decltype_auto)</span></code> or
<code class="docutils literal"><span class="pre">__has_extension(cxx_decltype_auto)</span></code> to determine if support
for the <code class="docutils literal"><span class="pre">decltype(auto)</span></code> placeholder type is enabled.</p>
</div>
<div class="section" id="c-1y-default-initializers-for-aggregates">
<h4>C++1y default initializers for aggregates<a class="headerlink" href="#c-1y-default-initializers-for-aggregates" title="Permalink to this headline"></a></h4>
<p>Use <code class="docutils literal"><span class="pre">__has_feature(cxx_aggregate_nsdmi)</span></code> or
<code class="docutils literal"><span class="pre">__has_extension(cxx_aggregate_nsdmi)</span></code> to determine if support
for default initializers in aggregate members is enabled.</p>
</div>
<div class="section" id="c-1y-generalized-lambda-capture">
<h4>C++1y generalized lambda capture<a class="headerlink" href="#c-1y-generalized-lambda-capture" title="Permalink to this headline"></a></h4>
<p>Use <code class="docutils literal"><span class="pre">__has_feature(cxx_init_captures)</span></code> or
<code class="docutils literal"><span class="pre">__has_extension(cxx_init_captures)</span></code> to determine if support for
lambda captures with explicit initializers is enabled
(for instance, <code class="docutils literal"><span class="pre">[n(0)]</span> <span class="pre">{</span> <span class="pre">return</span> <span class="pre">++n;</span> <span class="pre">}</span></code>).</p>
</div>
<div class="section" id="c-1y-generic-lambdas">
<h4>C++1y generic lambdas<a class="headerlink" href="#c-1y-generic-lambdas" title="Permalink to this headline"></a></h4>
<p>Use <code class="docutils literal"><span class="pre">__has_feature(cxx_generic_lambdas)</span></code> or
<code class="docutils literal"><span class="pre">__has_extension(cxx_generic_lambdas)</span></code> to determine if support for generic
(polymorphic) lambdas is enabled
(for instance, <code class="docutils literal"><span class="pre">[]</span> <span class="pre">(auto</span> <span class="pre">x)</span> <span class="pre">{</span> <span class="pre">return</span> <span class="pre">x</span> <span class="pre">+</span> <span class="pre">1;</span> <span class="pre">}</span></code>).</p>
</div>
<div class="section" id="c-1y-relaxed-constexpr">
<h4>C++1y relaxed constexpr<a class="headerlink" href="#c-1y-relaxed-constexpr" title="Permalink to this headline"></a></h4>
<p>Use <code class="docutils literal"><span class="pre">__has_feature(cxx_relaxed_constexpr)</span></code> or
<code class="docutils literal"><span class="pre">__has_extension(cxx_relaxed_constexpr)</span></code> to determine if variable
declarations, local variable modification, and control flow constructs
are permitted in <code class="docutils literal"><span class="pre">constexpr</span></code> functions.</p>
</div>
<div class="section" id="c-1y-return-type-deduction">
<h4>C++1y return type deduction<a class="headerlink" href="#c-1y-return-type-deduction" title="Permalink to this headline"></a></h4>
<p>Use <code class="docutils literal"><span class="pre">__has_feature(cxx_return_type_deduction)</span></code> or
<code class="docutils literal"><span class="pre">__has_extension(cxx_return_type_deduction)</span></code> to determine if support
for return type deduction for functions (using <code class="docutils literal"><span class="pre">auto</span></code> as a return type)
is enabled.</p>
</div>
<div class="section" id="c-1y-runtime-sized-arrays">
<h4>C++1y runtime-sized arrays<a class="headerlink" href="#c-1y-runtime-sized-arrays" title="Permalink to this headline"></a></h4>
<p>Use <code class="docutils literal"><span class="pre">__has_feature(cxx_runtime_array)</span></code> or
<code class="docutils literal"><span class="pre">__has_extension(cxx_runtime_array)</span></code> to determine if support
for arrays of runtime bound (a restricted form of variable-length arrays)
is enabled.
Clang&#8217;s implementation of this feature is incomplete.</p>
</div>
<div class="section" id="c-1y-variable-templates">
<h4>C++1y variable templates<a class="headerlink" href="#c-1y-variable-templates" title="Permalink to this headline"></a></h4>
<p>Use <code class="docutils literal"><span class="pre">__has_feature(cxx_variable_templates)</span></code> or
<code class="docutils literal"><span class="pre">__has_extension(cxx_variable_templates)</span></code> to determine if support for
templated variable declarations is enabled.</p>
</div>
</div>
<div class="section" id="c11">
<h3>C11<a class="headerlink" href="#c11" title="Permalink to this headline"></a></h3>
<p>The features listed below are part of the C11 standard.  As a result, all these
features are enabled with the <code class="docutils literal"><span class="pre">-std=c11</span></code> or <code class="docutils literal"><span class="pre">-std=gnu11</span></code> option when
compiling C code.  Additionally, because these features are all
backward-compatible, they are available as extensions in all language modes.</p>
<div class="section" id="c11-alignment-specifiers">
<h4>C11 alignment specifiers<a class="headerlink" href="#c11-alignment-specifiers" title="Permalink to this headline"></a></h4>
<p>Use <code class="docutils literal"><span class="pre">__has_feature(c_alignas)</span></code> or <code class="docutils literal"><span class="pre">__has_extension(c_alignas)</span></code> to determine
if support for alignment specifiers using <code class="docutils literal"><span class="pre">_Alignas</span></code> is enabled.</p>
</div>
<div class="section" id="c11-atomic-operations">
<h4>C11 atomic operations<a class="headerlink" href="#c11-atomic-operations" title="Permalink to this headline"></a></h4>
<p>Use <code class="docutils literal"><span class="pre">__has_feature(c_atomic)</span></code> or <code class="docutils literal"><span class="pre">__has_extension(c_atomic)</span></code> to determine
if support for atomic types using <code class="docutils literal"><span class="pre">_Atomic</span></code> is enabled.  Clang also provides
<a class="reference internal" href="#langext-c11-atomic"><span>a set of builtins</span></a> which can be used to implement
the <code class="docutils literal"><span class="pre">&lt;stdatomic.h&gt;</span></code> operations on <code class="docutils literal"><span class="pre">_Atomic</span></code> types.</p>
</div>
<div class="section" id="c11-generic-selections">
<h4>C11 generic selections<a class="headerlink" href="#c11-generic-selections" title="Permalink to this headline"></a></h4>
<p>Use <code class="docutils literal"><span class="pre">__has_feature(c_generic_selections)</span></code> or
<code class="docutils literal"><span class="pre">__has_extension(c_generic_selections)</span></code> to determine if support for generic
selections is enabled.</p>
<p>As an extension, the C11 generic selection expression is available in all
languages supported by Clang.  The syntax is the same as that given in the C11
standard.</p>
<p>In C, type compatibility is decided according to the rules given in the
appropriate standard, but in C++, which lacks the type compatibility rules used
in C, types are considered compatible only if they are equivalent.</p>
</div>
<div class="section" id="c11-static-assert">
<h4>C11 <code class="docutils literal"><span class="pre">_Static_assert()</span></code><a class="headerlink" href="#c11-static-assert" title="Permalink to this headline"></a></h4>
<p>Use <code class="docutils literal"><span class="pre">__has_feature(c_static_assert)</span></code> or <code class="docutils literal"><span class="pre">__has_extension(c_static_assert)</span></code>
to determine if support for compile-time assertions using <code class="docutils literal"><span class="pre">_Static_assert</span></code> is
enabled.</p>
</div>
<div class="section" id="c11-thread-local">
<h4>C11 <code class="docutils literal"><span class="pre">_Thread_local</span></code><a class="headerlink" href="#c11-thread-local" title="Permalink to this headline"></a></h4>
<p>Use <code class="docutils literal"><span class="pre">__has_feature(c_thread_local)</span></code> or <code class="docutils literal"><span class="pre">__has_extension(c_thread_local)</span></code>
to determine if support for <code class="docutils literal"><span class="pre">_Thread_local</span></code> variables is enabled.</p>
</div>
</div>
</div>
<div class="section" id="checks-for-type-trait-primitives">
<h2><a class="toc-backref" href="#id10">Checks for Type Trait Primitives</a><a class="headerlink" href="#checks-for-type-trait-primitives" title="Permalink to this headline"></a></h2>
<p>Type trait primitives are special builtin constant expressions that can be used
by the standard C++ library to facilitate or simplify the implementation of
user-facing type traits in the &lt;type_traits&gt; header.</p>
<p>They are not intended to be used directly by user code because they are
implementation-defined and subject to change &#8211; as such they&#8217;re tied closely to
the supported set of system headers, currently:</p>
<ul class="simple">
<li>LLVM&#8217;s own libc++</li>
<li>GNU libstdc++</li>
<li>The Microsoft standard C++ library</li>
</ul>
<p>Clang supports the <a class="reference external" href="http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html">GNU C++ type traits</a> and a subset of the
<a class="reference external" href="http://msdn.microsoft.com/en-us/library/ms177194(v=VS.100).aspx">Microsoft Visual C++ Type traits</a>.</p>
<p>Feature detection is supported only for some of the primitives at present. User
code should not use these checks because they bear no direct relation to the
actual set of type traits supported by the C++ standard library.</p>
<p>For type trait <code class="docutils literal"><span class="pre">__X</span></code>, <code class="docutils literal"><span class="pre">__has_extension(X)</span></code> indicates the presence of the
type trait primitive in the compiler. A simplistic usage example as might be
seen in standard C++ headers follows:</p>
<div class="highlight-c++"><div class="highlight"><pre><span class="cp">#if __has_extension(is_convertible_to)</span>
<span class="k">template</span><span class="o">&lt;</span><span class="k">typename</span> <span class="n">From</span><span class="p">,</span> <span class="k">typename</span> <span class="n">To</span><span class="o">&gt;</span>
<span class="k">struct</span> <span class="n">is_convertible_to</span> <span class="p">{</span>
  <span class="k">static</span> <span class="k">const</span> <span class="kt">bool</span> <span class="n">value</span> <span class="o">=</span> <span class="n">__is_convertible_to</span><span class="p">(</span><span class="n">From</span><span class="p">,</span> <span class="n">To</span><span class="p">);</span>
<span class="p">};</span>
<span class="cp">#else</span>
<span class="c1">// Emulate type trait for compatibility with other compilers.</span>
<span class="cp">#endif</span>
</pre></div>
</div>
<p>The following type trait primitives are supported by Clang:</p>
<ul class="simple">
<li><code class="docutils literal"><span class="pre">__has_nothrow_assign</span></code> (GNU, Microsoft)</li>
<li><code class="docutils literal"><span class="pre">__has_nothrow_copy</span></code> (GNU, Microsoft)</li>
<li><code class="docutils literal"><span class="pre">__has_nothrow_constructor</span></code> (GNU, Microsoft)</li>
<li><code class="docutils literal"><span class="pre">__has_trivial_assign</span></code> (GNU, Microsoft)</li>
<li><code class="docutils literal"><span class="pre">__has_trivial_copy</span></code> (GNU, Microsoft)</li>
<li><code class="docutils literal"><span class="pre">__has_trivial_constructor</span></code> (GNU, Microsoft)</li>
<li><code class="docutils literal"><span class="pre">__has_trivial_destructor</span></code> (GNU, Microsoft)</li>
<li><code class="docutils literal"><span class="pre">__has_virtual_destructor</span></code> (GNU, Microsoft)</li>
<li><code class="docutils literal"><span class="pre">__is_abstract</span></code> (GNU, Microsoft)</li>
<li><code class="docutils literal"><span class="pre">__is_base_of</span></code> (GNU, Microsoft)</li>
<li><code class="docutils literal"><span class="pre">__is_class</span></code> (GNU, Microsoft)</li>
<li><code class="docutils literal"><span class="pre">__is_convertible_to</span></code> (Microsoft)</li>
<li><code class="docutils literal"><span class="pre">__is_empty</span></code> (GNU, Microsoft)</li>
<li><code class="docutils literal"><span class="pre">__is_enum</span></code> (GNU, Microsoft)</li>
<li><code class="docutils literal"><span class="pre">__is_interface_class</span></code> (Microsoft)</li>
<li><code class="docutils literal"><span class="pre">__is_pod</span></code> (GNU, Microsoft)</li>
<li><code class="docutils literal"><span class="pre">__is_polymorphic</span></code> (GNU, Microsoft)</li>
<li><code class="docutils literal"><span class="pre">__is_union</span></code> (GNU, Microsoft)</li>
<li><code class="docutils literal"><span class="pre">__is_literal(type)</span></code>: Determines whether the given type is a literal type</li>
<li><code class="docutils literal"><span class="pre">__is_final</span></code>: Determines whether the given type is declared with a
<code class="docutils literal"><span class="pre">final</span></code> class-virt-specifier.</li>
<li><code class="docutils literal"><span class="pre">__underlying_type(type)</span></code>: Retrieves the underlying type for a given
<code class="docutils literal"><span class="pre">enum</span></code> type.  This trait is required to implement the C++11 standard
library.</li>
<li><code class="docutils literal"><span class="pre">__is_trivially_assignable(totype,</span> <span class="pre">fromtype)</span></code>: Determines whether a value
of type <code class="docutils literal"><span class="pre">totype</span></code> can be assigned to from a value of type <code class="docutils literal"><span class="pre">fromtype</span></code> such
that no non-trivial functions are called as part of that assignment.  This
trait is required to implement the C++11 standard library.</li>
<li><code class="docutils literal"><span class="pre">__is_trivially_constructible(type,</span> <span class="pre">argtypes...)</span></code>: Determines whether a
value of type <code class="docutils literal"><span class="pre">type</span></code> can be direct-initialized with arguments of types
<code class="docutils literal"><span class="pre">argtypes...</span></code> such that no non-trivial functions are called as part of
that initialization.  This trait is required to implement the C++11 standard
library.</li>
<li><code class="docutils literal"><span class="pre">__is_destructible</span></code> (MSVC 2013): partially implemented</li>
<li><code class="docutils literal"><span class="pre">__is_nothrow_destructible</span></code> (MSVC 2013): partially implemented</li>
<li><code class="docutils literal"><span class="pre">__is_nothrow_assignable</span></code> (MSVC 2013, clang)</li>
<li><code class="docutils literal"><span class="pre">__is_constructible</span></code> (MSVC 2013, clang)</li>
<li><code class="docutils literal"><span class="pre">__is_nothrow_constructible</span></code> (MSVC 2013, clang)</li>
</ul>
</div>
<div class="section" id="blocks">
<h2><a class="toc-backref" href="#id11">Blocks</a><a class="headerlink" href="#blocks" title="Permalink to this headline"></a></h2>
<p>The syntax and high level language feature description is in
<a class="reference internal" href="BlockLanguageSpec.html"><em>BlockLanguageSpec</em></a>. Implementation and ABI details for
the clang implementation are in <a class="reference internal" href="Block-ABI-Apple.html"><em>Block-ABI-Apple</em></a>.</p>
<p>Query for this feature with <code class="docutils literal"><span class="pre">__has_extension(blocks)</span></code>.</p>
</div>
<div class="section" id="objective-c-features">
<h2><a class="toc-backref" href="#id12">Objective-C Features</a><a class="headerlink" href="#objective-c-features" title="Permalink to this headline"></a></h2>
<div class="section" id="related-result-types">
<h3>Related result types<a class="headerlink" href="#related-result-types" title="Permalink to this headline"></a></h3>
<p>According to Cocoa conventions, Objective-C methods with certain names
(&#8220;<code class="docutils literal"><span class="pre">init</span></code>&#8221;, &#8220;<code class="docutils literal"><span class="pre">alloc</span></code>&#8221;, etc.) always return objects that are an instance of
the receiving class&#8217;s type.  Such methods are said to have a &#8220;related result
type&#8221;, meaning that a message send to one of these methods will have the same
static type as an instance of the receiver class.  For example, given the
following classes:</p>
<div class="highlight-objc"><div class="highlight"><pre><span class="k">@interface</span> <span class="bp">NSObject</span>
<span class="p">+</span> <span class="p">(</span><span class="kt">id</span><span class="p">)</span><span class="nf">alloc</span><span class="p">;</span>
<span class="p">-</span> <span class="p">(</span><span class="kt">id</span><span class="p">)</span><span class="nf">init</span><span class="p">;</span>
<span class="k">@end</span>

<span class="k">@interface</span> <span class="bp">NSArray</span> : <span class="bp">NSObject</span>
<span class="k">@end</span>
</pre></div>
</div>
<p>and this common initialization pattern</p>
<div class="highlight-objc"><div class="highlight"><pre><span class="bp">NSArray</span> <span class="o">*</span><span class="n">array</span> <span class="o">=</span> <span class="p">[[</span><span class="bp">NSArray</span> <span class="n">alloc</span><span class="p">]</span> <span class="n">init</span><span class="p">];</span>
</pre></div>
</div>
<p>the type of the expression <code class="docutils literal"><span class="pre">[NSArray</span> <span class="pre">alloc]</span></code> is <code class="docutils literal"><span class="pre">NSArray*</span></code> because
<code class="docutils literal"><span class="pre">alloc</span></code> implicitly has a related result type.  Similarly, the type of the
expression <code class="docutils literal"><span class="pre">[[NSArray</span> <span class="pre">alloc]</span> <span class="pre">init]</span></code> is <code class="docutils literal"><span class="pre">NSArray*</span></code>, since <code class="docutils literal"><span class="pre">init</span></code> has a
related result type and its receiver is known to have the type <code class="docutils literal"><span class="pre">NSArray</span> <span class="pre">*</span></code>.
If neither <code class="docutils literal"><span class="pre">alloc</span></code> nor <code class="docutils literal"><span class="pre">init</span></code> had a related result type, the expressions
would have had type <code class="docutils literal"><span class="pre">id</span></code>, as declared in the method signature.</p>
<p>A method with a related result type can be declared by using the type
<code class="docutils literal"><span class="pre">instancetype</span></code> as its result type.  <code class="docutils literal"><span class="pre">instancetype</span></code> is a contextual keyword
that is only permitted in the result type of an Objective-C method, e.g.</p>
<div class="highlight-objc"><div class="highlight"><pre><span class="k">@interface</span> <span class="nc">A</span>
<span class="p">+</span> <span class="p">(</span><span class="kt">instancetype</span><span class="p">)</span><span class="nf">constructAnA</span><span class="p">;</span>
<span class="k">@end</span>
</pre></div>
</div>
<p>The related result type can also be inferred for some methods.  To determine
whether a method has an inferred related result type, the first word in the
camel-case selector (e.g., &#8220;<code class="docutils literal"><span class="pre">init</span></code>&#8221; in &#8220;<code class="docutils literal"><span class="pre">initWithObjects</span></code>&#8221;) is considered,
and the method will have a related result type if its return type is compatible
with the type of its class and if:</p>
<ul class="simple">
<li>the first word is &#8220;<code class="docutils literal"><span class="pre">alloc</span></code>&#8221; or &#8220;<code class="docutils literal"><span class="pre">new</span></code>&#8221;, and the method is a class method,
or</li>
<li>the first word is &#8220;<code class="docutils literal"><span class="pre">autorelease</span></code>&#8221;, &#8220;<code class="docutils literal"><span class="pre">init</span></code>&#8221;, &#8220;<code class="docutils literal"><span class="pre">retain</span></code>&#8221;, or &#8220;<code class="docutils literal"><span class="pre">self</span></code>&#8221;,
and the method is an instance method.</li>
</ul>
<p>If a method with a related result type is overridden by a subclass method, the
subclass method must also return a type that is compatible with the subclass
type.  For example:</p>
<div class="highlight-objc"><div class="highlight"><pre><span class="k">@interface</span> <span class="bp">NSString</span> : <span class="bp">NSObject</span>
<span class="p">-</span> <span class="p">(</span><span class="n">NSUnrelated</span> <span class="o">*</span><span class="p">)</span><span class="nf">init</span><span class="p">;</span> <span class="c1">// incorrect usage: NSUnrelated is not NSString or a superclass of NSString</span>
<span class="k">@end</span>
</pre></div>
</div>
<p>Related result types only affect the type of a message send or property access
via the given method.  In all other respects, a method with a related result
type is treated the same way as method that returns <code class="docutils literal"><span class="pre">id</span></code>.</p>
<p>Use <code class="docutils literal"><span class="pre">__has_feature(objc_instancetype)</span></code> to determine whether the
<code class="docutils literal"><span class="pre">instancetype</span></code> contextual keyword is available.</p>
</div>
<div class="section" id="automatic-reference-counting">
<h3>Automatic reference counting<a class="headerlink" href="#automatic-reference-counting" title="Permalink to this headline"></a></h3>
<p>Clang provides support for <a class="reference internal" href="AutomaticReferenceCounting.html"><em>automated reference counting</em></a> in Objective-C, which eliminates the need
for manual <code class="docutils literal"><span class="pre">retain</span></code>/<code class="docutils literal"><span class="pre">release</span></code>/<code class="docutils literal"><span class="pre">autorelease</span></code> message sends.  There are two
feature macros associated with automatic reference counting:
<code class="docutils literal"><span class="pre">__has_feature(objc_arc)</span></code> indicates the availability of automated reference
counting in general, while <code class="docutils literal"><span class="pre">__has_feature(objc_arc_weak)</span></code> indicates that
automated reference counting also includes support for <code class="docutils literal"><span class="pre">__weak</span></code> pointers to
Objective-C objects.</p>
</div>
<div class="section" id="enumerations-with-a-fixed-underlying-type">
<span id="objc-fixed-enum"></span><h3>Enumerations with a fixed underlying type<a class="headerlink" href="#enumerations-with-a-fixed-underlying-type" title="Permalink to this headline"></a></h3>
<p>Clang provides support for C++11 enumerations with a fixed underlying type
within Objective-C.  For example, one can write an enumeration type as:</p>
<div class="highlight-c++"><div class="highlight"><pre><span class="k">typedef</span> <span class="k">enum</span> <span class="o">:</span> <span class="kt">unsigned</span> <span class="kt">char</span> <span class="p">{</span> <span class="n">Red</span><span class="p">,</span> <span class="n">Green</span><span class="p">,</span> <span class="n">Blue</span> <span class="p">}</span> <span class="n">Color</span><span class="p">;</span>
</pre></div>
</div>
<p>This specifies that the underlying type, which is used to store the enumeration
value, is <code class="docutils literal"><span class="pre">unsigned</span> <span class="pre">char</span></code>.</p>
<p>Use <code class="docutils literal"><span class="pre">__has_feature(objc_fixed_enum)</span></code> to determine whether support for fixed
underlying types is available in Objective-C.</p>
</div>
<div class="section" id="interoperability-with-c-11-lambdas">
<h3>Interoperability with C++11 lambdas<a class="headerlink" href="#interoperability-with-c-11-lambdas" title="Permalink to this headline"></a></h3>
<p>Clang provides interoperability between C++11 lambdas and blocks-based APIs, by
permitting a lambda to be implicitly converted to a block pointer with the
corresponding signature.  For example, consider an API such as <code class="docutils literal"><span class="pre">NSArray</span></code>&#8216;s
array-sorting method:</p>
<div class="highlight-objc"><div class="highlight"><pre><span class="p">-</span> <span class="p">(</span><span class="bp">NSArray</span> <span class="o">*</span><span class="p">)</span><span class="nf">sortedArrayUsingComparator:</span><span class="p">(</span><span class="n">NSComparator</span><span class="p">)</span><span class="nv">cmptr</span><span class="p">;</span>
</pre></div>
</div>
<p><code class="docutils literal"><span class="pre">NSComparator</span></code> is simply a typedef for the block pointer <code class="docutils literal"><span class="pre">NSComparisonResult</span>
<span class="pre">(^)(id,</span> <span class="pre">id)</span></code>, and parameters of this type are generally provided with block
literals as arguments.  However, one can also use a C++11 lambda so long as it
provides the same signature (in this case, accepting two parameters of type
<code class="docutils literal"><span class="pre">id</span></code> and returning an <code class="docutils literal"><span class="pre">NSComparisonResult</span></code>):</p>
<div class="highlight-objc"><div class="highlight"><pre><span class="bp">NSArray</span> <span class="o">*</span><span class="n">array</span> <span class="o">=</span> <span class="l">@[</span><span class="s">@&quot;string 1&quot;</span><span class="p">,</span> <span class="s">@&quot;string 21&quot;</span><span class="p">,</span> <span class="s">@&quot;string 12&quot;</span><span class="p">,</span> <span class="s">@&quot;String 11&quot;</span><span class="p">,</span>
                   <span class="s">@&quot;String 02&quot;</span><span class="l">]</span><span class="p">;</span>
<span class="k">const</span> <span class="n">NSStringCompareOptions</span> <span class="n">comparisonOptions</span>
  <span class="o">=</span> <span class="n">NSCaseInsensitiveSearch</span> <span class="o">|</span> <span class="n">NSNumericSearch</span> <span class="o">|</span>
    <span class="n">NSWidthInsensitiveSearch</span> <span class="o">|</span> <span class="n">NSForcedOrderingSearch</span><span class="p">;</span>
<span class="bp">NSLocale</span> <span class="o">*</span><span class="n">currentLocale</span> <span class="o">=</span> <span class="p">[</span><span class="bp">NSLocale</span> <span class="n">currentLocale</span><span class="p">];</span>
<span class="bp">NSArray</span> <span class="o">*</span><span class="n">sorted</span>
  <span class="o">=</span> <span class="p">[</span><span class="n">array</span> <span class="nl">sortedArrayUsingComparator</span><span class="p">:[</span><span class="o">=</span><span class="p">](</span><span class="kt">id</span> <span class="n">s1</span><span class="p">,</span> <span class="kt">id</span> <span class="n">s2</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="n">NSComparisonResult</span> <span class="p">{</span>
             <span class="n">NSRange</span> <span class="n">string1Range</span> <span class="o">=</span> <span class="n">NSMakeRange</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="p">[</span><span class="n">s1</span> <span class="n">length</span><span class="p">]);</span>
             <span class="k">return</span> <span class="p">[</span><span class="n">s1</span> <span class="nl">compare</span><span class="p">:</span><span class="n">s2</span> <span class="nl">options</span><span class="p">:</span><span class="n">comparisonOptions</span>
             <span class="nl">range</span><span class="p">:</span><span class="n">string1Range</span> <span class="nl">locale</span><span class="p">:</span><span class="n">currentLocale</span><span class="p">];</span>
     <span class="p">}];</span>
<span class="n">NSLog</span><span class="p">(</span><span class="s">@&quot;sorted: %@&quot;</span><span class="p">,</span> <span class="n">sorted</span><span class="p">);</span>
</pre></div>
</div>
<p>This code relies on an implicit conversion from the type of the lambda
expression (an unnamed, local class type called the <em>closure type</em>) to the
corresponding block pointer type.  The conversion itself is expressed by a
conversion operator in that closure type that produces a block pointer with the
same signature as the lambda itself, e.g.,</p>
<div class="highlight-objc"><div class="highlight"><pre><span class="n">operator</span> <span class="nf">NSComparisonResult</span> <span class="p">(</span><span class="o">^</span><span class="p">)(</span><span class="kt">id</span><span class="p">,</span> <span class="kt">id</span><span class="p">)()</span> <span class="k">const</span><span class="p">;</span>
</pre></div>
</div>
<p>This conversion function returns a new block that simply forwards the two
parameters to the lambda object (which it captures by copy), then returns the
result.  The returned block is first copied (with <code class="docutils literal"><span class="pre">Block_copy</span></code>) and then
autoreleased.  As an optimization, if a lambda expression is immediately
converted to a block pointer (as in the first example, above), then the block
is not copied and autoreleased: rather, it is given the same lifetime as a
block literal written at that point in the program, which avoids the overhead
of copying a block to the heap in the common case.</p>
<p>The conversion from a lambda to a block pointer is only available in
Objective-C++, and not in C++ with blocks, due to its use of Objective-C memory
management (autorelease).</p>
</div>
<div class="section" id="object-literals-and-subscripting">
<h3>Object Literals and Subscripting<a class="headerlink" href="#object-literals-and-subscripting" title="Permalink to this headline"></a></h3>
<p>Clang provides support for <a class="reference internal" href="ObjectiveCLiterals.html"><em>Object Literals and Subscripting</em></a> in Objective-C, which simplifies common Objective-C
programming patterns, makes programs more concise, and improves the safety of
container creation.  There are several feature macros associated with object
literals and subscripting: <code class="docutils literal"><span class="pre">__has_feature(objc_array_literals)</span></code> tests the
availability of array literals; <code class="docutils literal"><span class="pre">__has_feature(objc_dictionary_literals)</span></code>
tests the availability of dictionary literals;
<code class="docutils literal"><span class="pre">__has_feature(objc_subscripting)</span></code> tests the availability of object
subscripting.</p>
</div>
<div class="section" id="objective-c-autosynthesis-of-properties">
<h3>Objective-C Autosynthesis of Properties<a class="headerlink" href="#objective-c-autosynthesis-of-properties" title="Permalink to this headline"></a></h3>
<p>Clang provides support for autosynthesis of declared properties.  Using this
feature, clang provides default synthesis of those properties not declared
&#64;dynamic and not having user provided backing getter and setter methods.
<code class="docutils literal"><span class="pre">__has_feature(objc_default_synthesize_properties)</span></code> checks for availability
of this feature in version of clang being used.</p>
</div>
<div class="section" id="objective-c-retaining-behavior-attributes">
<span id="langext-objc-retain-release"></span><h3>Objective-C retaining behavior attributes<a class="headerlink" href="#objective-c-retaining-behavior-attributes" title="Permalink to this headline"></a></h3>
<p>In Objective-C, functions and methods are generally assumed to follow the
<a class="reference external" href="http://developer.apple.com/library/mac/#documentation/Cocoa/Conceptual/MemoryMgmt/Articles/mmRules.html">Cocoa Memory Management</a>
conventions for ownership of object arguments and
return values. However, there are exceptions, and so Clang provides attributes
to allow these exceptions to be documented. This are used by ARC and the
<a class="reference external" href="http://clang-analyzer.llvm.org">static analyzer</a> Some exceptions may be
better described using the <code class="docutils literal"><span class="pre">objc_method_family</span></code> attribute instead.</p>
<p><strong>Usage</strong>: The <code class="docutils literal"><span class="pre">ns_returns_retained</span></code>, <code class="docutils literal"><span class="pre">ns_returns_not_retained</span></code>,
<code class="docutils literal"><span class="pre">ns_returns_autoreleased</span></code>, <code class="docutils literal"><span class="pre">cf_returns_retained</span></code>, and
<code class="docutils literal"><span class="pre">cf_returns_not_retained</span></code> attributes can be placed on methods and functions
that return Objective-C or CoreFoundation objects. They are commonly placed at
the end of a function prototype or method declaration:</p>
<div class="highlight-objc"><div class="highlight"><pre><span class="kt">id</span> <span class="nf">foo</span><span class="p">()</span> <span class="n">__attribute__</span><span class="p">((</span><span class="n">ns_returns_retained</span><span class="p">));</span>

<span class="p">-</span> <span class="p">(</span><span class="bp">NSString</span> <span class="o">*</span><span class="p">)</span><span class="nf">bar:</span><span class="p">(</span><span class="kt">int</span><span class="p">)</span><span class="nv">x</span> <span class="n">__attribute__</span><span class="p">((</span><span class="n">ns_returns_retained</span><span class="p">));</span>
</pre></div>
</div>
<p>The <code class="docutils literal"><span class="pre">*_returns_retained</span></code> attributes specify that the returned object has a +1
retain count.  The <code class="docutils literal"><span class="pre">*_returns_not_retained</span></code> attributes specify that the return
object has a +0 retain count, even if the normal convention for its selector
would be +1.  <code class="docutils literal"><span class="pre">ns_returns_autoreleased</span></code> specifies that the returned object is
+0, but is guaranteed to live at least as long as the next flush of an
autorelease pool.</p>
<p><strong>Usage</strong>: The <code class="docutils literal"><span class="pre">ns_consumed</span></code> and <code class="docutils literal"><span class="pre">cf_consumed</span></code> attributes can be placed on
an parameter declaration; they specify that the argument is expected to have a
+1 retain count, which will be balanced in some way by the function or method.
The <code class="docutils literal"><span class="pre">ns_consumes_self</span></code> attribute can only be placed on an Objective-C
method; it specifies that the method expects its <code class="docutils literal"><span class="pre">self</span></code> parameter to have a
+1 retain count, which it will balance in some way.</p>
<div class="highlight-objc"><div class="highlight"><pre><span class="kt">void</span> <span class="nf">foo</span><span class="p">(</span><span class="n">__attribute__</span><span class="p">((</span><span class="n">ns_consumed</span><span class="p">))</span> <span class="bp">NSString</span> <span class="o">*</span><span class="n">string</span><span class="p">);</span>

<span class="p">-</span> <span class="p">(</span><span class="kt">void</span><span class="p">)</span> <span class="nf">bar</span> <span class="n">__attribute__</span><span class="p">((</span><span class="n">ns_consumes_self</span><span class="p">));</span>
<span class="p">-</span> <span class="p">(</span><span class="kt">void</span><span class="p">)</span> <span class="nf">baz:</span><span class="p">(</span><span class="kt">id</span><span class="p">)</span> <span class="nv">__attribute__</span><span class="p">((</span><span class="n">ns_consumed</span><span class="p">))</span> <span class="nv">x</span><span class="p">;</span>
</pre></div>
</div>
<p>Further examples of these attributes are available in the static analyzer&#8217;s <a class="reference external" href="http://clang-analyzer.llvm.org/annotations.html#cocoa_mem">list of annotations for analysis</a>.</p>
<p>Query for these features with <code class="docutils literal"><span class="pre">__has_attribute(ns_consumed)</span></code>,
<code class="docutils literal"><span class="pre">__has_attribute(ns_returns_retained)</span></code>, etc.</p>
</div>
<div class="section" id="objective-c-abi-protocol-qualifier-mangling-of-parameters">
<h3>Objective-C++ ABI: protocol-qualifier mangling of parameters<a class="headerlink" href="#objective-c-abi-protocol-qualifier-mangling-of-parameters" title="Permalink to this headline"></a></h3>
<p>Starting with LLVM 3.4, Clang produces a new mangling for parameters whose
type is a qualified-<code class="docutils literal"><span class="pre">id</span></code> (e.g., <code class="docutils literal"><span class="pre">id&lt;Foo&gt;</span></code>).  This mangling allows such
parameters to be differentiated from those with the regular unqualified <code class="docutils literal"><span class="pre">id</span></code>
type.</p>
<p>This was a non-backward compatible mangling change to the ABI.  This change
allows proper overloading, and also prevents mangling conflicts with template
parameters of protocol-qualified type.</p>
<p>Query the presence of this new mangling with
<code class="docutils literal"><span class="pre">__has_feature(objc_protocol_qualifier_mangling)</span></code>.</p>
</div>
</div>
<div class="section" id="initializer-lists-for-complex-numbers-in-c">
<span id="langext-overloading"></span><h2><a class="toc-backref" href="#id13">Initializer lists for complex numbers in C</a><a class="headerlink" href="#initializer-lists-for-complex-numbers-in-c" title="Permalink to this headline"></a></h2>
<p>clang supports an extension which allows the following in C:</p>
<div class="highlight-c++"><div class="highlight"><pre><span class="cp">#include</span> <span class="cpf">&lt;math.h&gt;</span><span class="cp"></span>
<span class="cp">#include</span> <span class="cpf">&lt;complex.h&gt;</span><span class="cp"></span>
<span class="n">complex</span> <span class="kt">float</span> <span class="n">x</span> <span class="o">=</span> <span class="p">{</span> <span class="mf">1.0f</span><span class="p">,</span> <span class="n">INFINITY</span> <span class="p">};</span> <span class="c1">// Init to (1, Inf)</span>
</pre></div>
</div>
<p>This construct is useful because there is no way to separately initialize the
real and imaginary parts of a complex variable in standard C, given that clang
does not support <code class="docutils literal"><span class="pre">_Imaginary</span></code>.  (Clang also supports the <code class="docutils literal"><span class="pre">__real__</span></code> and
<code class="docutils literal"><span class="pre">__imag__</span></code> extensions from gcc, which help in some cases, but are not usable
in static initializers.)</p>
<p>Note that this extension does not allow eliding the braces; the meaning of the
following two lines is different:</p>
<div class="highlight-c++"><div class="highlight"><pre><span class="n">complex</span> <span class="kt">float</span> <span class="n">x</span><span class="p">[]</span> <span class="o">=</span> <span class="p">{</span> <span class="p">{</span> <span class="mf">1.0f</span><span class="p">,</span> <span class="mf">1.0f</span> <span class="p">}</span> <span class="p">};</span> <span class="c1">// [0] = (1, 1)</span>
<span class="n">complex</span> <span class="kt">float</span> <span class="n">x</span><span class="p">[]</span> <span class="o">=</span> <span class="p">{</span> <span class="mf">1.0f</span><span class="p">,</span> <span class="mf">1.0f</span> <span class="p">};</span> <span class="c1">// [0] = (1, 0), [1] = (1, 0)</span>
</pre></div>
</div>
<p>This extension also works in C++ mode, as far as that goes, but does not apply
to the C++ <code class="docutils literal"><span class="pre">std::complex</span></code>.  (In C++11, list initialization allows the same
syntax to be used with <code class="docutils literal"><span class="pre">std::complex</span></code> with the same meaning.)</p>
</div>
<div class="section" id="builtin-functions">
<h2><a class="toc-backref" href="#id14">Builtin Functions</a><a class="headerlink" href="#builtin-functions" title="Permalink to this headline"></a></h2>
<p>Clang supports a number of builtin library functions with the same syntax as
GCC, including things like <code class="docutils literal"><span class="pre">__builtin_nan</span></code>, <code class="docutils literal"><span class="pre">__builtin_constant_p</span></code>,
<code class="docutils literal"><span class="pre">__builtin_choose_expr</span></code>, <code class="docutils literal"><span class="pre">__builtin_types_compatible_p</span></code>,
<code class="docutils literal"><span class="pre">__sync_fetch_and_add</span></code>, etc.  In addition to the GCC builtins, Clang supports
a number of builtins that GCC does not, which are listed here.</p>
<p>Please note that Clang does not and will not support all of the GCC builtins
for vector operations.  Instead of using builtins, you should use the functions
defined in target-specific header files like <code class="docutils literal"><span class="pre">&lt;xmmintrin.h&gt;</span></code>, which define
portable wrappers for these.  Many of the Clang versions of these functions are
implemented directly in terms of <a class="reference internal" href="#langext-vectors"><span>extended vector support</span></a> instead of builtins, in order to reduce the number of
builtins that we need to implement.</p>
<div class="section" id="builtin-readcyclecounter">
<h3><code class="docutils literal"><span class="pre">__builtin_readcyclecounter</span></code><a class="headerlink" href="#builtin-readcyclecounter" title="Permalink to this headline"></a></h3>
<p><code class="docutils literal"><span class="pre">__builtin_readcyclecounter</span></code> is used to access the cycle counter register (or
a similar low-latency, high-accuracy clock) on those targets that support it.</p>
<p><strong>Syntax</strong>:</p>
<div class="highlight-c++"><div class="highlight"><pre><span class="n">__builtin_readcyclecounter</span><span class="p">()</span>
</pre></div>
</div>
<p><strong>Example of Use</strong>:</p>
<div class="highlight-c++"><div class="highlight"><pre><span class="kt">unsigned</span> <span class="kt">long</span> <span class="kt">long</span> <span class="n">t0</span> <span class="o">=</span> <span class="n">__builtin_readcyclecounter</span><span class="p">();</span>
<span class="n">do_something</span><span class="p">();</span>
<span class="kt">unsigned</span> <span class="kt">long</span> <span class="kt">long</span> <span class="n">t1</span> <span class="o">=</span> <span class="n">__builtin_readcyclecounter</span><span class="p">();</span>
<span class="kt">unsigned</span> <span class="kt">long</span> <span class="kt">long</span> <span class="n">cycles_to_do_something</span> <span class="o">=</span> <span class="n">t1</span> <span class="o">-</span> <span class="n">t0</span><span class="p">;</span> <span class="c1">// assuming no overflow</span>
</pre></div>
</div>
<p><strong>Description</strong>:</p>
<p>The <code class="docutils literal"><span class="pre">__builtin_readcyclecounter()</span></code> builtin returns the cycle counter value,
which may be either global or process/thread-specific depending on the target.
As the backing counters often overflow quickly (on the order of seconds) this
should only be used for timing small intervals.  When not supported by the
target, the return value is always zero.  This builtin takes no arguments and
produces an unsigned long long result.</p>
<p>Query for this feature with <code class="docutils literal"><span class="pre">__has_builtin(__builtin_readcyclecounter)</span></code>. Note
that even if present, its use may depend on run-time privilege or other OS
controlled state.</p>
</div>
<div class="section" id="builtin-shufflevector">
<span id="langext-builtin-shufflevector"></span><h3><code class="docutils literal"><span class="pre">__builtin_shufflevector</span></code><a class="headerlink" href="#builtin-shufflevector" title="Permalink to this headline"></a></h3>
<p><code class="docutils literal"><span class="pre">__builtin_shufflevector</span></code> is used to express generic vector
permutation/shuffle/swizzle operations.  This builtin is also very important
for the implementation of various target-specific header files like
<code class="docutils literal"><span class="pre">&lt;xmmintrin.h&gt;</span></code>.</p>
<p><strong>Syntax</strong>:</p>
<div class="highlight-c++"><div class="highlight"><pre><span class="n">__builtin_shufflevector</span><span class="p">(</span><span class="n">vec1</span><span class="p">,</span> <span class="n">vec2</span><span class="p">,</span> <span class="n">index1</span><span class="p">,</span> <span class="n">index2</span><span class="p">,</span> <span class="p">...)</span>
</pre></div>
</div>
<p><strong>Examples</strong>:</p>
<div class="highlight-c++"><div class="highlight"><pre><span class="c1">// identity operation - return 4-element vector v1.</span>
<span class="n">__builtin_shufflevector</span><span class="p">(</span><span class="n">v1</span><span class="p">,</span> <span class="n">v1</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">2</span><span class="p">,</span> <span class="mi">3</span><span class="p">)</span>

<span class="c1">// &quot;Splat&quot; element 0 of V1 into a 4-element result.</span>
<span class="n">__builtin_shufflevector</span><span class="p">(</span><span class="n">V1</span><span class="p">,</span> <span class="n">V1</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">)</span>

<span class="c1">// Reverse 4-element vector V1.</span>
<span class="n">__builtin_shufflevector</span><span class="p">(</span><span class="n">V1</span><span class="p">,</span> <span class="n">V1</span><span class="p">,</span> <span class="mi">3</span><span class="p">,</span> <span class="mi">2</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">0</span><span class="p">)</span>

<span class="c1">// Concatenate every other element of 4-element vectors V1 and V2.</span>
<span class="n">__builtin_shufflevector</span><span class="p">(</span><span class="n">V1</span><span class="p">,</span> <span class="n">V2</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">2</span><span class="p">,</span> <span class="mi">4</span><span class="p">,</span> <span class="mi">6</span><span class="p">)</span>

<span class="c1">// Concatenate every other element of 8-element vectors V1 and V2.</span>
<span class="n">__builtin_shufflevector</span><span class="p">(</span><span class="n">V1</span><span class="p">,</span> <span class="n">V2</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">2</span><span class="p">,</span> <span class="mi">4</span><span class="p">,</span> <span class="mi">6</span><span class="p">,</span> <span class="mi">8</span><span class="p">,</span> <span class="mi">10</span><span class="p">,</span> <span class="mi">12</span><span class="p">,</span> <span class="mi">14</span><span class="p">)</span>

<span class="c1">// Shuffle v1 with some elements being undefined</span>
<span class="n">__builtin_shufflevector</span><span class="p">(</span><span class="n">v1</span><span class="p">,</span> <span class="n">v1</span><span class="p">,</span> <span class="mi">3</span><span class="p">,</span> <span class="o">-</span><span class="mi">1</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="o">-</span><span class="mi">1</span><span class="p">)</span>
</pre></div>
</div>
<p><strong>Description</strong>:</p>
<p>The first two arguments to <code class="docutils literal"><span class="pre">__builtin_shufflevector</span></code> are vectors that have
the same element type.  The remaining arguments are a list of integers that
specify the elements indices of the first two vectors that should be extracted
and returned in a new vector.  These element indices are numbered sequentially
starting with the first vector, continuing into the second vector.  Thus, if
<code class="docutils literal"><span class="pre">vec1</span></code> is a 4-element vector, index 5 would refer to the second element of
<code class="docutils literal"><span class="pre">vec2</span></code>. An index of -1 can be used to indicate that the corresponding element
in the returned vector is a don&#8217;t care and can be optimized by the backend.</p>
<p>The result of <code class="docutils literal"><span class="pre">__builtin_shufflevector</span></code> is a vector with the same element
type as <code class="docutils literal"><span class="pre">vec1</span></code>/<code class="docutils literal"><span class="pre">vec2</span></code> but that has an element count equal to the number of
indices specified.</p>
<p>Query for this feature with <code class="docutils literal"><span class="pre">__has_builtin(__builtin_shufflevector)</span></code>.</p>
</div>
<div class="section" id="builtin-convertvector">
<h3><code class="docutils literal"><span class="pre">__builtin_convertvector</span></code><a class="headerlink" href="#builtin-convertvector" title="Permalink to this headline"></a></h3>
<p><code class="docutils literal"><span class="pre">__builtin_convertvector</span></code> is used to express generic vector
type-conversion operations. The input vector and the output vector
type must have the same number of elements.</p>
<p><strong>Syntax</strong>:</p>
<div class="highlight-c++"><div class="highlight"><pre><span class="n">__builtin_convertvector</span><span class="p">(</span><span class="n">src_vec</span><span class="p">,</span> <span class="n">dst_vec_type</span><span class="p">)</span>
</pre></div>
</div>
<p><strong>Examples</strong>:</p>
<div class="highlight-c++"><div class="highlight"><pre><span class="k">typedef</span> <span class="kt">double</span> <span class="n">vector4double</span> <span class="nf">__attribute__</span><span class="p">((</span><span class="n">__vector_size__</span><span class="p">(</span><span class="mi">32</span><span class="p">)));</span>
<span class="k">typedef</span> <span class="kt">float</span>  <span class="n">vector4float</span>  <span class="nf">__attribute__</span><span class="p">((</span><span class="n">__vector_size__</span><span class="p">(</span><span class="mi">16</span><span class="p">)));</span>
<span class="k">typedef</span> <span class="kt">short</span>  <span class="n">vector4short</span>  <span class="nf">__attribute__</span><span class="p">((</span><span class="n">__vector_size__</span><span class="p">(</span><span class="mi">8</span><span class="p">)));</span>
<span class="n">vector4float</span> <span class="n">vf</span><span class="p">;</span> <span class="n">vector4short</span> <span class="n">vs</span><span class="p">;</span>

<span class="c1">// convert from a vector of 4 floats to a vector of 4 doubles.</span>
<span class="n">__builtin_convertvector</span><span class="p">(</span><span class="n">vf</span><span class="p">,</span> <span class="n">vector4double</span><span class="p">)</span>
<span class="c1">// equivalent to:</span>
<span class="p">(</span><span class="n">vector4double</span><span class="p">)</span> <span class="p">{</span> <span class="p">(</span><span class="kt">double</span><span class="p">)</span> <span class="n">vf</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span> <span class="p">(</span><span class="kt">double</span><span class="p">)</span> <span class="n">vf</span><span class="p">[</span><span class="mi">1</span><span class="p">],</span> <span class="p">(</span><span class="kt">double</span><span class="p">)</span> <span class="n">vf</span><span class="p">[</span><span class="mi">2</span><span class="p">],</span> <span class="p">(</span><span class="kt">double</span><span class="p">)</span> <span class="n">vf</span><span class="p">[</span><span class="mi">3</span><span class="p">]</span> <span class="p">}</span>

<span class="c1">// convert from a vector of 4 shorts to a vector of 4 floats.</span>
<span class="n">__builtin_convertvector</span><span class="p">(</span><span class="n">vs</span><span class="p">,</span> <span class="n">vector4float</span><span class="p">)</span>
<span class="c1">// equivalent to:</span>
<span class="p">(</span><span class="n">vector4float</span><span class="p">)</span> <span class="p">{</span> <span class="p">(</span><span class="kt">float</span><span class="p">)</span> <span class="n">vf</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span> <span class="p">(</span><span class="kt">float</span><span class="p">)</span> <span class="n">vf</span><span class="p">[</span><span class="mi">1</span><span class="p">],</span> <span class="p">(</span><span class="kt">float</span><span class="p">)</span> <span class="n">vf</span><span class="p">[</span><span class="mi">2</span><span class="p">],</span> <span class="p">(</span><span class="kt">float</span><span class="p">)</span> <span class="n">vf</span><span class="p">[</span><span class="mi">3</span><span class="p">]</span> <span class="p">}</span>
</pre></div>
</div>
<p><strong>Description</strong>:</p>
<p>The first argument to <code class="docutils literal"><span class="pre">__builtin_convertvector</span></code> is a vector, and the second
argument is a vector type with the same number of elements as the first
argument.</p>
<p>The result of <code class="docutils literal"><span class="pre">__builtin_convertvector</span></code> is a vector with the same element
type as the second argument, with a value defined in terms of the action of a
C-style cast applied to each element of the first argument.</p>
<p>Query for this feature with <code class="docutils literal"><span class="pre">__has_builtin(__builtin_convertvector)</span></code>.</p>
</div>
<div class="section" id="builtin-unreachable">
<h3><code class="docutils literal"><span class="pre">__builtin_unreachable</span></code><a class="headerlink" href="#builtin-unreachable" title="Permalink to this headline"></a></h3>
<p><code class="docutils literal"><span class="pre">__builtin_unreachable</span></code> is used to indicate that a specific point in the
program cannot be reached, even if the compiler might otherwise think it can.
This is useful to improve optimization and eliminates certain warnings.  For
example, without the <code class="docutils literal"><span class="pre">__builtin_unreachable</span></code> in the example below, the
compiler assumes that the inline asm can fall through and prints a &#8220;function
declared &#8216;<code class="docutils literal"><span class="pre">noreturn</span></code>&#8216; should not return&#8221; warning.</p>
<p><strong>Syntax</strong>:</p>
<div class="highlight-c++"><div class="highlight"><pre><span class="n">__builtin_unreachable</span><span class="p">()</span>
</pre></div>
</div>
<p><strong>Example of use</strong>:</p>
<div class="highlight-c++"><div class="highlight"><pre><span class="kt">void</span> <span class="nf">myabort</span><span class="p">(</span><span class="kt">void</span><span class="p">)</span> <span class="n">__attribute__</span><span class="p">((</span><span class="n">noreturn</span><span class="p">));</span>
<span class="kt">void</span> <span class="nf">myabort</span><span class="p">(</span><span class="kt">void</span><span class="p">)</span> <span class="p">{</span>
  <span class="k">asm</span><span class="p">(</span><span class="s">&quot;int3&quot;</span><span class="p">);</span>
  <span class="n">__builtin_unreachable</span><span class="p">();</span>
<span class="p">}</span>
</pre></div>
</div>
<p><strong>Description</strong>:</p>
<p>The <code class="docutils literal"><span class="pre">__builtin_unreachable()</span></code> builtin has completely undefined behavior.
Since it has undefined behavior, it is a statement that it is never reached and
the optimizer can take advantage of this to produce better code.  This builtin
takes no arguments and produces a void result.</p>
<p>Query for this feature with <code class="docutils literal"><span class="pre">__has_builtin(__builtin_unreachable)</span></code>.</p>
</div>
<div class="section" id="sync-swap">
<h3><code class="docutils literal"><span class="pre">__sync_swap</span></code><a class="headerlink" href="#sync-swap" title="Permalink to this headline"></a></h3>
<p><code class="docutils literal"><span class="pre">__sync_swap</span></code> is used to atomically swap integers or pointers in memory.</p>
<p><strong>Syntax</strong>:</p>
<div class="highlight-c++"><div class="highlight"><pre><span class="n">type</span> <span class="n">__sync_swap</span><span class="p">(</span><span class="n">type</span> <span class="o">*</span><span class="n">ptr</span><span class="p">,</span> <span class="n">type</span> <span class="n">value</span><span class="p">,</span> <span class="p">...)</span>
</pre></div>
</div>
<p><strong>Example of Use</strong>:</p>
<div class="highlight-c++"><div class="highlight"><pre><span class="kt">int</span> <span class="n">old_value</span> <span class="o">=</span> <span class="n">__sync_swap</span><span class="p">(</span><span class="o">&amp;</span><span class="n">value</span><span class="p">,</span> <span class="n">new_value</span><span class="p">);</span>
</pre></div>
</div>
<p><strong>Description</strong>:</p>
<p>The <code class="docutils literal"><span class="pre">__sync_swap()</span></code> builtin extends the existing <code class="docutils literal"><span class="pre">__sync_*()</span></code> family of
atomic intrinsics to allow code to atomically swap the current value with the
new value.  More importantly, it helps developers write more efficient and
correct code by avoiding expensive loops around
<code class="docutils literal"><span class="pre">__sync_bool_compare_and_swap()</span></code> or relying on the platform specific
implementation details of <code class="docutils literal"><span class="pre">__sync_lock_test_and_set()</span></code>.  The
<code class="docutils literal"><span class="pre">__sync_swap()</span></code> builtin is a full barrier.</p>
</div>
<div class="section" id="builtin-addressof">
<h3><code class="docutils literal"><span class="pre">__builtin_addressof</span></code><a class="headerlink" href="#builtin-addressof" title="Permalink to this headline"></a></h3>
<p><code class="docutils literal"><span class="pre">__builtin_addressof</span></code> performs the functionality of the built-in <code class="docutils literal"><span class="pre">&amp;</span></code>
operator, ignoring any <code class="docutils literal"><span class="pre">operator&amp;</span></code> overload.  This is useful in constant
expressions in C++11, where there is no other way to take the address of an
object that overloads <code class="docutils literal"><span class="pre">operator&amp;</span></code>.</p>
<p><strong>Example of use</strong>:</p>
<div class="highlight-c++"><div class="highlight"><pre><span class="k">template</span><span class="o">&lt;</span><span class="k">typename</span> <span class="n">T</span><span class="o">&gt;</span> <span class="k">constexpr</span> <span class="n">T</span> <span class="o">*</span><span class="n">addressof</span><span class="p">(</span><span class="n">T</span> <span class="o">&amp;</span><span class="n">value</span><span class="p">)</span> <span class="p">{</span>
  <span class="k">return</span> <span class="n">__builtin_addressof</span><span class="p">(</span><span class="n">value</span><span class="p">);</span>
<span class="p">}</span>
</pre></div>
</div>
</div>
<div class="section" id="builtin-operator-new-and-builtin-operator-delete">
<h3><code class="docutils literal"><span class="pre">__builtin_operator_new</span></code> and <code class="docutils literal"><span class="pre">__builtin_operator_delete</span></code><a class="headerlink" href="#builtin-operator-new-and-builtin-operator-delete" title="Permalink to this headline"></a></h3>
<p><code class="docutils literal"><span class="pre">__builtin_operator_new</span></code> allocates memory just like a non-placement non-class
<em>new-expression</em>. This is exactly like directly calling the normal
non-placement <code class="docutils literal"><span class="pre">::operator</span> <span class="pre">new</span></code>, except that it allows certain optimizations
that the C++ standard does not permit for a direct function call to
<code class="docutils literal"><span class="pre">::operator</span> <span class="pre">new</span></code> (in particular, removing <code class="docutils literal"><span class="pre">new</span></code> / <code class="docutils literal"><span class="pre">delete</span></code> pairs and
merging allocations).</p>
<p>Likewise, <code class="docutils literal"><span class="pre">__builtin_operator_delete</span></code> deallocates memory just like a
non-class <em>delete-expression</em>, and is exactly like directly calling the normal
<code class="docutils literal"><span class="pre">::operator</span> <span class="pre">delete</span></code>, except that it permits optimizations. Only the unsized
form of <code class="docutils literal"><span class="pre">__builtin_operator_delete</span></code> is currently available.</p>
<p>These builtins are intended for use in the implementation of <code class="docutils literal"><span class="pre">std::allocator</span></code>
and other similar allocation libraries, and are only available in C++.</p>
</div>
<div class="section" id="multiprecision-arithmetic-builtins">
<h3>Multiprecision Arithmetic Builtins<a class="headerlink" href="#multiprecision-arithmetic-builtins" title="Permalink to this headline"></a></h3>
<p>Clang provides a set of builtins which expose multiprecision arithmetic in a
manner amenable to C. They all have the following form:</p>
<div class="highlight-c"><div class="highlight"><pre><span class="kt">unsigned</span> <span class="n">x</span> <span class="o">=</span> <span class="p">...,</span> <span class="n">y</span> <span class="o">=</span> <span class="p">...,</span> <span class="n">carryin</span> <span class="o">=</span> <span class="p">...,</span> <span class="n">carryout</span><span class="p">;</span>
<span class="kt">unsigned</span> <span class="n">sum</span> <span class="o">=</span> <span class="n">__builtin_addc</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">y</span><span class="p">,</span> <span class="n">carryin</span><span class="p">,</span> <span class="o">&amp;</span><span class="n">carryout</span><span class="p">);</span>
</pre></div>
</div>
<p>Thus one can form a multiprecision addition chain in the following manner:</p>
<div class="highlight-c"><div class="highlight"><pre><span class="kt">unsigned</span> <span class="o">*</span><span class="n">x</span><span class="p">,</span> <span class="o">*</span><span class="n">y</span><span class="p">,</span> <span class="o">*</span><span class="n">z</span><span class="p">,</span> <span class="n">carryin</span><span class="o">=</span><span class="mi">0</span><span class="p">,</span> <span class="n">carryout</span><span class="p">;</span>
<span class="n">z</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span> <span class="o">=</span> <span class="n">__builtin_addc</span><span class="p">(</span><span class="n">x</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span> <span class="n">y</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span> <span class="n">carryin</span><span class="p">,</span> <span class="o">&amp;</span><span class="n">carryout</span><span class="p">);</span>
<span class="n">carryin</span> <span class="o">=</span> <span class="n">carryout</span><span class="p">;</span>
<span class="n">z</span><span class="p">[</span><span class="mi">1</span><span class="p">]</span> <span class="o">=</span> <span class="n">__builtin_addc</span><span class="p">(</span><span class="n">x</span><span class="p">[</span><span class="mi">1</span><span class="p">],</span> <span class="n">y</span><span class="p">[</span><span class="mi">1</span><span class="p">],</span> <span class="n">carryin</span><span class="p">,</span> <span class="o">&amp;</span><span class="n">carryout</span><span class="p">);</span>
<span class="n">carryin</span> <span class="o">=</span> <span class="n">carryout</span><span class="p">;</span>
<span class="n">z</span><span class="p">[</span><span class="mi">2</span><span class="p">]</span> <span class="o">=</span> <span class="n">__builtin_addc</span><span class="p">(</span><span class="n">x</span><span class="p">[</span><span class="mi">2</span><span class="p">],</span> <span class="n">y</span><span class="p">[</span><span class="mi">2</span><span class="p">],</span> <span class="n">carryin</span><span class="p">,</span> <span class="o">&amp;</span><span class="n">carryout</span><span class="p">);</span>
<span class="n">carryin</span> <span class="o">=</span> <span class="n">carryout</span><span class="p">;</span>
<span class="n">z</span><span class="p">[</span><span class="mi">3</span><span class="p">]</span> <span class="o">=</span> <span class="n">__builtin_addc</span><span class="p">(</span><span class="n">x</span><span class="p">[</span><span class="mi">3</span><span class="p">],</span> <span class="n">y</span><span class="p">[</span><span class="mi">3</span><span class="p">],</span> <span class="n">carryin</span><span class="p">,</span> <span class="o">&amp;</span><span class="n">carryout</span><span class="p">);</span>
</pre></div>
</div>
<p>The complete list of builtins are:</p>
<div class="highlight-c"><div class="highlight"><pre><span class="kt">unsigned</span> <span class="kt">char</span>      <span class="nf">__builtin_addcb</span> <span class="p">(</span><span class="kt">unsigned</span> <span class="kt">char</span> <span class="n">x</span><span class="p">,</span> <span class="kt">unsigned</span> <span class="kt">char</span> <span class="n">y</span><span class="p">,</span> <span class="kt">unsigned</span> <span class="kt">char</span> <span class="n">carryin</span><span class="p">,</span> <span class="kt">unsigned</span> <span class="kt">char</span> <span class="o">*</span><span class="n">carryout</span><span class="p">);</span>
<span class="kt">unsigned</span> <span class="kt">short</span>     <span class="nf">__builtin_addcs</span> <span class="p">(</span><span class="kt">unsigned</span> <span class="kt">short</span> <span class="n">x</span><span class="p">,</span> <span class="kt">unsigned</span> <span class="kt">short</span> <span class="n">y</span><span class="p">,</span> <span class="kt">unsigned</span> <span class="kt">short</span> <span class="n">carryin</span><span class="p">,</span> <span class="kt">unsigned</span> <span class="kt">short</span> <span class="o">*</span><span class="n">carryout</span><span class="p">);</span>
<span class="kt">unsigned</span>           <span class="nf">__builtin_addc</span>  <span class="p">(</span><span class="kt">unsigned</span> <span class="n">x</span><span class="p">,</span> <span class="kt">unsigned</span> <span class="n">y</span><span class="p">,</span> <span class="kt">unsigned</span> <span class="n">carryin</span><span class="p">,</span> <span class="kt">unsigned</span> <span class="o">*</span><span class="n">carryout</span><span class="p">);</span>
<span class="kt">unsigned</span> <span class="kt">long</span>      <span class="nf">__builtin_addcl</span> <span class="p">(</span><span class="kt">unsigned</span> <span class="kt">long</span> <span class="n">x</span><span class="p">,</span> <span class="kt">unsigned</span> <span class="kt">long</span> <span class="n">y</span><span class="p">,</span> <span class="kt">unsigned</span> <span class="kt">long</span> <span class="n">carryin</span><span class="p">,</span> <span class="kt">unsigned</span> <span class="kt">long</span> <span class="o">*</span><span class="n">carryout</span><span class="p">);</span>
<span class="kt">unsigned</span> <span class="kt">long</span> <span class="kt">long</span> <span class="nf">__builtin_addcll</span><span class="p">(</span><span class="kt">unsigned</span> <span class="kt">long</span> <span class="kt">long</span> <span class="n">x</span><span class="p">,</span> <span class="kt">unsigned</span> <span class="kt">long</span> <span class="kt">long</span> <span class="n">y</span><span class="p">,</span> <span class="kt">unsigned</span> <span class="kt">long</span> <span class="kt">long</span> <span class="n">carryin</span><span class="p">,</span> <span class="kt">unsigned</span> <span class="kt">long</span> <span class="kt">long</span> <span class="o">*</span><span class="n">carryout</span><span class="p">);</span>
<span class="kt">unsigned</span> <span class="kt">char</span>      <span class="nf">__builtin_subcb</span> <span class="p">(</span><span class="kt">unsigned</span> <span class="kt">char</span> <span class="n">x</span><span class="p">,</span> <span class="kt">unsigned</span> <span class="kt">char</span> <span class="n">y</span><span class="p">,</span> <span class="kt">unsigned</span> <span class="kt">char</span> <span class="n">carryin</span><span class="p">,</span> <span class="kt">unsigned</span> <span class="kt">char</span> <span class="o">*</span><span class="n">carryout</span><span class="p">);</span>
<span class="kt">unsigned</span> <span class="kt">short</span>     <span class="nf">__builtin_subcs</span> <span class="p">(</span><span class="kt">unsigned</span> <span class="kt">short</span> <span class="n">x</span><span class="p">,</span> <span class="kt">unsigned</span> <span class="kt">short</span> <span class="n">y</span><span class="p">,</span> <span class="kt">unsigned</span> <span class="kt">short</span> <span class="n">carryin</span><span class="p">,</span> <span class="kt">unsigned</span> <span class="kt">short</span> <span class="o">*</span><span class="n">carryout</span><span class="p">);</span>
<span class="kt">unsigned</span>           <span class="nf">__builtin_subc</span>  <span class="p">(</span><span class="kt">unsigned</span> <span class="n">x</span><span class="p">,</span> <span class="kt">unsigned</span> <span class="n">y</span><span class="p">,</span> <span class="kt">unsigned</span> <span class="n">carryin</span><span class="p">,</span> <span class="kt">unsigned</span> <span class="o">*</span><span class="n">carryout</span><span class="p">);</span>
<span class="kt">unsigned</span> <span class="kt">long</span>      <span class="nf">__builtin_subcl</span> <span class="p">(</span><span class="kt">unsigned</span> <span class="kt">long</span> <span class="n">x</span><span class="p">,</span> <span class="kt">unsigned</span> <span class="kt">long</span> <span class="n">y</span><span class="p">,</span> <span class="kt">unsigned</span> <span class="kt">long</span> <span class="n">carryin</span><span class="p">,</span> <span class="kt">unsigned</span> <span class="kt">long</span> <span class="o">*</span><span class="n">carryout</span><span class="p">);</span>
<span class="kt">unsigned</span> <span class="kt">long</span> <span class="kt">long</span> <span class="nf">__builtin_subcll</span><span class="p">(</span><span class="kt">unsigned</span> <span class="kt">long</span> <span class="kt">long</span> <span class="n">x</span><span class="p">,</span> <span class="kt">unsigned</span> <span class="kt">long</span> <span class="kt">long</span> <span class="n">y</span><span class="p">,</span> <span class="kt">unsigned</span> <span class="kt">long</span> <span class="kt">long</span> <span class="n">carryin</span><span class="p">,</span> <span class="kt">unsigned</span> <span class="kt">long</span> <span class="kt">long</span> <span class="o">*</span><span class="n">carryout</span><span class="p">);</span>
</pre></div>
</div>
</div>
<div class="section" id="checked-arithmetic-builtins">
<h3>Checked Arithmetic Builtins<a class="headerlink" href="#checked-arithmetic-builtins" title="Permalink to this headline"></a></h3>
<p>Clang provides a set of builtins that implement checked arithmetic for security
critical applications in a manner that is fast and easily expressable in C. As
an example of their usage:</p>
<div class="highlight-c"><div class="highlight"><pre><span class="n">errorcode_t</span> <span class="nf">security_critical_application</span><span class="p">(...)</span> <span class="p">{</span>
  <span class="kt">unsigned</span> <span class="n">x</span><span class="p">,</span> <span class="n">y</span><span class="p">,</span> <span class="n">result</span><span class="p">;</span>
  <span class="p">...</span>
  <span class="k">if</span> <span class="p">(</span><span class="n">__builtin_umul_overflow</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">y</span><span class="p">,</span> <span class="o">&amp;</span><span class="n">result</span><span class="p">))</span>
    <span class="k">return</span> <span class="n">kErrorCodeHackers</span><span class="p">;</span>
  <span class="p">...</span>
  <span class="n">use_multiply</span><span class="p">(</span><span class="n">result</span><span class="p">);</span>
  <span class="p">...</span>
<span class="p">}</span>
</pre></div>
</div>
<p>A complete enumeration of the builtins are:</p>
<div class="highlight-c"><div class="highlight"><pre><span class="kt">bool</span> <span class="nf">__builtin_uadd_overflow</span>  <span class="p">(</span><span class="kt">unsigned</span> <span class="n">x</span><span class="p">,</span> <span class="kt">unsigned</span> <span class="n">y</span><span class="p">,</span> <span class="kt">unsigned</span> <span class="o">*</span><span class="n">sum</span><span class="p">);</span>
<span class="kt">bool</span> <span class="nf">__builtin_uaddl_overflow</span> <span class="p">(</span><span class="kt">unsigned</span> <span class="kt">long</span> <span class="n">x</span><span class="p">,</span> <span class="kt">unsigned</span> <span class="kt">long</span> <span class="n">y</span><span class="p">,</span> <span class="kt">unsigned</span> <span class="kt">long</span> <span class="o">*</span><span class="n">sum</span><span class="p">);</span>
<span class="kt">bool</span> <span class="nf">__builtin_uaddll_overflow</span><span class="p">(</span><span class="kt">unsigned</span> <span class="kt">long</span> <span class="kt">long</span> <span class="n">x</span><span class="p">,</span> <span class="kt">unsigned</span> <span class="kt">long</span> <span class="kt">long</span> <span class="n">y</span><span class="p">,</span> <span class="kt">unsigned</span> <span class="kt">long</span> <span class="kt">long</span> <span class="o">*</span><span class="n">sum</span><span class="p">);</span>
<span class="kt">bool</span> <span class="nf">__builtin_usub_overflow</span>  <span class="p">(</span><span class="kt">unsigned</span> <span class="n">x</span><span class="p">,</span> <span class="kt">unsigned</span> <span class="n">y</span><span class="p">,</span> <span class="kt">unsigned</span> <span class="o">*</span><span class="n">diff</span><span class="p">);</span>
<span class="kt">bool</span> <span class="nf">__builtin_usubl_overflow</span> <span class="p">(</span><span class="kt">unsigned</span> <span class="kt">long</span> <span class="n">x</span><span class="p">,</span> <span class="kt">unsigned</span> <span class="kt">long</span> <span class="n">y</span><span class="p">,</span> <span class="kt">unsigned</span> <span class="kt">long</span> <span class="o">*</span><span class="n">diff</span><span class="p">);</span>
<span class="kt">bool</span> <span class="nf">__builtin_usubll_overflow</span><span class="p">(</span><span class="kt">unsigned</span> <span class="kt">long</span> <span class="kt">long</span> <span class="n">x</span><span class="p">,</span> <span class="kt">unsigned</span> <span class="kt">long</span> <span class="kt">long</span> <span class="n">y</span><span class="p">,</span> <span class="kt">unsigned</span> <span class="kt">long</span> <span class="kt">long</span> <span class="o">*</span><span class="n">diff</span><span class="p">);</span>
<span class="kt">bool</span> <span class="nf">__builtin_umul_overflow</span>  <span class="p">(</span><span class="kt">unsigned</span> <span class="n">x</span><span class="p">,</span> <span class="kt">unsigned</span> <span class="n">y</span><span class="p">,</span> <span class="kt">unsigned</span> <span class="o">*</span><span class="n">prod</span><span class="p">);</span>
<span class="kt">bool</span> <span class="nf">__builtin_umull_overflow</span> <span class="p">(</span><span class="kt">unsigned</span> <span class="kt">long</span> <span class="n">x</span><span class="p">,</span> <span class="kt">unsigned</span> <span class="kt">long</span> <span class="n">y</span><span class="p">,</span> <span class="kt">unsigned</span> <span class="kt">long</span> <span class="o">*</span><span class="n">prod</span><span class="p">);</span>
<span class="kt">bool</span> <span class="nf">__builtin_umulll_overflow</span><span class="p">(</span><span class="kt">unsigned</span> <span class="kt">long</span> <span class="kt">long</span> <span class="n">x</span><span class="p">,</span> <span class="kt">unsigned</span> <span class="kt">long</span> <span class="kt">long</span> <span class="n">y</span><span class="p">,</span> <span class="kt">unsigned</span> <span class="kt">long</span> <span class="kt">long</span> <span class="o">*</span><span class="n">prod</span><span class="p">);</span>
<span class="kt">bool</span> <span class="nf">__builtin_sadd_overflow</span>  <span class="p">(</span><span class="kt">int</span> <span class="n">x</span><span class="p">,</span> <span class="kt">int</span> <span class="n">y</span><span class="p">,</span> <span class="kt">int</span> <span class="o">*</span><span class="n">sum</span><span class="p">);</span>
<span class="kt">bool</span> <span class="nf">__builtin_saddl_overflow</span> <span class="p">(</span><span class="kt">long</span> <span class="n">x</span><span class="p">,</span> <span class="kt">long</span> <span class="n">y</span><span class="p">,</span> <span class="kt">long</span> <span class="o">*</span><span class="n">sum</span><span class="p">);</span>
<span class="kt">bool</span> <span class="nf">__builtin_saddll_overflow</span><span class="p">(</span><span class="kt">long</span> <span class="kt">long</span> <span class="n">x</span><span class="p">,</span> <span class="kt">long</span> <span class="kt">long</span> <span class="n">y</span><span class="p">,</span> <span class="kt">long</span> <span class="kt">long</span> <span class="o">*</span><span class="n">sum</span><span class="p">);</span>
<span class="kt">bool</span> <span class="nf">__builtin_ssub_overflow</span>  <span class="p">(</span><span class="kt">int</span> <span class="n">x</span><span class="p">,</span> <span class="kt">int</span> <span class="n">y</span><span class="p">,</span> <span class="kt">int</span> <span class="o">*</span><span class="n">diff</span><span class="p">);</span>
<span class="kt">bool</span> <span class="nf">__builtin_ssubl_overflow</span> <span class="p">(</span><span class="kt">long</span> <span class="n">x</span><span class="p">,</span> <span class="kt">long</span> <span class="n">y</span><span class="p">,</span> <span class="kt">long</span> <span class="o">*</span><span class="n">diff</span><span class="p">);</span>
<span class="kt">bool</span> <span class="nf">__builtin_ssubll_overflow</span><span class="p">(</span><span class="kt">long</span> <span class="kt">long</span> <span class="n">x</span><span class="p">,</span> <span class="kt">long</span> <span class="kt">long</span> <span class="n">y</span><span class="p">,</span> <span class="kt">long</span> <span class="kt">long</span> <span class="o">*</span><span class="n">diff</span><span class="p">);</span>
<span class="kt">bool</span> <span class="nf">__builtin_smul_overflow</span>  <span class="p">(</span><span class="kt">int</span> <span class="n">x</span><span class="p">,</span> <span class="kt">int</span> <span class="n">y</span><span class="p">,</span> <span class="kt">int</span> <span class="o">*</span><span class="n">prod</span><span class="p">);</span>
<span class="kt">bool</span> <span class="nf">__builtin_smull_overflow</span> <span class="p">(</span><span class="kt">long</span> <span class="n">x</span><span class="p">,</span> <span class="kt">long</span> <span class="n">y</span><span class="p">,</span> <span class="kt">long</span> <span class="o">*</span><span class="n">prod</span><span class="p">);</span>
<span class="kt">bool</span> <span class="nf">__builtin_smulll_overflow</span><span class="p">(</span><span class="kt">long</span> <span class="kt">long</span> <span class="n">x</span><span class="p">,</span> <span class="kt">long</span> <span class="kt">long</span> <span class="n">y</span><span class="p">,</span> <span class="kt">long</span> <span class="kt">long</span> <span class="o">*</span><span class="n">prod</span><span class="p">);</span>
</pre></div>
</div>
</div>
<div class="section" id="c11-atomic-builtins">
<span id="langext-c11-atomic"></span><h3>__c11_atomic builtins<a class="headerlink" href="#c11-atomic-builtins" title="Permalink to this headline"></a></h3>
<p>Clang provides a set of builtins which are intended to be used to implement
C11&#8217;s <code class="docutils literal"><span class="pre">&lt;stdatomic.h&gt;</span></code> header.  These builtins provide the semantics of the
<code class="docutils literal"><span class="pre">_explicit</span></code> form of the corresponding C11 operation, and are named with a
<code class="docutils literal"><span class="pre">__c11_</span></code> prefix.  The supported operations are:</p>
<ul class="simple">
<li><code class="docutils literal"><span class="pre">__c11_atomic_init</span></code></li>
<li><code class="docutils literal"><span class="pre">__c11_atomic_thread_fence</span></code></li>
<li><code class="docutils literal"><span class="pre">__c11_atomic_signal_fence</span></code></li>
<li><code class="docutils literal"><span class="pre">__c11_atomic_is_lock_free</span></code></li>
<li><code class="docutils literal"><span class="pre">__c11_atomic_store</span></code></li>
<li><code class="docutils literal"><span class="pre">__c11_atomic_load</span></code></li>
<li><code class="docutils literal"><span class="pre">__c11_atomic_exchange</span></code></li>
<li><code class="docutils literal"><span class="pre">__c11_atomic_compare_exchange_strong</span></code></li>
<li><code class="docutils literal"><span class="pre">__c11_atomic_compare_exchange_weak</span></code></li>
<li><code class="docutils literal"><span class="pre">__c11_atomic_fetch_add</span></code></li>
<li><code class="docutils literal"><span class="pre">__c11_atomic_fetch_sub</span></code></li>
<li><code class="docutils literal"><span class="pre">__c11_atomic_fetch_and</span></code></li>
<li><code class="docutils literal"><span class="pre">__c11_atomic_fetch_or</span></code></li>
<li><code class="docutils literal"><span class="pre">__c11_atomic_fetch_xor</span></code></li>
</ul>
</div>
<div class="section" id="low-level-arm-exclusive-memory-builtins">
<h3>Low-level ARM exclusive memory builtins<a class="headerlink" href="#low-level-arm-exclusive-memory-builtins" title="Permalink to this headline"></a></h3>
<p>Clang provides overloaded builtins giving direct access to the three key ARM
instructions for implementing atomic operations.</p>
<div class="highlight-c"><div class="highlight"><pre><span class="n">T</span> <span class="nf">__builtin_arm_ldrex</span><span class="p">(</span><span class="k">const</span> <span class="k">volatile</span> <span class="n">T</span> <span class="o">*</span><span class="n">addr</span><span class="p">);</span>
<span class="n">T</span> <span class="nf">__builtin_arm_ldaex</span><span class="p">(</span><span class="k">const</span> <span class="k">volatile</span> <span class="n">T</span> <span class="o">*</span><span class="n">addr</span><span class="p">);</span>
<span class="kt">int</span> <span class="nf">__builtin_arm_strex</span><span class="p">(</span><span class="n">T</span> <span class="n">val</span><span class="p">,</span> <span class="k">volatile</span> <span class="n">T</span> <span class="o">*</span><span class="n">addr</span><span class="p">);</span>
<span class="kt">int</span> <span class="nf">__builtin_arm_stlex</span><span class="p">(</span><span class="n">T</span> <span class="n">val</span><span class="p">,</span> <span class="k">volatile</span> <span class="n">T</span> <span class="o">*</span><span class="n">addr</span><span class="p">);</span>
<span class="kt">void</span> <span class="nf">__builtin_arm_clrex</span><span class="p">(</span><span class="kt">void</span><span class="p">);</span>
</pre></div>
</div>
<p>The types <code class="docutils literal"><span class="pre">T</span></code> currently supported are:
* Integer types with width at most 64 bits (or 128 bits on AArch64).
* Floating-point types
* Pointer types.</p>
<p>Note that the compiler does not guarantee it will not insert stores which clear
the exclusive monitor in between an <code class="docutils literal"><span class="pre">ldrex</span></code> type operation and its paired
<code class="docutils literal"><span class="pre">strex</span></code>. In practice this is only usually a risk when the extra store is on
the same cache line as the variable being modified and Clang will only insert
stack stores on its own, so it is best not to use these operations on variables
with automatic storage duration.</p>
<p>Also, loads and stores may be implicit in code written between the <code class="docutils literal"><span class="pre">ldrex</span></code> and
<code class="docutils literal"><span class="pre">strex</span></code>. Clang will not necessarily mitigate the effects of these either, so
care should be exercised.</p>
<p>For these reasons the higher level atomic primitives should be preferred where
possible.</p>
</div>
</div>
<div class="section" id="non-standard-c-11-attributes">
<h2><a class="toc-backref" href="#id15">Non-standard C++11 Attributes</a><a class="headerlink" href="#non-standard-c-11-attributes" title="Permalink to this headline"></a></h2>
<p>Clang&#8217;s non-standard C++11 attributes live in the <code class="docutils literal"><span class="pre">clang</span></code> attribute
namespace.</p>
<p>Clang supports GCC&#8217;s <code class="docutils literal"><span class="pre">gnu</span></code> attribute namespace. All GCC attributes which
are accepted with the <code class="docutils literal"><span class="pre">__attribute__((foo))</span></code> syntax are also accepted as
<code class="docutils literal"><span class="pre">[[gnu::foo]]</span></code>. This only extends to attributes which are specified by GCC
(see the list of <a class="reference external" href="http://gcc.gnu.org/onlinedocs/gcc/Function-Attributes.html">GCC function attributes</a>, <a class="reference external" href="http://gcc.gnu.org/onlinedocs/gcc/Variable-Attributes.html">GCC variable
attributes</a>, and
<a class="reference external" href="http://gcc.gnu.org/onlinedocs/gcc/Type-Attributes.html">GCC type attributes</a>). As with the GCC
implementation, these attributes must appertain to the <em>declarator-id</em> in a
declaration, which means they must go either at the start of the declaration or
immediately after the name being declared.</p>
<p>For example, this applies the GNU <code class="docutils literal"><span class="pre">unused</span></code> attribute to <code class="docutils literal"><span class="pre">a</span></code> and <code class="docutils literal"><span class="pre">f</span></code>, and
also applies the GNU <code class="docutils literal"><span class="pre">noreturn</span></code> attribute to <code class="docutils literal"><span class="pre">f</span></code>.</p>
<div class="highlight-c++"><div class="highlight"><pre><span class="p">[[</span><span class="n">gnu</span><span class="o">::</span><span class="n">unused</span><span class="p">]]</span> <span class="kt">int</span> <span class="n">a</span><span class="p">,</span> <span class="n">f</span> <span class="p">[[</span><span class="n">gnu</span><span class="o">::</span><span class="n">noreturn</span><span class="p">]]</span> <span class="p">();</span>
</pre></div>
</div>
</div>
<div class="section" id="target-specific-extensions">
<h2><a class="toc-backref" href="#id16">Target-Specific Extensions</a><a class="headerlink" href="#target-specific-extensions" title="Permalink to this headline"></a></h2>
<p>Clang supports some language features conditionally on some targets.</p>
<div class="section" id="arm-aarch64-language-extensions">
<h3>ARM/AArch64 Language Extensions<a class="headerlink" href="#arm-aarch64-language-extensions" title="Permalink to this headline"></a></h3>
<div class="section" id="memory-barrier-intrinsics">
<h4>Memory Barrier Intrinsics<a class="headerlink" href="#memory-barrier-intrinsics" title="Permalink to this headline"></a></h4>
<p>Clang implements the <code class="docutils literal"><span class="pre">__dmb</span></code>, <code class="docutils literal"><span class="pre">__dsb</span></code> and <code class="docutils literal"><span class="pre">__isb</span></code> intrinsics as defined
in the <a class="reference external" href="http://infocenter.arm.com/help/topic/com.arm.doc.ihi0053c/IHI0053C_acle_2_0.pdf">ARM C Language Extensions Release 2.0</a>.
Note that these intrinsics are implemented as motion barriers that block
reordering of memory accesses and side effect instructions. Other instructions
like simple arithmatic may be reordered around the intrinsic. If you expect to
have no reordering at all, use inline assembly instead.</p>
</div>
</div>
<div class="section" id="x86-x86-64-language-extensions">
<h3>X86/X86-64 Language Extensions<a class="headerlink" href="#x86-x86-64-language-extensions" title="Permalink to this headline"></a></h3>
<p>The X86 backend has these language extensions:</p>
<div class="section" id="memory-references-off-the-gs-segment">
<h4>Memory references off the GS segment<a class="headerlink" href="#memory-references-off-the-gs-segment" title="Permalink to this headline"></a></h4>
<p>Annotating a pointer with address space #256 causes it to be code generated
relative to the X86 GS segment register, and address space #257 causes it to be
relative to the X86 FS segment.  Note that this is a very very low-level
feature that should only be used if you know what you&#8217;re doing (for example in
an OS kernel).</p>
<p>Here is an example:</p>
<div class="highlight-c++"><div class="highlight"><pre><span class="cp">#define GS_RELATIVE __attribute__((address_space(256)))</span>
<span class="kt">int</span> <span class="nf">foo</span><span class="p">(</span><span class="kt">int</span> <span class="n">GS_RELATIVE</span> <span class="o">*</span><span class="n">P</span><span class="p">)</span> <span class="p">{</span>
  <span class="k">return</span> <span class="o">*</span><span class="n">P</span><span class="p">;</span>
<span class="p">}</span>
</pre></div>
</div>
<p>Which compiles to (on X86-32):</p>
<div class="highlight-gas"><div class="highlight"><pre><span class="nl">_foo:</span>
        <span class="nf">movl</span>    <span class="mi">4</span><span class="p">(</span><span class="nv">%esp</span><span class="p">),</span> <span class="nv">%eax</span>
        <span class="nf">movl</span>    <span class="nv">%gs</span><span class="p">:(</span><span class="nv">%eax</span><span class="p">),</span> <span class="nv">%eax</span>
        <span class="nf">ret</span>
</pre></div>
</div>
</div>
</div>
</div>
<div class="section" id="extensions-for-static-analysis">
<h2><a class="toc-backref" href="#id17">Extensions for Static Analysis</a><a class="headerlink" href="#extensions-for-static-analysis" title="Permalink to this headline"></a></h2>
<p>Clang supports additional attributes that are useful for documenting program
invariants and rules for static analysis tools, such as the <a class="reference external" href="http://clang-analyzer.llvm.org/">Clang Static
Analyzer</a>. These attributes are documented
in the analyzer&#8217;s <a class="reference external" href="http://clang-analyzer.llvm.org/annotations.html">list of source-level annotations</a>.</p>
</div>
<div class="section" id="extensions-for-dynamic-analysis">
<h2><a class="toc-backref" href="#id18">Extensions for Dynamic Analysis</a><a class="headerlink" href="#extensions-for-dynamic-analysis" title="Permalink to this headline"></a></h2>
<p>Use <code class="docutils literal"><span class="pre">__has_feature(address_sanitizer)</span></code> to check if the code is being built
with <a class="reference internal" href="AddressSanitizer.html"><em>AddressSanitizer</em></a>.</p>
<p>Use <code class="docutils literal"><span class="pre">__has_feature(thread_sanitizer)</span></code> to check if the code is being built
with <a class="reference internal" href="ThreadSanitizer.html"><em>ThreadSanitizer</em></a>.</p>
<p>Use <code class="docutils literal"><span class="pre">__has_feature(memory_sanitizer)</span></code> to check if the code is being built
with <a class="reference internal" href="MemorySanitizer.html"><em>MemorySanitizer</em></a>.</p>
</div>
<div class="section" id="extensions-for-selectively-disabling-optimization">
<h2><a class="toc-backref" href="#id19">Extensions for selectively disabling optimization</a><a class="headerlink" href="#extensions-for-selectively-disabling-optimization" title="Permalink to this headline"></a></h2>
<p>Clang provides a mechanism for selectively disabling optimizations in functions
and methods.</p>
<p>To disable optimizations in a single function definition, the GNU-style or C++11
non-standard attribute <code class="docutils literal"><span class="pre">optnone</span></code> can be used.</p>
<div class="highlight-c++"><div class="highlight"><pre><span class="c1">// The following functions will not be optimized.</span>
<span class="c1">// GNU-style attribute</span>
<span class="n">__attribute__</span><span class="p">((</span><span class="n">optnone</span><span class="p">))</span> <span class="kt">int</span> <span class="n">foo</span><span class="p">()</span> <span class="p">{</span>
  <span class="c1">// ... code</span>
<span class="p">}</span>
<span class="c1">// C++11 attribute</span>
<span class="p">[[</span><span class="n">clang</span><span class="o">::</span><span class="n">optnone</span><span class="p">]]</span> <span class="kt">int</span> <span class="n">bar</span><span class="p">()</span> <span class="p">{</span>
  <span class="c1">// ... code</span>
<span class="p">}</span>
</pre></div>
</div>
<p>To facilitate disabling optimization for a range of function definitions, a
range-based pragma is provided. Its syntax is <code class="docutils literal"><span class="pre">#pragma</span> <span class="pre">clang</span> <span class="pre">optimize</span></code>
followed by <code class="docutils literal"><span class="pre">off</span></code> or <code class="docutils literal"><span class="pre">on</span></code>.</p>
<p>All function definitions in the region between an <code class="docutils literal"><span class="pre">off</span></code> and the following
<code class="docutils literal"><span class="pre">on</span></code> will be decorated with the <code class="docutils literal"><span class="pre">optnone</span></code> attribute unless doing so would
conflict with explicit attributes already present on the function (e.g. the
ones that control inlining).</p>
<div class="highlight-c++"><div class="highlight"><pre><span class="cp">#pragma clang optimize off</span>
<span class="c1">// This function will be decorated with optnone.</span>
<span class="kt">int</span> <span class="nf">foo</span><span class="p">()</span> <span class="p">{</span>
  <span class="c1">// ... code</span>
<span class="p">}</span>

<span class="c1">// optnone conflicts with always_inline, so bar() will not be decorated.</span>
<span class="n">__attribute__</span><span class="p">((</span><span class="n">always_inline</span><span class="p">))</span> <span class="kt">int</span> <span class="n">bar</span><span class="p">()</span> <span class="p">{</span>
  <span class="c1">// ... code</span>
<span class="p">}</span>
<span class="cp">#pragma clang optimize on</span>
</pre></div>
</div>
<p>If no <code class="docutils literal"><span class="pre">on</span></code> is found to close an <code class="docutils literal"><span class="pre">off</span></code> region, the end of the region is the
end of the compilation unit.</p>
<p>Note that a stray <code class="docutils literal"><span class="pre">#pragma</span> <span class="pre">clang</span> <span class="pre">optimize</span> <span class="pre">on</span></code> does not selectively enable
additional optimizations when compiling at low optimization levels. This feature
can only be used to selectively disable optimizations.</p>
<p>The pragma has an effect on functions only at the point of their definition; for
function templates, this means that the state of the pragma at the point of an
instantiation is not necessarily relevant. Consider the following example:</p>
<div class="highlight-c++"><div class="highlight"><pre><span class="k">template</span><span class="o">&lt;</span><span class="k">typename</span> <span class="n">T</span><span class="o">&gt;</span> <span class="n">T</span> <span class="n">twice</span><span class="p">(</span><span class="n">T</span> <span class="n">t</span><span class="p">)</span> <span class="p">{</span>
  <span class="k">return</span> <span class="mi">2</span> <span class="o">*</span> <span class="n">t</span><span class="p">;</span>
<span class="p">}</span>

<span class="cp">#pragma clang optimize off</span>
<span class="k">template</span><span class="o">&lt;</span><span class="k">typename</span> <span class="n">T</span><span class="o">&gt;</span> <span class="n">T</span> <span class="n">thrice</span><span class="p">(</span><span class="n">T</span> <span class="n">t</span><span class="p">)</span> <span class="p">{</span>
  <span class="k">return</span> <span class="mi">3</span> <span class="o">*</span> <span class="n">t</span><span class="p">;</span>
<span class="p">}</span>

<span class="kt">int</span> <span class="n">container</span><span class="p">(</span><span class="kt">int</span> <span class="n">a</span><span class="p">,</span> <span class="kt">int</span> <span class="n">b</span><span class="p">)</span> <span class="p">{</span>
  <span class="k">return</span> <span class="n">twice</span><span class="p">(</span><span class="n">a</span><span class="p">)</span> <span class="o">+</span> <span class="n">thrice</span><span class="p">(</span><span class="n">b</span><span class="p">);</span>
<span class="p">}</span>
<span class="cp">#pragma clang optimize on</span>
</pre></div>
</div>
<p>In this example, the definition of the template function <code class="docutils literal"><span class="pre">twice</span></code> is outside
the pragma region, whereas the definition of <code class="docutils literal"><span class="pre">thrice</span></code> is inside the region.
The <code class="docutils literal"><span class="pre">container</span></code> function is also in the region and will not be optimized, but
it causes the instantiation of <code class="docutils literal"><span class="pre">twice</span></code> and <code class="docutils literal"><span class="pre">thrice</span></code> with an <code class="docutils literal"><span class="pre">int</span></code> type; of
these two instantiations, <code class="docutils literal"><span class="pre">twice</span></code> will be optimized (because its definition
was outside the region) and <code class="docutils literal"><span class="pre">thrice</span></code> will not be optimized.</p>
</div>
<div class="section" id="extensions-for-loop-hint-optimizations">
<span id="langext-pragma-loop"></span><h2><a class="toc-backref" href="#id20">Extensions for loop hint optimizations</a><a class="headerlink" href="#extensions-for-loop-hint-optimizations" title="Permalink to this headline"></a></h2>
<p>The <code class="docutils literal"><span class="pre">#pragma</span> <span class="pre">clang</span> <span class="pre">loop</span></code> directive is used to specify hints for optimizing the
subsequent for, while, do-while, or c++11 range-based for loop. The directive
provides options for vectorization and interleaving. Loop hints can be specified
before any loop and will be ignored if the optimization is not safe to apply.</p>
<p>A vectorized loop performs multiple iterations of the original loop
in parallel using vector instructions. The instruction set of the target
processor determines which vector instructions are available and their vector
widths. This restricts the types of loops that can be vectorized. The vectorizer
automatically determines if the loop is safe and profitable to vectorize. A
vector instruction cost model is used to select the vector width.</p>
<p>Interleaving multiple loop iterations allows modern processors to further
improve instruction-level parallelism (ILP) using advanced hardware features,
such as multiple execution units and out-of-order execution. The vectorizer uses
a cost model that depends on the register pressure and generated code size to
select the interleaving count.</p>
<p>Vectorization is enabled by <code class="docutils literal"><span class="pre">vectorize(enable)</span></code> and interleaving is enabled
by <code class="docutils literal"><span class="pre">interleave(enable)</span></code>. This is useful when compiling with <code class="docutils literal"><span class="pre">-Os</span></code> to
manually enable vectorization or interleaving.</p>
<div class="highlight-c++"><div class="highlight"><pre><span class="cp">#pragma clang loop vectorize(enable)</span>
<span class="cp">#pragma clang loop interleave(enable)</span>
<span class="k">for</span><span class="p">(...)</span> <span class="p">{</span>
  <span class="p">...</span>
<span class="p">}</span>
</pre></div>
</div>
<p>The vector width is specified by <code class="docutils literal"><span class="pre">vectorize_width(_value_)</span></code> and the interleave
count is specified by <code class="docutils literal"><span class="pre">interleave_count(_value_)</span></code>, where
_value_ is a positive integer. This is useful for specifying the optimal
width/count of the set of target architectures supported by your application.</p>
<div class="highlight-c++"><div class="highlight"><pre><span class="cp">#pragma clang loop vectorize_width(2)</span>
<span class="cp">#pragma clang loop interleave_count(2)</span>
<span class="k">for</span><span class="p">(...)</span> <span class="p">{</span>
  <span class="p">...</span>
<span class="p">}</span>
</pre></div>
</div>
<p>Specifying a width/count of 1 disables the optimization, and is equivalent to
<code class="docutils literal"><span class="pre">vectorize(disable)</span></code> or <code class="docutils literal"><span class="pre">interleave(disable)</span></code>.</p>
<p>For convenience multiple loop hints can be specified on a single line.</p>
<div class="highlight-c++"><div class="highlight"><pre><span class="cp">#pragma clang loop vectorize_width(4) interleave_count(8)</span>
<span class="k">for</span><span class="p">(...)</span> <span class="p">{</span>
  <span class="p">...</span>
<span class="p">}</span>
</pre></div>
</div>
<p>If an optimization cannot be applied any hints that apply to it will be ignored.
For example, the hint <code class="docutils literal"><span class="pre">vectorize_width(4)</span></code> is ignored if the loop is not
proven safe to vectorize. To identify and diagnose optimization issues use
<cite>-Rpass</cite>, <cite>-Rpass-missed</cite>, and <cite>-Rpass-analysis</cite> command line options. See the
user guide for details.</p>
</div>
</div>


      </div>
      <div class="bottomnav" role="navigation" aria-label="bottom navigation">
      
        <p>
        «&#160;&#160;<a href="UsersManual.html">Clang Compiler User&#8217;s Manual</a>
        &#160;&#160;::&#160;&#160;
        <a class="uplink" href="index.html">Contents</a>
        &#160;&#160;::&#160;&#160;
        <a href="ObjectiveCLiterals.html">Objective-C Literals</a>&#160;&#160;»
        </p>

      </div>

    <div class="footer" role="contentinfo">
        &copy; Copyright 2007-2014, The Clang Team.
      Created using <a href="http://sphinx-doc.org/">Sphinx</a> 1.3.6.
    </div>
  </body>
</html>