/usr/share/common-lisp/source/esrap/esrap.lisp is in cl-esrap 20151218-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 | ;;;; ESRAP -- a packrat parser for Common Lisp
;;;;
;;;; Copyright (c) 2007-2013 Nikodemus Siivola <nikodemus@random-state.net>
;;;; Copyright (c) 2012-2015 Jan Moringen <jmoringe@techfak.uni-bielefeld.de>
;;;;
;;;; Homepage and documentation:
;;;;
;;;; http://scymtym.github.com/esrap/
;;;;
;;;; References:
;;;;
;;;; * Bryan Ford, 2002, "Packrat Parsing: a Practical Linear Time
;;;; Algorithm with Backtracking".
;;;; http://pdos.csail.mit.edu/~baford/packrat/thesis/
;;;;
;;;; * Alessandro Warth, James R. Douglass, Todd Millstein, 2008,
;;;; "Packrat Parsers Can Support Left Recursion".
;;;; http://www.vpri.org/pdf/tr2007002_packrat.pdf
;;;;
;;;; Licence:
;;;;
;;;; Permission is hereby granted, free of charge, to any person
;;;; obtaining a copy of this software and associated documentation files
;;;; (the "Software"), to deal in the Software without restriction,
;;;; including without limitation the rights to use, copy, modify, merge,
;;;; publish, distribute, sublicense, and/or sell copies of the Software,
;;;; and to permit persons to whom the Software is furnished to do so,
;;;; subject to the following conditions:
;;;;
;;;; THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
;;;; EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
;;;; MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
;;;; IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
;;;; CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
;;;; TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
;;;; SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
(defpackage :esrap
(:use :cl :alexandria)
#+sbcl
(:lock t)
(:export
#:&bounds
#:! #:? #:+ #:* #:& #:~
#:character-ranges
#:*on-left-recursion*
#:add-rule
#:call-transform
#:change-rule
#:defrule
#:describe-grammar
#:describe-terminal
#:esrap-error
#:esrap-error-position
#:esrap-error-text
#:esrap-parse-error
#:esrap-parse-error-result
#:expression-start-terminals
#:find-rule
#:invalid-expression-error
#:invalid-expression-error-expression
#:left-recursion
#:left-recursion-nonterminal
#:left-recursion-path
#:parse
#:remove-rule
#:rule
#:rule-dependencies
#:rule-expression
#:rule-symbol
#:text
#:trace-rule
#:untrace-rule
#:undefined-rule-error
#:undefined-rule-symbol
))
(in-package :esrap)
;;; Conditions
(define-condition invalid-expression-error (error)
((expression :initarg :expression :reader invalid-expression-error-expression))
(:default-initargs
:expression (required-argument :expression))
(:documentation
"Signaled when an invalid expression is encountered."))
(defmethod print-object ((condition invalid-expression-error) stream)
(format stream "Invalid expression: ~S"
(invalid-expression-error-expression condition)))
(defun invalid-expression-error (expression)
(error 'invalid-expression-error :expression expression))
(define-condition esrap-error (parse-error)
((text :initarg :text :initform nil :reader esrap-error-text))
(:documentation
"Signaled when an Esrap parse fails. Use ESRAP-ERROR-TEXT to obtain the
string that was being parsed, and ESRAP-ERROR-POSITION the position at which
the error occurred."))
(defmethod print-object :before ((condition esrap-error) stream)
(when (or *print-escape*
*print-readably*
(and *print-lines* (<= *print-lines* 5)))
(return-from print-object))
;; FIXME: this looks like it won't do the right thing when used as
;; part of a logical block.
(if-let ((text (esrap-error-text condition))
(position (esrap-error-position condition)))
(labels ((safe-index (index)
(min (max index 0) (length text)))
(find-newline (&key (start 0) (end (length text)) (from-end t))
(let ((start (safe-index start))
(end (safe-index end)))
(cond
((when-let ((position (position #\Newline text
:start start :end end
:from-end from-end)))
(1+ position)))
((and from-end (zerop start))
start)
((and (not from-end) (= end (length text)))
end)))))
;; FIXME: magic numbers
(let* ((line (count #\Newline text :end position))
(column (- position (or (find-newline :end position) 0) 1))
(min-start (- position 160))
(max-end (+ position 24))
(line-start (or (find-newline :start min-start
:end position)
(safe-index min-start)))
(start (cond
((= (safe-index min-start) line-start)
line-start)
((find-newline :start min-start
:end (1- line-start)))
(t
line-start)))
(end (or (find-newline :start position
:end max-end
:from-end nil)
(safe-index max-end)))
(*print-circle* nil))
(format stream "At~:[~; end of input~]~2%~
~2@T~<~@;~A~:>~%~
~2@T~V@T^ (Line ~D, Column ~D, Position ~D)~2%"
(= position (length text))
(list (subseq text start end))
(- position line-start)
(1+ line) (1+ column) position)))
(format stream "~2&<text and position not available>~2%")))
(define-condition esrap-parse-error (esrap-error)
((result :initarg :result
:type result
:reader esrap-parse-error-result)
(%context :accessor esrap-parse-error-%context
:initform nil))
(:default-initargs :result (required-argument :result))
(:documentation
"This error is signaled when a parse attempt fails in a way that ."))
(defmethod esrap-error-position ((condition esrap-parse-error))
(result-position (esrap-parse-error-%context condition)))
(defmethod esrap-parse-error-%context :around ((condition esrap-parse-error))
(or (call-next-method)
(setf (esrap-parse-error-%context condition)
(let ((result (esrap-parse-error-result condition)))
(or (result-context result) result)))))
(defmethod print-object ((object esrap-parse-error) stream)
(cond
(*print-readably*
(call-next-method))
(*print-escape*
(print-unreadable-object (object stream :type t :identity t)
(format stream "~@[~S~]~@[ @~D~]"
(esrap-parse-error-%context object)
(esrap-error-position object))))
(t
(error-report (esrap-parse-error-%context object) stream))))
(declaim (ftype (function (string result) (values &optional nil))
esrap-parse-error))
(defun esrap-parse-error (text result)
(error 'esrap-parse-error
:text text
:result result))
(define-condition left-recursion (esrap-error)
((position :initarg :position :initform nil :reader esrap-error-position)
(nonterminal :initarg :nonterminal :initform nil :reader left-recursion-nonterminal)
(path :initarg :path :initform nil :reader left-recursion-path))
(:documentation
"May be signaled when left recursion is detected during Esrap parsing.
LEFT-RECURSION-NONTERMINAL names the symbol for which left recursion
was detected, and LEFT-RECURSION-PATH lists nonterminals of which the
left recursion cycle consists.
Note: This error is only signaled if *ON-LEFT-RECURSION* is bound
to :ERROR."))
(defmethod print-object ((condition left-recursion) stream)
(format stream "Left recursion in nonterminal ~S. ~_Path: ~
~{~S~^ -> ~}"
(left-recursion-nonterminal condition)
(left-recursion-path condition)))
(defun left-recursion (text position nonterminal path-butlast)
(error 'left-recursion
:text text
:position position
:nonterminal nonterminal
:path (append path-butlast (list nonterminal))))
(define-condition undefined-rule (condition)
((symbol :initarg :symbol
:type symbol
:reader undefined-rule-symbol)))
(defmethod print-object ((condition undefined-rule) stream)
(format stream "~@<The rule ~S is undefined.~@:>"
(undefined-rule-symbol condition)))
(define-condition undefined-rule-error (undefined-rule error)
()
(:documentation
"Signaled when an undefined rule is encountered."))
(defun undefined-rule (symbol)
(error 'undefined-rule-error :symbol symbol))
;;; Miscellany
(deftype left-recursion-policy ()
'(or null (eql :error)))
(declaim (type left-recursion-policy *on-left-recursion*))
(defvar *on-left-recursion* nil
"This special variable controls Esrap's behavior with respect to
allowing left recursion.
When :ERROR, PARSE signals a LEFT-RECURSION error when it encounters a
left recursive rule. Otherwise the rule is processed.
Note: when processing left recursive rules, linear-time guarantees
generally no longer hold.")
(defun text (&rest arguments)
"Arguments must be strings, or lists whose leaves are strings.
Catenates all the strings in arguments into a single string."
(with-output-to-string (s)
(labels ((cat-list (list)
(dolist (elt list)
(etypecase elt
(string (write-string elt s))
(character (write-char elt s))
(list (cat-list elt))))))
(cat-list arguments))))
(defun text/bounds (strings start end)
(declare (ignore start end))
(text strings))
(defun lambda/bounds (function)
(lambda (result start end)
(declare (ignore start end))
(funcall function result)))
(defun identity/bounds (identity start end)
(declare (ignore start end))
identity)
(defun parse-lambda-list-maybe-containing-&bounds (lambda-list)
"Parse &BOUNDS section in LAMBDA-LIST and return three values:
1. The standard lambda list sublist of LAMBDA-LIST
2. A symbol that should be bound to the start of a matching substring
3. A symbol that should be bound to the end of a matching substring
4. A list containing symbols that were GENSYM'ed.
The second and/or third values are GENSYMS if LAMBDA-LIST contains a
partial or no &BOUNDS section, in which case fourth value contains them
for use with IGNORE."
(let ((length (length lambda-list)))
(multiple-value-bind (lambda-list start end gensyms)
(cond
;; Look for &BOUNDS START END.
((and (>= length 3)
(eq (nth (- length 3) lambda-list) '&bounds))
(values (subseq lambda-list 0 (- length 3))
(nth (- length 2) lambda-list)
(nth (- length 1) lambda-list)
nil))
;; Look for &BOUNDS START.
((and (>= length 2)
(eq (nth (- length 2) lambda-list) '&bounds))
(let ((end (gensym "END")))
(values (subseq lambda-list 0 (- length 2))
(nth (- length 1) lambda-list)
end
(list end))))
;; No &BOUNDS section.
(t
(let ((start (gensym "START"))
(end (gensym "END")))
(values lambda-list
start
end
(list start end)))))
(check-type start symbol)
(check-type end symbol)
(values lambda-list start end gensyms))))
(deftype nonterminal ()
"Any symbol except CHARACTER and NIL can be used as a nonterminal symbol."
'(and symbol (not (member character nil))))
(deftype terminal ()
"Literal strings and characters are used as case-sensitive terminal symbols,
and expressions of the form \(~ <literal>) denote case-insensitive terminals."
'(or string character
(cons (eql ~) (cons (or string character) null))))
(deftype character-range ()
"A character range is either a single character or a list of two
characters."
'(or character
(cons character (cons character null))))
(deftype predicate-name ()
'(and symbol
(not (member character-ranges string and or not * + ? & ! ~
function))))
(eval-when (:compile-toplevel :load-toplevel :execute)
(defvar *expression-kinds*
`((character . (eql character))
(character-ranges . (cons (eql character-ranges)))
(string . (cons (eql string) (cons array-length null)))
(and . (cons (eql and)))
(or . (cons (eql or)))
,@(mapcar (lambda (symbol)
`(,symbol . (cons (eql ,symbol) (cons t null))))
'(not * + ? & !))
(terminal . terminal)
(nonterminal . nonterminal)
(predicate . (cons predicate-name (cons (not null) null)))
(function . (cons (eql function) (cons symbol null)))
(t . t))
"Names and corresponding types of acceptable expression
constructors."))
(eval-when (:compile-toplevel :execute)
(defmacro expression-case (expression &body clauses)
"Similar to
(cl:typecase EXPRESSION CLAUSES)
but clause heads designate kinds of expressions instead of types. See
*EXPRESSION-KINDS*."
(let ((available (copy-list *expression-kinds*)))
(labels ((type-for-expression-kind (kind)
(if-let ((cell (assoc kind available)))
(progn
(removef available cell)
(cdr cell))
(error "Invalid or duplicate clause: ~S" kind)))
(process-clause (clause)
(destructuring-bind (kind &body body) clause
(etypecase kind
(cons
`((or ,@(mapcar #'type-for-expression-kind kind))
,@body))
(symbol
`(,(type-for-expression-kind kind)
,@body))))))
(let ((clauses (mapcar #'process-clause clauses)))
;; We did not provide clauses for all expression
;; constructors and did not specify a catch-all clause =>
;; error.
(when (and (assoc t available) (> (length available) 1))
(error "Unhandled expression kinds: ~{~S~^, ~}"
(remove t (mapcar #'car available))))
;; If we did not specify a catch-all clause, insert one
;; which signals INVALID-EXPRESSION-ERROR.
(once-only (expression)
`(typecase ,expression
,@clauses
,@(when (assoc t available)
`((t (invalid-expression-error ,expression)))))))))))
;;; RULE REPRESENTATION AND STORAGE
;;;
;;; For each rule, there is a RULE-CELL in *RULES*, whose %INFO slot has the
;;; function that implements the rule in car, and the rule object in CDR. A
;;; RULE object can be attached to only one non-terminal at a time, which is
;;; accessible via RULE-SYMBOL.
(defvar *rules* (make-hash-table))
(defun clear-rules ()
(clrhash *rules*)
nil)
(defstruct (rule-cell
(:conc-name cell-)
(:constructor
make-rule-cell
(symbol &aux (%info (cons (undefined-rule-function symbol) nil))))
(:copier nil)
(:predicate nil))
;; A cons
;;
;; (FUNCTION . RULE)
;;
;; where
;;
;; FUNCTION is a function with lambda-list (text position end) which
;; is called to do the actual parsing work (or immediately signal an
;; error in case of referenced but undefined rules).
;;
;; RULE is a RULE instance associated to the cell or nil for
;; referenced but undefined rules.
(%info (required-argument :%info) :type (cons function t))
;; Either NIL if the corresponding rule is not currently traced or a
;; list
;;
;; (INFO BREAK CONDITION)
;;
;; where
;;
;; INFO is the original value (i.e. before the rule was traced) of
;; the %INFO slot of the cell.
;;
;; BREAK is a Boolean indicating whether to CL:BREAK when the traced
;; rule is executed.
;;
;; CONDITION is NIL or a function that is called when the traced
;; rule is executed to determine whether the trace action should be
;; performed.
(trace-info nil)
(referents nil :type list))
(declaim (inline cell-function))
(defun cell-function (cell)
(car (cell-%info cell)))
(defun cell-rule (cell)
(cdr (cell-%info cell)))
(defun set-cell-info (cell function rule)
;; Atomic update
(setf (cell-%info cell) (cons function rule))
cell)
(defun undefined-rule-function (symbol)
(lambda (&rest args)
(declare (ignore args))
(undefined-rule symbol)))
(defun ensure-rule-cell (symbol)
(check-type symbol nonterminal)
;; FIXME: Need to lock *RULES*.
(or (gethash symbol *rules*)
(setf (gethash symbol *rules*)
(make-rule-cell symbol))))
(defun delete-rule-cell (symbol)
(remhash symbol *rules*))
(defun reference-rule-cell (symbol referent)
(let ((cell (ensure-rule-cell symbol)))
(when referent
(pushnew referent (cell-referents cell)))
cell))
(defun dereference-rule-cell (symbol referent)
(let ((cell (ensure-rule-cell symbol)))
(setf (cell-referents cell) (delete referent (cell-referents cell)))
cell))
(defun find-rule-cell (symbol)
(check-type symbol nonterminal)
(gethash symbol *rules*))
(defclass rule ()
((%symbol
:initform nil)
(%expression
:initarg :expression
:initform (required-argument :expression))
(%guard-expression
:initarg :guard-expression
:initform t
:reader rule-guard-expression)
;; Either T for rules that are always active (the common case),
;; NIL for rules that are never active, or a function to call
;; to find out if the rule is active or not.
(%condition
:initarg :condition
:initform t
:reader rule-condition)
(%transform
:initarg :transform
:initform nil
:reader rule-transform)
(%around
:initarg :around
:initform nil
:reader rule-around)))
(defun rule-symbol (rule)
"Returns the nonterminal associated with the RULE, or NIL of the rule
is not attached to any nonterminal."
(slot-value rule '%symbol))
(defun detach-rule (rule)
(dolist (dep (%rule-direct-dependencies rule))
(dereference-rule-cell dep (rule-symbol rule)))
(setf (slot-value rule '%symbol) nil))
(defmethod shared-initialize :after ((rule rule) slots &key)
(declare (ignore slots))
(check-expression (rule-expression rule)))
(defmethod print-object ((rule rule) stream)
(print-unreadable-object (rule stream :type t :identity nil)
(let ((symbol (rule-symbol rule)))
(if symbol
(format stream "~S <- " symbol)
(format stream "(detached) ")))
(write (rule-expression rule) :stream stream)))
(defun sort-dependencies (symbol dependencies)
(let ((symbols (delete symbol dependencies))
(defined nil)
(undefined nil))
(dolist (sym symbols)
(if (find-rule sym)
(push sym defined)
(push sym undefined)))
(values defined undefined)))
(defun rule-dependencies (rule)
"Returns the dependencies of the RULE: primary value is a list of defined
nonterminal symbols, and secondary value is a list of undefined nonterminal
symbols."
(sort-dependencies
(rule-symbol rule) (%expression-dependencies (rule-expression rule) nil)))
(defun rule-direct-dependencies (rule)
(sort-dependencies
(rule-symbol rule) (%expression-direct-dependencies (rule-expression rule) nil)))
(defun %rule-direct-dependencies (rule)
(delete (rule-symbol rule) (%expression-direct-dependencies (rule-expression rule) nil)))
;;; Expression destructuring and validation
(defmacro with-expression ((expr lambda-list) &body body)
(let* ((type (car lambda-list))
(car-var (gensym "CAR"))
(fixed-list (cons car-var (cdr lambda-list))))
(once-only (expr)
`(destructuring-bind ,fixed-list ,expr
,(if (eq t type)
`(declare (ignore ,car-var))
`(unless (eq ',type ,car-var)
(error "~S-expression expected, got: ~S" ',type ,expr)))
(locally ,@body)))))
;;; MEMOIZATION CACHE
;;;
;;; Because each [rule, position] tuple has an unambiguous
;;; result per source text, we can cache this result -- this is what
;;; makes packrat parsing O(N).
;;;
;;; For now we just use EQUAL hash-tables, but a specialized
;;; representation would probably pay off.
(defvar *cache*)
(defun make-cache ()
(make-hash-table :test #'equal))
(defun get-cached (symbol position cache)
(gethash (cons symbol position) cache))
(defun (setf get-cached) (result symbol position cache)
(setf (gethash (cons symbol position) cache) result))
;; In case of left recursion, this stores
(defstruct (head (:predicate nil) (:copier nil))
;; the rule at which the left recursion started
(rule (required-argument :rule) :type symbol)
;; the set of involved rules
(involved-set '() :type list)
;; and the set of rules which rules which can still be applied in
;; the current round of "seed parse" growing
(eval-set '() :type list))
(defvar *heads*)
(defun make-heads ()
(make-hash-table :test #'equal))
(defun get-head (position heads)
(gethash position heads))
(defun (setf get-head) (head position heads)
(setf (gethash position heads) head))
(defun recall (rule position cache heads thunk)
(let ((result (get-cached rule position cache))
(head (get-head position heads)))
(cond
;; If not growing a seed parse, just return what is stored in
;; the cache.
((not head)
result)
;; Do not evaluate any rule that is not involved in this left
;; recursion.
((and (not result) (not (or (eq rule (head-rule head))
(member rule (head-involved-set head)))))
(make-failed-parse position position nil))
;; Allow involved rules to be evaluated, but only once, during a
;; seed-growing iteration. Subsequent requests just return what
;; is stored in the cache.
(t
(when (member rule (head-eval-set head))
(removef (head-eval-set head) rule :count 1)
(setf result (funcall thunk position)
(get-cached rule position cache) result))
result))))
(defvar *nonterminal-stack* nil)
;;; SYMBOL and POSITION must all lexical variables!
(defmacro with-cached-result ((symbol position &optional (text nil)) &body forms)
(with-gensyms (cache heads result)
`(flet ((do-it (position) ,@forms))
(let* ((,cache *cache*)
(,heads *heads*)
(,result (recall ,symbol ,position ,cache ,heads #'do-it)))
(cond
;; Found left-recursion marker in the cache. Depending on
;; *ERROR-ON-LEFT-RECURSION*, we either signal an error or
;; prepare recovery from this situation (which is performed
;; by one of the "cache miss" cases (see below) up the
;; call-stack).
((left-recursion-result-p ,result)
;; If error on left-recursion has been requested, do that.
(when (eq *on-left-recursion* :error)
(left-recursion ,text ,position ,symbol
(reverse (mapcar #'left-recursion-result-rule
*nonterminal-stack*))))
;; Otherwise, mark left recursion and fail this partial
;; parse.
(let ((head (or (left-recursion-result-head ,result)
(setf (left-recursion-result-head ,result)
(make-head :rule ,symbol)))))
;; Put this head into left recursion markers on the
;; stack. Add rules on the stack to the "involved set".
(dolist (item *nonterminal-stack*)
(when (eq (left-recursion-result-head item) head)
(return))
(setf (left-recursion-result-head item) head)
(pushnew (left-recursion-result-rule item)
(head-involved-set head))))
(make-failed-parse ,symbol ,position nil))
;; Cache hit without left-recursion.
(,result
,result)
;; Cache miss.
(t
;; First add a left recursion marker for this pair, then
;; compute the result, potentially recovering from left
;; recursion and cache that.
(let* ((result (make-left-recursion-result ,symbol))
(result1
(let ((*nonterminal-stack* (cons result *nonterminal-stack*)))
(setf (get-cached ,symbol ,position ,cache)
result
(get-cached ,symbol ,position ,cache)
(do-it position)))))
;; If we detect left recursion, handle it.
(when (and (not (error-result-p result1))
(left-recursion-result-head result))
(let ((head (left-recursion-result-head result)))
;; Grow "seed parse" (grow-lr in the paper):
;; repeatedly apply rules involved in left-recursion
;; until no progress can be made.
(setf (get-head ,position ,heads) head)
(loop
(setf (head-eval-set head)
(copy-list (head-involved-set head)))
(let ((result2 (do-it ,position)))
(when (or (error-result-p result2)
(<= (result-position result2)
(result-position result1))) ; no progress
(return))
(setf (get-cached ,symbol ,position ,cache)
(%make-successful-parse
,symbol (result-position result2)
result2 #'successful-parse-production)
result1 result2)))
(setf (get-head ,position ,heads) nil)))
result1)))))))
;;; RESULT REPRESENTATION
;;;
;;; We always return a result -- ERROR-RESULT for failed parses, and
;;; RESULT for successes.
;;;
;;; We implement a simple lazy evaluation for the productions. This is
;;; used to perform semantic actions only when necessary -- either
;;; when we call a semantic predicate or once parse has finished.
(defstruct (result (:constructor nil) (:copier nil))
;; Expression that succeeded/failed to match.
(expression nil :read-only t)
;; Position at which match was attempted.
;; Either
;; * the position at which the parse failed
;; * or function returning that position when called with the
;; FAILED-PARSE instance and optionally a minimum position as its
;; arguments.
(%position #'max-of-result-positions :type (or function array-index))
;; One of the following things:
;; * nested error, closer to actual failure site
;; * a (possibly empty) list thereof
;; * a string describing the failure
;; * a condition instance describing the failure
(detail nil :type (or result list string condition) :read-only t))
;; The following function is only called from slow paths.
(declaim (ftype (function (result) (values non-negative-integer &optional))
result-position))
(defun result-position (result)
(let ((position (result-%position result)))
(if (functionp position)
(setf (result-%position result)
(funcall position (ensure-list (result-detail result))))
position)))
(defmethod print-object ((object result) stream)
(print-unreadable-object (object stream :type t)
(let ((*print-level* (min 2 (or *print-level* 2)))
(*print-length* (min 3 (or *print-length* 3))))
(format stream "~S~@[ @~D~]"
(result-expression object) (result-position object)))))
(defstruct (error-result (:include result) (:constructor nil) (:copier nil)))
(defstruct (inactive-rule (:include error-result)
(:constructor make-inactive-rule
(expression %position))
(:copier nil)))
(declaim (ftype (function (inactive-rule) (values nonterminal &optional))
inactive-rule-rule))
(defun inactive-rule-rule (result)
(result-expression result))
(defstruct (failed-parse
(:include error-result)
(:constructor make-failed-parse (expression %position detail))
(:constructor make-failed-parse/no-position (expression detail))
(:copier nil)))
;; This is placed in the cache as a place in which information
;; regarding left recursion can be stored temporarily.
(defstruct (left-recursion-result
(:include error-result)
(:constructor make-left-recursion-result (expression))
(:copier nil))
(head nil :type (or null head)))
(declaim (ftype (function (left-recursion-result) (values nonterminal &optional))
left-recursion-result-rule))
(defun left-recursion-result-rule (result)
(result-expression result))
(defstruct (successful-parse
(:include result)
(:constructor %make-successful-parse
(expression %position detail %production))
(:copier nil))
;; Either a list of results, whose first element is the production,
;; or a function to call that will return the production.
(%production nil :type (or list function)))
(defun successful-parse-production (result)
(let ((thunk (successful-parse-%production result)))
(if (functionp thunk)
(let ((value (funcall thunk (result-detail result))))
(setf (successful-parse-%production result) (list value))
value)
(first thunk))))
;; Result helper functions
(defmacro make-successful-parse (expression position detail production)
`(%make-successful-parse
,expression ,position ,detail
,(typecase production
(symbol
`(list ,production))
((cons (eql function))
production)
(t
`(lambda (detail)
(declare (ignore detail))
,production)))))
(defun result-nonterminal-p (result)
(typep (result-expression result) 'nonterminal))
(declaim (ftype (function (list &optional non-negative-integer)
(values non-negative-integer &optional))
max-of-result-positions))
(defun max-of-result-positions (results &optional (start 0))
(reduce #'max results :key #'result-position :initial-value start))
(declaim (ftype (function (list) (values list &optional))
list-of-result-productions
list-of-result-productions/butlast))
(defun list-of-result-productions (results)
(mapcar #'successful-parse-production results))
(defun list-of-result-productions/butlast (results)
(loop :for rest :on results :while (rest rest)
:collect (successful-parse-production (first rest))))
;;; For technical reasons, INACTIVE-RULE instances cannot be directly
;;; created with the correct value in the POSITION slot. Fix this by
;;; copying the position from adjacent results, if possible.
(defun maybe-augment-inactive-rules (results)
(unless (some #'inactive-rule-p results)
(return-from maybe-augment-inactive-rules results))
(loop :for previous = nil :then (if (result-p current)
current
previous)
:for current :in results
:collect (if (and (inactive-rule-p current)
(result-p previous))
(make-inactive-rule (result-expression current)
(result-position previous))
current)))
(declaim (ftype (function (function result &key (:augment-inactive-rules t)) *)
map-results))
(declaim (ftype (function (function result) *)
map-max-results map-max-leaf-results))
;;; Apply FUNCTION to RESULT and potentially all its ancestor results
;;; (by providing a RECURSE function to FUNCTION) and return whatever
;;; FUNCTION returns.
;;;
;;; More concretely, the lambda-list of FUNCTION has to be compatible
;;; to
;;;
;;; (result recurse)
;;;
;;; where RESULT is the result object currently being visited and
;;; RECURSE is a function of no arguments that, when called, continues
;;; the traversal into children of RESULT and returns whatever
;;; FUNCTION returns for the sub-tree of ancestor results.
(defun map-results (function result &key (augment-inactive-rules t))
(let ((function (coerce function 'function))
(augment (if augment-inactive-rules
#'maybe-augment-inactive-rules
#'identity)))
(labels ((do-result (result)
(flet ((recurse ()
(let ((detail (result-detail result)))
(typecase detail
(cons
(mapcar #'do-result (funcall augment detail)))
(result
(do-result detail))))))
(declare (dynamic-extent #'recurse))
(funcall function result #'recurse))))
(declare (dynamic-extent #'do-result))
(do-result result))))
;;; Like MAP-RESULTS but only process results the position of which
;;; (computed as the recursive maximum over ancestors for inner result
;;; nodes) is maximal within the result tree RESULT.
;;;
;;; Furthermore, stop the traversal at results corresponding to !, NOT
;;; and PREDICATE expressions since failed parses among their
;;; respective ancestors are not causes of a failed (or successful)
;;; parse in the usual sense.
(defun map-max-results (function result)
;; Process result tree in two passes:
;;
;; 1. Use MAP-RESULTS to visit result processing each with either
;; PROCESS-{LEAF or INNER}-RESULT, transforming into a tree with
;; nodes of the form
;;
;; (RECURSIVE-MAX-POSITION RESULT LIST-OF-CHILDREN)
;;
;; 2. Use local function MAP-MAX-RESULTS to traverse the tree
;; calling FUNCTION on each RESULT.
(let ((function (coerce function 'function)))
(labels ((process-leaf-result (result)
(list (result-position result) result '()))
(process-inner-result (result recurse)
(declare (type function recurse))
(let ((children (remove nil (typecase (result-detail result)
(result (list (funcall recurse)))
(cons (funcall recurse))))))
(cond
(children
(let* ((max (reduce #'max children :key #'first))
(max-children (remove max children
:test-not #'= :key #'first)))
(list max result max-children)))
((not (successful-parse-p result))
(process-leaf-result result)))))
(process-result (result recurse)
;; Do not recurse into results for negation-ish and
;; predicate expressions.
(expression-case (result-expression result)
((! not predicate) (process-leaf-result result))
(t (process-inner-result result recurse))))
(map-max-results (node)
(destructuring-bind (position result children) node
(declare (ignore position))
(flet ((recurse ()
(mapcar #'map-max-results children)))
(declare (dynamic-extent #'recurse))
(funcall function result #'recurse)))))
(declare (dynamic-extent #'process-leaf-result #'process-inner-result
#'process-result #'map-max-results))
(if-let ((max-result-root (map-results #'process-result result)))
(map-max-results max-result-root)
(funcall function result (constantly '()))))))
(defun map-max-leaf-results (function result)
(let ((function (coerce function 'function)))
(map-max-results (lambda (result recurse)
(declare (type function recurse))
(when (not (funcall recurse))
(funcall function result))
result)
result)))
(declaim (inline flattened-children))
(defun flattened-children (recurse)
(let ((all-children (funcall (the function recurse))))
(remove-duplicates (reduce #'append all-children) :test #'eq)))
;;; Return a "context"-providing child result of RESULT, i.e. the most
;;; specific ancestor result of RESULT the path to which contains no
;;; forks:
;;;
;;; RESULT
;;; |
;;; `-child1
;;; |
;;; `-child2
;;; |
;;; `-nonterminal <- context
;;; |
;;; +-child4
;;; | |
;;; | ...
;;; `-child5
;;; |
;;; ...
;;;
(defun result-context (result)
(first
(map-max-results
(lambda (result recurse)
(declare (type function recurse))
(let ((children (flattened-children recurse)))
(cond
;; nonterminal with a single child => return the child.
((and (length= 1 children)
(or (result-nonterminal-p (first children))
(not (result-nonterminal-p result))))
children)
;; nonterminal with multiple children, i.e. common
;; derivation ends here => return RESULT.
(t
(list result)))))
result)))
;;; Return an explicit description (i.e. a STRING or CONDITION) of the
;;; cause of the parse failure if such a thing can be found in the
;;; result tree rooted at RESULT.
(defun result-root-cause (result)
(first
(map-max-results
(lambda (result recurse)
(cond
((typep result 'inactive-rule)
(list (let ((*package* (load-time-value (find-package :keyword))))
(format nil "Rule ~S is not active"
(result-expression result)))))
((typep (result-detail result) '(or string condition))
(list (result-detail result)))
(t
(flattened-children recurse))))
result)))
;;; Return a list of terminals that would have allowed the failed
;;; parsed represented by RESULT to succeed.
(defun result-expected-input (result)
(let ((expected '()))
(map-max-leaf-results
(lambda (leaf)
(mapc (lambda (start-terminal)
(pushnew start-terminal expected :test #'expression-equal-p))
(typecase leaf
(failed-parse
(expression-start-terminals (result-expression leaf)))
(successful-parse
'((not (character)))))))
result)
(sort expected #'expression<)))
;;; Return a list of children of RESULT that are the roots of disjoint
;;; result sub-trees.
;;;
;;; Precondition: RESULT is a nonterminal with multiple children
;;; (I.e. RESULT is typically the return value of RESULT-CONTEXT).
(defun partition-results (result)
(flet ((child-closure (result)
(let ((results (list result)))
(map-max-results (lambda (result recurse)
(pushnew result results :test #'eq)
(funcall recurse))
result)
results)))
(declare (dynamic-extent #'child-closure))
(map-max-results
(lambda (result recurse)
(let ((children (flattened-children recurse)))
(cond
;; No children => certainly no fork in ancestors => return
;; RESULT.
((null children)
(list result))
;; Only a single child, i.e. children have not been
;; partitioned => return RESULT.
((length= 1 children)
(list result))
;; Multiple children, but not all of them are nonterminals
;; and RESULT is a nonterminal => do not use the partition
;; into CHILDREN and instead return RESULT.
((and (result-nonterminal-p result)
(notevery #'result-nonterminal-p children))
(list result))
;; Multiple children, all of which are nonterminals. If the
;; child-closures of all children are disjoint => use the
;; partition into children. Otherwise => do not use the
;; partition and instead return RESULT.
(t
(let ((closures (mapcar #'child-closure children)))
(loop :named outer :for (closure1 . rest) :on closures :do
(loop :for closure2 :in rest :do
(when (intersection closure1 closure2 :test #'eq)
(return-from outer (list result))))
:finally (return-from outer children)))))))
result)))
;;; Given the "context" result (see RESULT-CONTEXT) CONTEXT, determine
;;; the set of failed ancestor results (see PARTITION-RESULTS).
;;; Display the context and all failed ancestor results optionally
;;; printing the reason for the failure and listing the respective
;;; expected inputs that would have allowed the failed results to
;;; succeed.
(defun error-report (context stream)
(let* ((partitioned (partition-results context))
(expected (mapcar (lambda (root)
(let ((reason (result-root-cause root))
(expected (result-expected-input root)))
(list root reason (length expected) expected)))
partitioned))
(expected (sort expected #'expression< :key #'first)))
;; Print context (if any), then print each failure result from the
;; PARTITIONED set with its name and the set of expected inputs,
;; if any.
(format stream "~@<~@[In context ~/esrap:print-result/:~
~@:_~@:_~
~]~
~{~{~
While parsing ~/esrap:print-result/. ~
~@[Problem:~@:_~@:_~
~2@T~A~
~@:_~@:_~]~
~[~
~*~
~:;~
~:*Expected:~@:_~@:_~
~[~
~2@T~{~/esrap::print-terminal/~}~
~:;~
~5@T~{~/esrap::print-terminal/~^~@:_ or ~}~
~]~
~]~
~}~^~@:_~@:_~}~
~:>"
context expected)))
(defvar *result-pprint-dispatch*
(let ((dispatch (copy-pprint-dispatch)))
(set-pprint-dispatch
'string (lambda (stream x)
(write x :stream stream :escape t :pretty nil))
0 dispatch)
(set-pprint-dispatch
'character (lambda (stream x)
(if (or (not (graphic-char-p x))
(member x '(#\Space #\Tab #\Newline)))
(write-string (char-name x) stream)
(write (string x) :stream stream :escape t :pretty nil)))
0 dispatch)
dispatch))
;; For use as ~/esrap::print-result/ in format control.
(defun print-result (stream result &optional colon? at?)
(declare (ignore colon? at?))
(let ((*print-pprint-dispatch* *result-pprint-dispatch*))
(princ (result-expression result) stream)))
;;; MAIN INTERFACE
(defun parse (expression text &key (start 0) end junk-allowed raw)
"Parses TEXT using EXPRESSION from START to END.
Incomplete parses, that is not consuming the entirety of TEXT, are
allowed only if JUNK-ALLOWED is true.
Returns three values:
1) A production, if the parse succeeded, NIL otherwise.
2) The position up to which TEXT has been consumed or NIL if the
entirety of TEXT has been consumed.
3) If the parse succeeded, even if it did not consume any input, T is
returned as a third value.
The third return value is necessary to distinguish successful and
failed parses for cases like
(parse '(! #\\a) \"a\" :junk-allowed t)
(parse '(! #\\a) \"b\" :junk-allowed t)
in which the first two return values cannot indicate failures.
RAW controls whether the parse result is interpreted and translated
into the return values described above. If RAW is true, a parse result
of type RESULT or ERROR-RESULT is returned as a single value.
Note that the combination of arguments :junk-allowed t :raw t does not
make sense since the JUNK-ALLOWED parameter is used when parse results
are interpreted and translated into return values which does not
happen when :raw t."
;; There is no backtracking in the toplevel expression -- so there's
;; no point in compiling it as it will be executed only once -- unless
;; it's a constant, for which we have a compiler-macro.
(when (and junk-allowed raw)
(error "~@<The combination of arguments ~{~S~^ ~} does not make ~
sense.~@:>"
(list :junk-allowed junk-allowed :raw raw)))
(let* ((end (or end (length text)))
(*cache* (make-cache))
(*heads* (make-heads))
(result (eval-expression expression text start end)))
(if raw
result
(process-parse-result result text start end junk-allowed))))
(define-compiler-macro parse (&whole form expression text
&rest arguments &key &allow-other-keys
&environment env)
(flet ((make-expansion (result-var rawp junk-allowed-p body)
;; This inline-lambda provides keyword defaults and
;; parsing, so the compiler-macro doesn't have to worry
;; about evaluation order.
(with-gensyms (expr-fun)
`(let ((,expr-fun (load-time-value (compile-expression ,expression))))
((lambda (text &key (start 0) end
,@(if rawp '(raw))
,@(if junk-allowed-p '(junk-allowed)))
(let* ((end (or end (length text)))
(*cache* (make-cache))
(*heads* (make-heads))
(,result-var (funcall ,expr-fun text start end)))
,body))
,text ,@(remove-from-plist arguments :raw))))))
(cond
((not (constantp expression env))
form)
((let ((raw (getf arguments :raw 'missing)))
(when (and (not (eq raw 'missing))
(constantp raw env))
(let ((rawp (eval raw)))
(make-expansion 'result nil (not rawp)
(if rawp
'result
'(process-parse-result
result text start end junk-allowed)))))))
(t
(make-expansion 'result t t
'(if raw
result
(process-parse-result
result text start end junk-allowed)))))))
(defun process-parse-result (result text start end junk-allowed)
(cond
;; Successfully parsed something.
((successful-parse-p result)
(with-accessors ((position result-position)
(production successful-parse-production))
result
(cond
((= position end) ; Consumed all input.
(values production nil t))
(junk-allowed ; Did not consume all input; junk
(values production position t)) ; is OK.
(t ; Junk is not OK.
(esrap-parse-error text result)))))
;; Did not parse anything, but junk is allowed.
(junk-allowed
(values nil start))
;; Did not parse anything and junk is not allowed.
((error-result-p result)
(esrap-parse-error text result))))
(defmacro defrule (&whole form symbol expression &body options)
"Define SYMBOL as a nonterminal, using EXPRESSION as associated the parsing expression.
Multiple OPTIONS specifying transforms are composed in the order of
appearance:
(:text t)
(:function parse-integer)
=>
(alexandria:compose #'parse-integer #'text)
Following OPTIONS can be specified:
* (:WHEN TEST)
The rule is active only when TEST evaluates to true. This can be used
to specify optional extensions to a grammar.
This option can only be supplied once.
* (:CONSTANT CONSTANT)
No matter what input is consumed or what EXPRESSION produces, the production
of the rule is always CONSTANT.
* (:FUNCTION FUNCTION)
If provided the production of the expression is transformed using
FUNCTION. FUNCTION can be a function name or a lambda-expression.
* (:IDENTITY BOOLEAN)
If true, the production of expression is used as-is, as if (:FUNCTION IDENTITY)
has been specified. If no production option is specified, this is the default.
* (:TEXT BOOLEAN)
If true, the production of expression is flattened and concatenated into a string
as if by (:FUNCTION TEXT) has been specified.
* (:LAMBDA LAMBDA-LIST &BODY BODY)
If provided, same as using the corresponding lambda-expression with :FUNCTION.
As an extension of the standard lambda list syntax, LAMBDA-LIST accepts
the optional pseudo lambda-list keyword ESRAP:&BOUNDS, which (1) must appear
after all standard lambda list keywords. (2) can be followed by one or two
variables to which bounding indexes of the matching substring are bound.
Therefore:
LAMBDA-LIST ::= (STANDARD-LAMBDA-LIST-ELEMENTS [&BOUNDS START [END]])
* (:DESTRUCTURE DESTRUCTURING-LAMBDA-LIST &BODY BODY)
If provided, same as using a lambda-expression that destructures its argument
using DESTRUCTURING-BIND and the provided lambda-list with :FUNCTION.
DESTRUCTURING-LAMBDA-LIST can use ESRAP:&BOUNDS in the same way
as described for :LAMBDA.
* (:AROUND ([&BOUNDS START [END]]) &BODY BODY)
If provided, execute BODY around the construction of the production of the
rule. BODY has to call ESRAP:CALL-TRANSFORM to trigger the computation of
the production. Any transformation provided via :LAMBDA, :FUNCTION
or :DESTRUCTURE is executed inside the call to ESRAP:CALL-TRANSFORM. As a
result, modification to the dynamic state are visible within the
transform.
ESRAP:&BOUNDS can be used in the same way as described for :LAMBDA
and :DESTRUCTURE.
This option can be used to safely track nesting depth, manage symbol
tables or for other stack-like operations.
"
(let ((transform nil)
(around nil)
(guard t)
(condition t)
(guard-seen nil))
(when options
(dolist (option options)
(flet ((set-transform (trans/bounds trans/no-bounds
&optional use-start-end? start-end-symbols)
(setf transform
(cond
((not transform)
trans/bounds)
(use-start-end?
(error "~@<Trying to use ~{~S~^, ~} in composed ~
~S transformation.~@:>"
start-end-symbols use-start-end?))
(t
`(compose ,trans/no-bounds ,transform)))))
(set-guard (expr test)
(if guard-seen
(error "~@<Multiple guards in ~S:~@:_~2@T~S~@:>"
'defrule form)
(setf guard-seen t
guard expr
condition test))))
(destructuring-ecase option
((:when expr &rest rest)
(when rest
(error "~@<Multiple expressions in a ~S:~@:_~2@T~S~@:>"
:when form))
(set-guard expr (cond
((not (constantp expr)) `(lambda () ,expr))
((eval expr) t))))
((:constant value)
(set-transform `(constantly ,value) `(constantly ,value)))
((:text value)
(when value
(set-transform '#'text/bounds '#'text)))
((:identity value)
(when value
(set-transform '#'identity/bounds '#'identity)))
((:lambda lambda-list &body forms)
(multiple-value-bind (lambda-list start end ignore)
(parse-lambda-list-maybe-containing-&bounds lambda-list)
(declare (type list ignore))
(apply #'set-transform
`(lambda (,@lambda-list ,start ,end)
(declare (ignore ,@ignore))
,@forms)
`(lambda (,@lambda-list) ,@forms)
(unless (length= 2 ignore)
(list option
(set-difference (list start end) ignore))))))
((:function designator)
(set-transform `(lambda/bounds (function ,designator))
`(function ,designator)))
((:destructure lambda-list &body forms)
(multiple-value-bind (lambda-list start end ignore)
(parse-lambda-list-maybe-containing-&bounds lambda-list)
(set-transform
(with-gensyms (production)
`(lambda (,production ,start ,end)
(declare (ignore ,@ignore))
(destructuring-bind ,lambda-list ,production
,@forms)))
(with-gensyms (production)
`(lambda (,production)
(destructuring-bind ,lambda-list ,production
,@forms))))))
((:around lambda-list &body forms)
(multiple-value-bind (lambda-list start end ignore)
(parse-lambda-list-maybe-containing-&bounds lambda-list)
(assert (null lambda-list))
(setf around `(lambda (,start ,end transform)
(declare (ignore ,@ignore)
(function transform))
(flet ((call-transform ()
(funcall transform)))
,@forms)))))))))
`(eval-when (:load-toplevel :execute)
(add-rule ',symbol (make-instance 'rule
:expression ',expression
:guard-expression ',guard
:transform ,(or transform '#'identity/bounds)
:around ,around
:condition ,condition)))))
(defun add-rule (symbol rule)
"Associates RULE with the nonterminal SYMBOL. Signals an error if the
rule is already associated with a nonterminal. If the symbol is already
associated with a rule, the old rule is removed first."
;; FIXME: This needs locking and WITHOUT-INTERRUPTS.
(check-type symbol nonterminal)
(when (rule-symbol rule)
(error "~S is already associated with the nonterminal ~S -- remove it first."
rule (rule-symbol rule)))
(let* ((cell (ensure-rule-cell symbol))
(function (compile-rule symbol
(rule-expression rule)
(rule-condition rule)
(rule-transform rule)
(rule-around rule)))
(trace-info (cell-trace-info cell)))
(set-cell-info cell function rule)
(setf (cell-trace-info cell) nil
(slot-value rule '%symbol) symbol)
(when trace-info
(destructuring-bind (break condition) (rest trace-info)
(trace-rule symbol :break break :condition condition)))
symbol))
(defun find-rule (symbol)
"Returns rule designated by SYMBOL, if any. Symbol must be a nonterminal
symbol."
(check-type symbol nonterminal)
(when-let ((cell (find-rule-cell symbol)))
(cell-rule cell)))
(defun remove-rule (symbol &key force)
"Makes the nonterminal SYMBOL undefined. If the nonterminal is defined an
already referred to by other rules, an error is signalled unless :FORCE is
true."
(check-type symbol nonterminal)
;; FIXME: Lock and WITHOUT-INTERRUPTS.
(let* ((cell (find-rule-cell symbol))
(rule (cell-rule cell))
(trace-info (cell-trace-info cell)))
(when cell
(flet ((frob ()
(set-cell-info cell (undefined-rule-function symbol) nil) ; TODO update trace-info as part of this function?
(when trace-info
(setf (cell-trace-info cell) (list* (cell-%info cell) (rest trace-info))))
(when rule
(detach-rule rule))))
(cond ((and rule (cell-referents cell))
(unless force
(error "Nonterminal ~S is used by other nonterminal~P:~% ~{~S~^, ~}"
symbol (length (cell-referents cell)) (cell-referents cell)))
(frob))
((not (cell-referents cell))
(frob)
;; There are no references to the rule at all, so
;; we can remove the cell.
(unless trace-info
(delete-rule-cell symbol)))))
rule)))
(defvar *trace-level* 0)
(defun trace-rule (symbol &key recursive break condition)
"Turn on tracing of nonterminal SYMBOL. If RECURSIVE is true, turn
on tracing for the whole grammar rooted at SYMBOL.
If BREAK is true, break is entered when the rule is invoked.
If supplied, CONDITION has to be a function whose lambda-list is
compatible to (symbol text position end). This function is called to
determine whether trace actions should be executed for the traced
rule.
SYMBOL is the name of the rule being executed.
TEXT is the whole text being parsed.
POSITION is the position within TEXT at which the rule is executed.
END is the end position of the portion of TEXT being parsed."
(let ((seen (make-hash-table :test #'eq)))
(labels ((traced (symbol break fun text position end)
(when break
(break "rule ~S" symbol))
(format *trace-output* "~&~V@T~D: ~S ~S?~%"
*trace-level* (1+ *trace-level*) symbol position)
(finish-output *trace-output*)
(let* ((*trace-level* (1+ *trace-level*))
(result (funcall fun text position end)))
(format *trace-output* "~&~V@T~D: ~S "
(1- *trace-level*) *trace-level* symbol)
(if (error-result-p result)
(format *trace-output* "-|~%")
(format *trace-output* "~S-~S -> ~S~%"
position (result-position result)
(successful-parse-production result)))
(finish-output *trace-output*)
result))
(traced/condition (condition symbol break fun text position end)
(if (funcall condition symbol text position end)
(traced symbol break fun text position end)
(funcall fun text position end)))
(trace-one (symbol cell)
;; Avoid infinite recursion and processing sub-trees
;; multiple times.
(if (gethash cell seen)
(return-from trace-one)
(setf (gethash cell seen) t))
;; If there is old trace information, removed it first.
(when (cell-trace-info cell)
(untrace-rule symbol))
;; Wrap the cell function in a tracing function. Store
;; old info in trace-info slot of CELL.
(let ((fun (cell-function cell))
(rule (cell-rule cell))
(info (cell-%info cell)))
(set-cell-info
cell (if condition
(curry #'traced/condition condition symbol break fun)
(curry #'traced symbol break fun))
rule)
(setf (cell-trace-info cell) (list info break condition))
;; If requested, trace dependencies
;; recursively. Checking RULE avoids recursing into
;; referenced but undefined rules.
(when (and recursive rule)
(dolist (dep (%rule-direct-dependencies rule))
(trace-one dep (find-rule-cell dep)))))
t))
(trace-one symbol (or (find-rule-cell symbol)
(undefined-rule symbol))))))
(defun untrace-rule (symbol &key recursive break condition)
"Turn off tracing of nonterminal SYMBOL.
If RECURSIVE is true, untraces the whole grammar rooted at SYMBOL.
BREAK and CONDITION are ignored, and are provided only for symmetry
with TRACE-RULE."
(declare (ignore break condition))
(let ((seen (make-hash-table :test #'eq)))
(labels ((untrace-one (cell)
;; Avoid infinite recursion and processing sub-trees
;; multiple times.
(if (gethash cell seen)
(return-from untrace-one)
(setf (gethash cell seen) t))
;; Restore info from trace-info slot of CELL.
(let ((rule (cell-rule cell))
(trace-info (cell-trace-info cell)))
(when trace-info
(setf (cell-%info cell) (first trace-info)
(cell-trace-info cell) nil))
;; If requested, trace dependencies
;; recursively. Checking RULE avoids recursing into
;; referenced but undefined rules.
(when (and recursive rule)
(dolist (dep (%rule-direct-dependencies rule))
(untrace-one (find-rule-cell dep)))))
nil))
(untrace-one (or (find-rule-cell symbol)
(undefined-rule symbol))))))
(defun rule-expression (rule)
"Return the parsing expression associated with the RULE."
(slot-value rule '%expression))
(defun (setf rule-expression) (expression rule)
"Modify RULE to use EXPRESSION as the parsing expression. The rule must be
detached beforehand."
(let ((name (rule-symbol rule)))
(when name
(error "~@<Cannot change the expression of an active rule, ~
remove ~S first, or use CHANGE-RULE.~:@>"
name))
(setf (slot-value rule '%expression) expression)))
(defun change-rule (symbol expression)
"Modifies the nonterminal SYMBOL to use EXPRESSION instead. Temporarily
removes the rule while it is being modified."
(let ((rule (remove-rule symbol :force t)))
(unless rule
(undefined-rule symbol))
(setf (rule-expression rule) expression)
(add-rule symbol rule)))
(defun symbol-length (x)
(length (symbol-name x)))
(defun describe-grammar (symbol &optional (stream *standard-output*))
"Prints the grammar tree rooted at nonterminal SYMBOL to STREAM for human
inspection."
(check-type symbol nonterminal)
(let ((rule (find-rule symbol)))
(cond ((not rule)
(format stream "Symbol ~S is not a defined nonterminal." symbol))
(t
(format stream "~&Grammar ~S:~%" symbol)
(multiple-value-bind (defined undefined) (rule-dependencies rule)
(let ((length
(+ 4 (max (reduce #'max (mapcar #'symbol-length defined)
:initial-value 0)
(reduce #'max (mapcar #'symbol-length undefined)
:initial-value 0)))))
(format stream "~3T~S~VT<- ~S~@[ : ~S~]~%"
symbol length (rule-expression rule)
(when (rule-condition rule)
(rule-guard-expression rule)))
(when defined
(dolist (s defined)
(let ((dep (find-rule s)))
(format stream "~3T~S~VT<- ~S~@[ : ~S~]~%"
s length (rule-expression dep)
(when (rule-condition rule)
(rule-guard-expression rule))))))
(when undefined
(format stream "~%Undefined nonterminal~P:~%~{~3T~S~%~}"
(length undefined) undefined))))))))
;;; COMPILING RULES
(defvar *current-rule* nil)
(defun compile-rule (symbol expression condition transform around)
(declare (type (or boolean function) condition transform around))
(let* ((*current-rule* symbol)
;; Must bind *CURRENT-RULE* before compiling the expression!
(function (compile-expression expression))
;; We use a single static INACTIVE-RULE instance to represent
;; (error) results produced by inactive rules. The actual
;; error position has to be added in a post-processing step.
(rule-not-active (make-inactive-rule symbol 0)))
(cond ((not condition)
(named-lambda inactive-rule (text position end)
(declare (ignore text position end))
rule-not-active))
(transform
(locally (declare (type function transform))
(flet ((exec-rule/transform (text position end)
(let ((result (funcall function text position end)))
(if (error-result-p result)
(make-failed-parse/no-position symbol result)
(if around
(locally (declare (type function around))
(make-successful-parse
symbol (result-position result)
result (flet ((call-rule ()
(funcall transform
(successful-parse-production result)
position
(result-position result))))
(funcall around position (result-position result) #'call-rule))))
(make-successful-parse
symbol (result-position result)
result (funcall transform
(successful-parse-production result)
position
(result-position result))))))))
(if (eq t condition)
(named-lambda rule/transform (text position end)
(with-cached-result (symbol position text)
(exec-rule/transform text position end)))
(locally (declare (type function condition))
(named-lambda condition-rule/transform (text position end)
(with-cached-result (symbol position text)
(if (funcall condition)
(exec-rule/transform text position end)
rule-not-active))))))))
(t
(if (eq t condition)
(named-lambda rule (text position end)
(with-cached-result (symbol position text)
(funcall function text position end)))
(locally (declare (type function condition))
(named-lambda conditional-rule (text position end)
(with-cached-result (symbol position text)
(if (funcall condition)
(funcall function text position end)
rule-not-active)))))))))
;;; EXPRESSION COMPILER & EVALUATOR
(defun check-expression (expression)
(labels
((rec (expression)
(expression-case expression
((character string function terminal nonterminal))
(character-ranges
(unless (every (of-type 'character-range) (rest expression))
(invalid-expression-error expression)))
((and or not * + ? & ! predicate)
(mapc #'rec (rest expression))))))
(rec expression)))
(defun %expression-dependencies (expression seen)
(expression-case expression
((character string character-ranges function terminal)
seen)
(nonterminal
(if (member expression seen :test #'eq)
seen
(let ((rule (find-rule expression))
(seen (cons expression seen)))
(if rule
(%expression-dependencies (rule-expression rule) seen)
seen))))
((and or)
(dolist (subexpr (cdr expression) seen)
(setf seen (%expression-dependencies subexpr seen))))
((not * + ? & ! predicate)
(%expression-dependencies (second expression) seen))))
(defun %expression-direct-dependencies (expression seen)
(expression-case expression
((character string character-ranges function terminal)
seen)
(nonterminal
(cons expression seen))
((and or)
(dolist (subexpr (rest expression) seen)
(setf seen (%expression-direct-dependencies subexpr seen))))
((not * + ? & ! predicate)
(%expression-direct-dependencies (second expression) seen))))
(defun expression-start-terminals (expression)
"Return a list of terminals or tree of expressions with which a text
parsable by EXPRESSION can start.
A tree instead of a list is returned when EXPRESSION contains
semantic predicates, NOT or !. Elements in the returned list or
tree are
* case (in)sensitive characters, character ranges,
case (in)sensitive strings, function terminals
* semantic predicates represented as
(PREDICATE-NAME NESTED-ELEMENTS)
where NESTED-ELEMENTS is the list of start terminals of the
expression to which PREDICATE-NAME is applied.
* NOT and ! expressions are represented as
({not,!} NESTED-ELEMENTS)
where NESTED-ELEMENTS is the list of start terminals of the
negated expression.
The (outermost) list is sorted likes this:
1. string terminals
2. character terminals
3. the CHARACTER wildcard terminal
4. semantic predicates
5. everything else"
(labels ((rec (expression seen)
(expression-case expression
((character string character-ranges function terminal)
(list expression))
(predicate
(when-let ((result (rec/sorted (second expression) seen)))
(list (list (first expression) result))))
(nonterminal
(unless (member expression seen :test #'equal)
(when-let ((rule (find-rule expression)))
(rec (rule-expression rule) (list* expression seen)))))
((not !)
(when-let ((result (rec/sorted (second expression) seen)))
(list (list (first expression) result))))
((+ &)
(rec (second expression) seen))
((? *)
(values (rec (second expression) seen) t))
(and
(let ((result '()))
(dolist (sub-expression (rest expression) result)
(multiple-value-bind (sub-start-terminals optionalp)
(rec sub-expression seen)
(when sub-start-terminals
(appendf result sub-start-terminals)
(unless optionalp
(return result)))))))
(or
(mapcan (rcurry #'rec seen) (rest expression)))))
(rec/without-duplicates (expression seen)
(remove-duplicates (rec expression seen) :test #'equal))
(rec/sorted (expression seen)
(stable-sort (rec/without-duplicates expression seen)
#'expression<)))
(rec/sorted expression '())))
(defun expression< (left right)
(or (and (typep left 'string)
(typep right '(not string)))
(and (typep left 'string)
(string-lessp left right))
(and (typep left 'character)
(typep right '(not (or string character))))
(and (typep left 'character)
(typep right 'character)
(char-lessp left right))
(and (typep left '(eql character))
(typep left '(not (eql character))))
(and (typep left '(cons predicate-name))
(typep right '(not (or string character (eql character)
(cons predicate-name)))))
(typep right '(not (or string character (eql character)
(cons predicate-name))))))
(defun expression-equal-p (left right)
(labels ((rec (left right)
(cond
((and (typep left '(or string character))
(typep right '(or string character)))
(string= left right))
((and (consp left) (consp right))
(and (rec (car left) (car right))
(rec (cdr left) (cdr right))))
(t
(equalp left right)))))
(declare (dynamic-extent #'rec))
(rec left right)))
(defun describe-terminal (terminal &optional (stream *standard-output*))
"Print a description of TERMINAL onto STREAM.
In additional to actual terminals, TERMINAL can be of the forms
(PREDICATE-NAME TERMINALS)
({not,!} TERMINALS)
(i.e. as produced by EXPRESSION-START-TERMINALS)."
(labels
((output (format-control &rest format-arguments)
(apply #'format stream format-control format-arguments))
(rec/sub-expression (sub-expression prefix separator)
(output prefix (length sub-expression))
(rec (first sub-expression))
(loop :for terminal :in (rest sub-expression)
:do (output separator) (rec terminal)))
(rec (terminal)
(expression-case terminal
(character
(output "any character"))
(string
(output "a string of length ~D" (second terminal)))
(character-ranges
(output "a character in ~{[~{~C-~C~}]~^ or ~}"
(rest terminal)))
(function
(output "a string that can be parsed by the function ~S"
(second terminal)))
(terminal
(labels ((rec (thing)
(etypecase thing
(character
;; For non-graphic or whitespace characters,
;; just print the name.
(output "the character ~:[~*~A~:;~A (~A)~]"
(and (graphic-char-p thing)
(not (member thing '(#\Space #\Tab #\Newline))))
thing (char-name thing)))
(string
(if (length= 1 thing)
(rec (char thing 0))
(output "the string ~S" thing)))
((cons (eql ~))
(rec (second thing))
(output ", disregarding case")))))
(rec terminal)))
((not !)
(let ((sub-expression (second terminal)))
(typecase sub-expression
((cons (eql character) null)
(output "<end of input>"))
(t
(output "anything but")
(pprint-logical-block (stream sub-expression)
(rec/sub-expression
sub-expression "~[~; ~:; ~5:T~]" "~@:_ and "))))))
(predicate
(let ((sub-expression (second terminal)))
(pprint-logical-block (stream sub-expression)
(rec/sub-expression
sub-expression "~[~;~;~:; ~4:T~]" "~@:_ or ")
(output "~[~; ~:;~@:_~]satisfying ~A"
(length sub-expression) (first terminal)))))
(t
(error "~@<Not a terminal: ~S~@:>" terminal)))))
(rec terminal)))
;; For use as ~/esrap:print-terminal/ in format control.
(defun print-terminal (stream terminal &optional colonp atp)
(declare (ignore colonp atp))
(describe-terminal terminal stream))
(defun eval-expression (expression text position end)
(expression-case expression
(character
(eval-character text position end))
(terminal
(if (consp expression)
(eval-terminal (string (second expression)) text position end nil)
(eval-terminal (string expression) text position end t)))
(nonterminal
(eval-nonterminal expression text position end))
(string
(eval-string expression text position end))
(and
(eval-sequence expression text position end))
(or
(eval-ordered-choise expression text position end))
(not
(eval-negation expression text position end))
(*
(eval-greedy-repetition expression text position end))
(+
(eval-greedy-positive-repetition expression text position end))
(?
(eval-optional expression text position end))
(&
(eval-followed-by expression text position end))
(!
(eval-not-followed-by expression text position end))
(character-ranges
(eval-character-ranges expression text position end))
(function
(eval-terminal-function expression text position end))
(predicate
(eval-semantic-predicate expression text position end))))
(declaim (ftype (function (*) (values function &optional)) compile-expression))
(defun compile-expression (expression)
(expression-case expression
(character (compile-character))
(terminal (if (consp expression)
(compile-terminal (string (second expression)) nil)
(compile-terminal (string expression) t)))
(nonterminal (compile-nonterminal expression))
(string (compile-string expression))
(and (compile-sequence expression))
(or (compile-ordered-choise expression))
(not (compile-negation expression))
(* (compile-greedy-repetition expression))
(+ (compile-greedy-positive-repetition expression))
(? (compile-optional expression))
(& (compile-followed-by expression))
(! (compile-not-followed-by expression))
(character-ranges (compile-character-ranges expression))
(function (compile-terminal-function expression))
(predicate (compile-semantic-predicate expression))))
(defmacro expression-lambda (name args &body body)
(unless (length= 3 (parse-ordinary-lambda-list args))
(error "~@<Lambda-list must have three required arguments.~@:>"))
(let ((name (symbolicate '#:compiled- name)))
(destructuring-bind (text-var position-var end-var) args
`(named-lambda ,name ,args
(declare (type string ,text-var)
(type array-index ,position-var ,end-var))
,@body))))
;;; Characters and strings
(declaim (ftype (function (string array-index array-index)
(values result &optional))
eval-character))
(defun eval-character (text position end)
(if (< position end)
(%make-successful-parse
'character (1+ position) nil (list (char text position)))
(make-failed-parse 'character end nil)))
(defun compile-character ()
#'eval-character)
(declaim (inline exec-string))
(defun exec-string (expression length text position end)
(let ((limit (+ length position)))
(if (<= limit end)
(make-successful-parse
expression limit nil (subseq text position limit))
(make-failed-parse expression end nil))))
(declaim (ftype (function (* string array-index array-index)
(values result &optional))
eval-string))
(defun eval-string (expression text position end)
(with-expression (expression (string length))
(declare (type array-index length))
(exec-string expression length text position end)))
(defun compile-string (expression)
(with-expression (expression (string length))
(declare (type array-index length))
(expression-lambda #:string (text position end)
(exec-string expression length text position end))))
;;; Terminals
;;;
;;; FIXME: It might be worth it to special-case terminals of length 1.
(declaim (inline match-terminal-p))
(defun match-terminal-p (string length text position end case-sensitive-p)
(and (<= (+ length position) end)
(if case-sensitive-p
(string= string text :start2 position :end2 (+ position length))
(string-equal string text :start2 position :end2 (+ position length)))))
(declaim (ftype (function (string array-index string array-index array-index boolean)
(values result &optional))
exec-terminal))
(defun exec-terminal (string length text position end case-sensitive-p)
(if (match-terminal-p string length text position end case-sensitive-p)
(make-successful-parse
string (the array-index (+ length position)) nil string)
(make-failed-parse string position nil)))
(defun eval-terminal (string text position end case-sensitive-p)
(exec-terminal string (length string) text position end case-sensitive-p))
(defun compile-terminal (string case-sensitive-p)
(let ((length (length string)))
(expression-lambda #:terminal (text position end)
(exec-terminal string length text position end case-sensitive-p))))
(declaim (ftype (function (* function string array-index array-index)
(values result &optional))
exec-terminal-function))
(defun exec-terminal-function (expression function text position end)
;; The protocol is as follows:
;;
;; FUNCTION succeeded if one of
;; 1) returns three values and RESULT is T
;; 2) returns two values and END-POSITION is NIL
;; 3) returns two values and (> END-POSITION POSITION)
;; 4) returns one value of type SUCCESSFUL-PARSE
;;
;; FUNCTION failed if one of
;; 1) returns at least two values and (= END-POSITION POSITION)
;; (since no progress has been made), but only if RESULT is not T
;; 2) returns three values and RESULT is a string or a condition
;; 3) returns one value of type ERROR-RESULT
;;
;; When RESULT is a string or a condition, END-POSITION can indicate
;; the exact position of the failure but is also allowed to be NIL.
;;
;; RESULT can be T to indicate success even if (= END-POSITION
;; POSITION).
(multiple-value-bind (production end-position result)
(funcall function text position end)
(declare (type (or null array-index) end-position)
(type (or null string condition (eql t)) result))
(cond
((result-p production)
production)
((or (eq result t)
(and (null result)
(or (null end-position)
(> end-position position))))
(make-successful-parse expression (or end-position end) nil production))
(t
(make-failed-parse expression (or end-position position) result)))))
(defun eval-terminal-function (expression text position end)
(with-expression (expression (function function))
(let ((function (ensure-function function)))
(exec-terminal-function expression function text position end))))
(defun compile-terminal-function (expression)
(with-expression (expression (function function))
(let ((function (ensure-function function)))
(expression-lambda #:terminal-function (text position end)
(exec-terminal-function expression function text position end)))))
;;; Nonterminals
(defparameter *eval-nonterminals* nil)
(defun eval-nonterminal (symbol text position end)
(if *eval-nonterminals*
(eval-expression (rule-expression (find-rule symbol)) text position end)
(funcall (cell-function (ensure-rule-cell symbol)) text position end)))
(defun compile-nonterminal (symbol)
(let ((cell (reference-rule-cell symbol *current-rule*)))
(declare (type rule-cell cell))
(expression-lambda #:nonterminal (text position end)
(funcall (cell-function cell) text position end))))
;;; Sequences
;;;
;;; FIXME: It might be better if we actually chained the closures
;;; here, instead of looping over them -- benchmark first, though.
(defun eval-sequence (expression text position end)
(with-expression (expression (and &rest subexprs))
(let ((results '()))
(dolist (expr subexprs
(make-successful-parse
expression position (nreverse results)
#'list-of-result-productions))
(let ((result (eval-expression expr text position end)))
(if (error-result-p result)
(return (make-failed-parse
expression position (nreverse (list* result results))))
(setf position (result-position result)))
(push result results))))))
(defun compile-sequence (expression)
(with-expression (expression (and &rest subexprs))
(let ((functions (mapcar #'compile-expression subexprs)))
(expression-lambda #:sequence (text position end)
(let ((results '()))
(dolist (fun functions
(make-successful-parse
expression position (nreverse results)
#'list-of-result-productions))
(let ((result (funcall fun text position end)))
(if (error-result-p result)
(return (make-failed-parse
expression position
(nreverse (list* result results))))
(setf position (result-position result)))
(push result results))))))))
;;; Ordered choises
(declaim (inline make-ordered-choise-result))
(defun make-ordered-choise-result (expression result errors)
(if errors
(make-successful-parse
expression (result-position result)
(nreverse (list* result errors))
(successful-parse-production result))
result))
(defun eval-ordered-choise (expression text position end)
(with-expression (expression (or &rest subexprs))
(let ((errors '()))
(dolist (expr subexprs
(make-failed-parse/no-position expression (nreverse errors)))
(let ((result (eval-expression expr text position end)))
(if (error-result-p result)
(push result errors)
(return (make-ordered-choise-result
expression result errors))))))))
(defun check-ordered-choise-prefix (string previous-strings)
;; Check for "FOO" followed by "FOOBAR" -- the latter would never
;; match, but it's an easy mistake to make.
(not (some (lambda (previous)
(let ((end (min (length previous) (length string))))
(not (or (mismatch string previous :end1 end)
(warn "~@<Prefix ~S before ~S in an ESRAP ~A ~
expression.~@:>"
previous string 'or)))))
previous-strings)))
(defun analyze-ordered-choise (sub-expressions)
(let ((type :characters)
(canonized '()))
(dolist (sub sub-expressions)
(when (and (typep sub '(or character string)))
(let ((string (string sub)))
(when (check-ordered-choise-prefix string canonized)
(push string canonized))))
(case type
(:general)
(:strings
(unless (typep sub '(or character string))
(setf type :general)))
(:characters
(unless (typep sub '(or character (string 1)))
(setf type (if (typep sub 'string) :strings :general))))))
(values type (nreverse canonized))))
(defun compile-ordered-choise (expression)
(with-expression (expression (or &rest subexprs))
(multiple-value-bind (type canonized) (analyze-ordered-choise subexprs)
;; FIXME: Optimize case-insensitive terminals as well.
(ecase type
(:characters
;; If every subexpression is a length 1 string, we can represent the whole
;; choise with a single string.
(let ((choises (apply #'concatenate 'string canonized))
(productions (map 'vector #'list canonized)))
(declare (type string choises))
(expression-lambda #:character-choise/characters (text position end)
(if-let ((index (and (< position end)
(position (char text position) choises))))
(%make-successful-parse
expression (+ 1 position) nil (aref productions index))
(make-failed-parse expression position nil)))))
(:strings
;; If every subexpression is a string, we can represent the whole choise
;; with a list of strings.
(let ((choises (mapcar #'list canonized)))
(expression-lambda #:character-choise/strings (text position end)
(dolist (choise choises
(make-failed-parse expression position nil))
(let* ((string (car choise))
(len (length string)))
(declare (type string string))
(when (match-terminal-p string len text position end t)
(return
(%make-successful-parse
expression (the array-index (+ len position))
nil choise))))))))
(:general
;; In the general case, compile subexpressions and call.
(let ((functions (mapcar #'compile-expression subexprs)))
(expression-lambda #:ordered-choise/general (text position end)
(let ((errors '()))
(dolist (fun functions
(make-failed-parse/no-position
expression (nreverse errors)))
(declare (type function fun))
(let ((result (funcall fun text position end)))
(if (error-result-p result)
(push result errors)
(return (make-ordered-choise-result
expression result errors)))))))))))))
;;; Negations
(declaim (ftype (function (function * string array-index array-index)
(values result &optional))
exec-negation))
(defun exec-negation (fun expr text position end)
(let ((result))
(if (and (< position end)
(error-result-p (setf result (funcall fun text position end))))
(%make-successful-parse
expr (1+ position) result (list (char text position)))
(make-failed-parse expr position result))))
(defun eval-negation (expression text position end)
(with-expression (expression (not subexpr))
(flet ((eval-sub (text position end)
(eval-expression subexpr text position end)))
(declare (dynamic-extent #'eval-sub))
(exec-negation #'eval-sub expression text position end))))
(defun compile-negation (expression)
(with-expression (expression (not subexpr))
(let ((sub (compile-expression subexpr)))
(named-lambda compiled-negation (text position end)
(exec-negation sub expression text position end)))))
;;; Greedy repetitions
(defun eval-greedy-repetition (expression text position end)
(funcall (compile-greedy-repetition expression) text position end))
(defun compile-greedy-repetition (expression)
(with-expression (expression (* subexpr))
(let ((function (compile-expression subexpr)))
(expression-lambda #:greedy-repetition (text position end)
(let ((last)
(results '()))
(loop for result = (funcall function text position end)
until (error-result-p (setf last result))
do (setf position (result-position result))
(push result results))
(make-successful-parse
expression position (nreverse (list* last results))
#'list-of-result-productions/butlast))))))
;;; Greedy positive repetitions
(defun eval-greedy-positive-repetition (expression text position end)
(funcall (compile-greedy-positive-repetition expression)
text position end))
(defun compile-greedy-positive-repetition (expression)
(with-expression (expression (+ subexpr))
(let ((function (compile-expression subexpr)))
(expression-lambda #:greedy-positive-repetition (text position end)
(let* ((last nil)
(results))
(loop for result = (funcall function text position end)
until (error-result-p (setf last result))
do (setf position (result-position result))
(push result results))
(if results
(make-successful-parse
expression position (nreverse (list* last results))
#'list-of-result-productions/butlast)
(make-failed-parse expression position last)))))))
;;; Optionals
(defun eval-optional (expression text position end)
(with-expression (expression (? subexpr))
(let ((result (eval-expression subexpr text position end)))
(if (error-result-p result)
(%make-successful-parse expression position result '(nil))
result))))
(defun compile-optional (expression)
(with-expression (expression (? subexpr))
(let ((function (compile-expression subexpr)))
(expression-lambda #:optional (text position end)
(let ((result (funcall function text position end)))
(if (error-result-p result)
(%make-successful-parse expression position result '(nil))
result))))))
;;; Followed-by's
(defun eval-followed-by (expression text position end)
(with-expression (expression (& subexpr))
(let ((result (eval-expression subexpr text position end)))
(if (error-result-p result)
(make-failed-parse expression position result)
(make-successful-parse
expression position result #'successful-parse-production)))))
(defun compile-followed-by (expression)
(with-expression (expression (& subexpr))
(let ((function (compile-expression subexpr)))
(expression-lambda #:followed-by (text position end)
(let ((result (funcall function text position end)))
(if (error-result-p result)
(make-failed-parse expression position result)
(make-successful-parse
expression position result #'successful-parse-production)))))))
;;; Not followed-by's
(defun eval-not-followed-by (expression text position end)
(with-expression (expression (! subexpr))
(let ((result (eval-expression subexpr text position end)))
(if (error-result-p result)
(%make-successful-parse expression position result '(nil))
(make-failed-parse expression position result)))))
(defun compile-not-followed-by (expression)
(with-expression (expression (! subexpr))
(let ((function (compile-expression subexpr)))
(expression-lambda #:not-followed-by (text position end)
(let ((result (funcall function text position end)))
(if (error-result-p result)
(%make-successful-parse expression position result '(nil))
(make-failed-parse expression position result)))))))
;;; Semantic predicates
(defun eval-semantic-predicate (expression text position end)
(with-expression (expression (t subexpr))
(let ((result (eval-expression subexpr text position end)))
(if (error-result-p result)
(make-failed-parse expression position result)
(let ((production (successful-parse-production result)))
(if (funcall (symbol-function (car expression)) production)
result
(make-failed-parse expression position result)))))))
(defun compile-semantic-predicate (expression)
(with-expression (expression (t subexpr))
(let* ((function (compile-expression subexpr))
(predicate (car expression))
;; KLUDGE: Calling via a variable symbol can be slow, and if we
;; grab the SYMBOL-FUNCTION here we will not see redefinitions.
(semantic-function
(if (eq (symbol-package predicate) (load-time-value (find-package :cl)))
(symbol-function predicate)
(compile nil `(lambda (x) (,predicate x))))))
(expression-lambda #:semantic-predicate (text position end)
(let ((result (funcall function text position end)))
(if (error-result-p result)
(make-failed-parse expression position result)
(let ((production (successful-parse-production result)))
(if (funcall semantic-function production)
result
(make-failed-parse expression position result)))))))))
;;; Character ranges
(declaim (ftype (function (* * string array-index array-index)
(values result &optional))
exec-character-ranges))
(defun exec-character-ranges (expression ranges text position end)
(flet ((oops ()
(make-failed-parse expression position nil)))
(if (< position end)
(let ((char (char text position)))
(if (loop for range in ranges
do (if (characterp range)
(when (char= range char)
(return t))
(when (char<= (first range) char (second range))
(return t))))
(make-successful-parse expression (1+ position) nil char)
(oops)))
(oops))))
(defun eval-character-ranges (expression text position end)
(with-expression (expression (character-ranges &rest ranges))
(exec-character-ranges expression ranges text position end)))
(defun compile-character-ranges (expression)
(with-expression (expression (character-ranges &rest ranges))
(expression-lambda #:character-ranges (text position end)
(exec-character-ranges expression ranges text position end))))
(defvar *indentation-hint-table* nil)
(defun hint-slime-indentation ()
;; See https://github.com/nikodemus/esrap/issues/24.
(unless (member "SWANK-INDENTATION" *modules* :test #'string=)
(return-from hint-slime-indentation))
(when-let* ((swank (find-package :swank))
(tables (find-symbol (string '#:*application-hints-tables*) swank))
(table (make-hash-table :test #'eq)))
(setf (gethash 'defrule table)
'(4 4 &rest (&whole 2 &lambda &body)))
(set tables (cons table (remove *indentation-hint-table* (symbol-value tables))))
(setf *indentation-hint-table* table)
t))
(hint-slime-indentation)
|