/usr/share/common-lisp/source/chipz/inflate.lisp is in cl-chipz 20150505-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 | (in-package :chipz)
(defun update-window (state)
(declare (type inflate-state state))
(let* ((output (inflate-state-output state))
(start (inflate-state-output-start state))
(index (inflate-state-output-index state))
(n-bytes-to-copy (- index start))
(window (inflate-state-window state))
(window-index (inflate-state-window-index state)))
(cond
((>= n-bytes-to-copy (length window))
;; can "flush" the window
(setf (inflate-state-window-index state) 0)
(replace window output :start2 (- index (length window))
:end2 index))
(t
(let ((window-space (- (length window) window-index)))
(cond
((> n-bytes-to-copy window-space)
(replace window output :start1 window-index
:start2 start :end2 index)
(replace window output
:start2 (+ start window-space)
:end2 index)
(setf (inflate-state-window-index state)
(- n-bytes-to-copy window-space)))
(t
(replace window output :start1 window-index
:start2 start :end2 index)
(setf (inflate-state-window-index state)
(mod (+ window-index n-bytes-to-copy) (length window))))))))))
;;; This is used behind-the-scenes to do efficient buffer->buffer
;;; decompression. Everything user-visible that's related to
;;; decompression ultimately comes down to this function.
(defun %inflate (state input output &key (input-start 0) input-end
(output-start 0) output-end)
"Decompresses data in INPUT between INPUT-START and INPUT-END
and places the result in OUTPUT between OUTPUT-START and
OUTPUT-END. -START and -END arguments follow the convention of
the sequence functions. Returns the number of bytes pulled from
the input and the number of bytes written to the output."
(declare (type inflate-state state))
(let* ((input-end (or input-end (length input)))
(output-end (or output-end (length output))))
(setf (inflate-state-input state) input
(inflate-state-input-start state) input-start
(inflate-state-input-index state) input-start
(inflate-state-input-end state) input-end
(inflate-state-output state) output
(inflate-state-output-start state) output-start
(inflate-state-output-index state) output-start
(inflate-state-output-end state) output-end)
(catch 'inflate-done
(%inflate-state-machine state))
(update-window state)
(when (dstate-update-checksum state)
(funcall (dstate-update-checksum state)
(dstate-checksum state) output output-start
(inflate-state-output-index state)))
(values (- (inflate-state-input-index state) input-start)
(- (inflate-state-output-index state) output-start))))
(defun record-code-length (state value)
(setf (aref (inflate-state-code-lengths state)
(aref *code-length-code-order*
(inflate-state-n-values-read state))) value)
(incf (inflate-state-n-values-read state)))
;;; internal inflate function
(defun %inflate-state-machine (state)
(declare (type inflate-state state))
(declare (optimize (speed 3) (debug 1) (space 0) (compilation-speed 0)))
;; Once upon a time, the individual functions in the LABELS below were
;; separate functions. We drove the state machine of this function
;; using LOOP and SYMBOL-FUNCTION. This scheme looked lovely...except
;; that SYMBOL-FUNCTION is a horrible thing to call in inner loops,
;; and we were calling it for just about every byte of input.
;;
;; So we switched to this huge LABELS. Each function then stored a
;; reference to its next state in INFLATE-STATE-STATE before jumping
;; to the next function. Some compilers were even able to optimize
;; the call into a fallthru, which provides a nice approximation of a
;; C switch statement. That was fine and dandy...except that the jump
;; is a tail call, Common Lisp is not Scheme, and some implementations
;; do not optimize tail calls. This combination led to stack
;; overflows if you handed a large input buffer to this function.
;;
;; So we provide alternatives now through the TRANSITION-TO macro. On
;; implementations we're sure we can trust to DTRT, we keep the second
;; scheme above. On other implementations, we use a variant of the
;; first scheme we tried, which is to simply store the next state's
;; function in INFLATE-STATE-STATE and return. This at least avoids
;; SYMBOL-FUNCTION and keeps constant stack space; the LOOP in the
;; body of the LABELS (waaay down there) makes sure that we don't stop
;; until we THROW.
(macrolet ((transition-to (next-state)
`(progn
(setf (inflate-state-state state) #',next-state)
#+(or sbcl cmu)
(,next-state state)
;; Just fall through for other implementations and
;; return normally.
)))
(labels (
(read-bits (n state)
(declare (type (integer 0 32) n))
(declare (type inflate-state state))
(prog1 (ldb (byte n 0) (inflate-state-bits state))
(setf (inflate-state-bits state)
(ash (inflate-state-bits state) (- n)))
(decf (inflate-state-n-bits state) n)))
(ensure-bits (n state)
(declare (type (integer 0 32) n))
(declare (type inflate-state state))
(let ((bits (inflate-state-bits state))
(n-bits (inflate-state-n-bits state))
(input-index (inflate-state-input-index state)))
(declare (type (unsigned-byte 32) bits))
(loop while (< n-bits n)
when (>= input-index (inflate-state-input-end state))
do (progn
(setf (inflate-state-bits state) bits
(inflate-state-n-bits state) n-bits
(inflate-state-input-index state) input-index)
(throw 'inflate-done nil))
do (let ((byte (aref (inflate-state-input state) input-index)))
(declare (type (unsigned-byte 8) byte))
(setf bits
(logand #xffffffff (logior (ash byte n-bits) bits)))
(incf n-bits 8)
(incf input-index))
finally (setf (inflate-state-bits state) bits
(inflate-state-n-bits state) n-bits
(inflate-state-input-index state) input-index))))
(ensure-and-read-bits (n state)
(ensure-bits n state)
(read-bits n state))
(align-bits-bytewise (state)
(declare (type inflate-state state))
(let ((n-bits (inflate-state-n-bits state)))
(decf (inflate-state-n-bits state) (rem n-bits 8))
(setf (inflate-state-bits state)
(ash (inflate-state-bits state)
(- (rem n-bits 8))))
(values)))
(decode-value (table state)
(declare (type huffman-decode-table table))
(declare (type inflate-state state))
(declare (optimize (speed 3)))
(ensure-bits (hdt-bits table) state)
(let ((bits (inflate-state-bits state)))
(declare (type (unsigned-byte 32) bits))
(do ((counts (hdt-counts table))
(len 1 (1+ len))
(first 0 (probably-the-fixnum (ash first 1)))
(code 0 (probably-the-fixnum (ash code 1))))
((>= len +max-code-length+) nil)
(declare (type (and fixnum (integer 0 *)) first code))
;; We would normally do this with READ-BITS, but DECODE-VALUE
;; is a hotspot in profiles along with this would-be call to
;; READ-BITS, so we inline it all here.
(setf code (logior code (logand bits 1))
bits (ash bits -1))
(let ((count (aref counts len)))
(when (< (- code count) first)
(setf (inflate-state-bits state) bits)
(decf (inflate-state-n-bits state) len)
(return-from decode-value (aref (hdt-symbols table)
(probably-the-fixnum
(+ (aref (hdt-offsets table) (1- len))
(- code first))))))
(setf first
(probably-the-fixnum (+ first count)))))))
(read-dynamic-table (state decoder n-values)
(declare (type inflate-state state))
(loop with lengths = (inflate-state-code-lengths state)
while (< (inflate-state-n-values-read state) n-values)
do (ensure-bits (+ (hdt-bits decoder) 7) state)
(let ((value (decode-value decoder state)))
(cond
((< value 16)
(setf (aref lengths (inflate-state-n-values-read state)) value)
(incf (inflate-state-n-values-read state)))
(t
(let ((len 0) (sym 0))
(cond
((= value 16)
(setf sym (aref lengths (1- (inflate-state-n-values-read state))))
(setf len (+ 3 (read-bits 2 state))))
((= value 17)
(setf len (+ 3 (read-bits 3 state))))
((= value 18)
(setf len (+ 11 (read-bits 7 state)))))
(fill lengths sym :start (inflate-state-n-values-read state)
:end (+ (inflate-state-n-values-read state) len))
(incf (inflate-state-n-values-read state) len)))))
finally (progn
(assert (= n-values (inflate-state-n-values-read state)))
(return (construct-huffman-decode-table lengths n-values)))))
;; Basic starter functions.
(done (state)
(declare (ignore state))
(throw 'inflate-done t))
(block-type (state)
(cond
((inflate-state-final-block-p state)
(align-bits-bytewise state)
(setf (inflate-state-state state)
(ecase (inflate-state-data-format state)
(deflate
(setf (inflate-state-done state) t)
#'done)
(zlib #'check-zlib-adler32)
(gzip #'gzip-crc32))))
(t
(ensure-bits 3 state)
(setf (inflate-state-final-block-p state) (= 1 (read-bits 1 state)))
(ecase (read-bits 2 state)
(#.+block-no-compress+
(transition-to uncompressed-block))
(#.+block-fixed-codes+
(setf (inflate-state-literal/length-table state)
*fixed-literal/length-table*
(inflate-state-distance-table state)
*fixed-distance-table*)
(transition-to literal/length))
(#.+block-dynamic-codes+
(transition-to dynamic-tables))
(#.+block-invalid+
(error 'reserved-block-type-error))))))
;;; processing uncompressed blocks
(uncompressed-block (state)
(align-bits-bytewise state)
(let* ((len (ensure-and-read-bits 16 state))
(nlen (ensure-and-read-bits 16 state)))
(unless (zerop (logand len nlen))
;; Apparently Adobe's PDF generator(s) get this wrong, so let the
;; user continue on if they choose to do so.
(cerror "Use the invalid stored block length."
'invalid-stored-block-length-error))
(setf (inflate-state-length state) len)
(transition-to copy-bytes)))
(copy-bytes (state)
(declare (type inflate-state state))
(if (zerop (inflate-state-length state))
(setf (inflate-state-state state) #'block-type)
(let ((n-copied-bytes (min (inflate-state-length state)
(- (inflate-state-input-end state)
(inflate-state-input-index state))
(- (inflate-state-output-end state)
(inflate-state-output-index state)))))
(cond
((zerop n-copied-bytes) (throw 'inflate-done nil))
(t
(replace (inflate-state-output state)
(inflate-state-input state)
:start1 (inflate-state-output-index state)
:end1 (+ (inflate-state-output-index state)
n-copied-bytes)
:start2 (inflate-state-input-index state)
:end2 (+ (inflate-state-input-index state)
n-copied-bytes))
(incf (inflate-state-input-index state) n-copied-bytes)
(incf (inflate-state-output-index state) n-copied-bytes)
(decf (inflate-state-length state) n-copied-bytes)))))
(values))
;;; dynamic block compression tables
(dynamic-tables (state)
(declare (type inflate-state state))
(ensure-bits 14 state)
(setf (inflate-state-n-length-codes state) (+ (read-bits 5 state) 257)
(inflate-state-n-distance-codes state) (+ (read-bits 5 state) 1)
(inflate-state-n-codes state) (+ (read-bits 4 state) 4)
(inflate-state-n-values-read state) 0)
(transition-to dynamic-code-lengths))
(dynamic-code-lengths (state)
(declare (type inflate-state state))
(loop while (< (inflate-state-n-values-read state)
(inflate-state-n-codes state))
do (ensure-bits 3 state)
(record-code-length state (read-bits 3 state)))
(loop while (< (inflate-state-n-values-read state) +max-n-code-lengths+)
do (record-code-length state 0))
(setf (inflate-state-codes-table state)
(construct-huffman-decode-table (inflate-state-code-lengths state)
+max-n-code-lengths+)
(inflate-state-n-values-read state) 0)
(transition-to dynamic-literal/length-table))
(dynamic-literal/length-table (state)
(declare (type inflate-state state))
(setf (inflate-state-literal/length-table state)
(read-dynamic-table state (inflate-state-codes-table state)
(inflate-state-n-length-codes state))
(inflate-state-n-values-read state) 0)
(transition-to dynamic-distance-table))
(dynamic-distance-table (state)
(declare (type inflate-state state))
(setf (inflate-state-distance-table state)
(read-dynamic-table state (inflate-state-codes-table state)
(inflate-state-n-distance-codes state)))
(transition-to literal/length))
;;; normal operation on compressed blocks
(literal/length (state)
(declare (type inflate-state state))
(let ((value (decode-value (inflate-state-literal/length-table state)
state)))
(declare (type (integer 0 288) value))
(cond
((< value 256)
(setf (inflate-state-length state) value)
(transition-to literal))
((> value 256)
(setf (inflate-state-length-code state) (- value 257))
(transition-to length-code))
(t #+nil (= value 256)
(transition-to block-type)))))
(literal (state)
(declare (type inflate-state state))
(cond
((= (inflate-state-output-index state)
(inflate-state-output-end state)) (throw 'inflate-done nil))
(t (setf (aref (inflate-state-output state)
(inflate-state-output-index state))
(inflate-state-length state))
(incf (inflate-state-output-index state))
(transition-to literal/length))))
(length-code (state)
(declare (type inflate-state state))
(let* ((length-code (inflate-state-length-code state))
(length-extra (ensure-and-read-bits (n-length-extra-bits length-code) state)))
(setf (inflate-state-length state)
(+ (length-base length-code) length-extra))
(transition-to distance)))
(distance (state)
(declare (type inflate-state state))
(let ((value (decode-value (inflate-state-distance-table state)
state)))
(setf (inflate-state-distance state) value)
(transition-to distance-extra)))
(distance-extra (state)
(declare (type inflate-state state))
(let* ((bits (n-distance-extra-bits (inflate-state-distance state)))
(distance-extra (if (zerop bits)
0
(ensure-and-read-bits bits state))))
(setf (inflate-state-distance state)
(+ (distance-base (inflate-state-distance state)) distance-extra))
(transition-to copy-match)))
(copy-match (state)
(declare (type inflate-state state))
(let* ((distance (inflate-state-distance state))
(length (inflate-state-length state))
(start (inflate-state-output-start state))
(index (inflate-state-output-index state))
(end (inflate-state-output-end state))
(window-index (inflate-state-window-index state))
(n-bytes-to-copy (min length (- end index))))
(when (= index end)
(throw 'inflate-done nil))
(flet ((frob-by-copying-from (copy-source copy-index n-bytes-to-copy)
(declare (type (simple-array (unsigned-byte 8) (*)) copy-source))
(decf (inflate-state-length state) n-bytes-to-copy)
(incf (inflate-state-output-index state) n-bytes-to-copy)
(loop with output = (inflate-state-output state)
for i from index below (the fixnum (+ index n-bytes-to-copy))
for j from copy-index below (the fixnum (+ copy-index n-bytes-to-copy))
do (setf (aref output i) (aref copy-source j)))))
(cond
((<= distance (- index start))
;; we are within the output we have produced
(frob-by-copying-from (inflate-state-output state)
(- index distance)
n-bytes-to-copy))
(t
(let ((copy-index (+ (- window-index distance) (- index start))))
(cond
((not (minusp copy-index))
;; we are within the non-wraparound portion of the window
;;
;; can only copy up to the window's index, though
(let ((n-bytes-to-copy (min n-bytes-to-copy (- window-index copy-index))))
(frob-by-copying-from (inflate-state-window state)
copy-index
n-bytes-to-copy)))
(t
;; we are within the wraparound portion of the window
(let* ((copy-index (+ copy-index
(length (inflate-state-window state))))
(n-bytes-to-copy (min n-bytes-to-copy
(- (length (inflate-state-window state))
copy-index))))
(frob-by-copying-from (inflate-state-window state)
copy-index
n-bytes-to-copy)))))))
(when (zerop (inflate-state-length state))
(transition-to literal/length)))))
;; GZIP
(gzip-header-id (state)
(declare (type inflate-state state))
(let ((header-field (ensure-and-read-bits 16 state)))
(unless (and (= (ldb (byte 8 0) header-field) #x1f)
(= (ldb (byte 8 8) header-field) #x8b))
(error 'invalid-gzip-header-error))
(transition-to gzip-cm)))
(gzip-cm (state)
(declare (type inflate-state state))
(let ((cm-byte (ensure-and-read-bits 8 state)))
(setf (inflate-state-header state)
(make-instance 'gzip-header :compression-method cm-byte))
(transition-to gzip-flags)))
(gzip-flags (state)
(declare (type inflate-state state))
(let ((flags-byte (ensure-and-read-bits 8 state)))
(setf (flags (inflate-state-header state)) flags-byte)
(transition-to gzip-mtime)))
(gzip-mtime (state)
(declare (type inflate-state state))
(let ((mtime (ensure-and-read-bits 32 state)))
(setf (mtime (inflate-state-header state)) mtime)
(transition-to gzip-xfl)))
(gzip-xfl (state)
(declare (type inflate-state state))
(let ((xfl-byte (ensure-and-read-bits 8 state)))
(setf (extra-flags (inflate-state-header state)) xfl-byte)
(transition-to gzip-os)))
(gzip-os (state)
(declare (type inflate-state state))
(let ((os-byte (ensure-and-read-bits 8 state)))
(setf (os (inflate-state-header state)) os-byte)
(transition-to gzip-xlen-len)))
(gzip-xlen-len (state)
(declare (type inflate-state state))
(let ((flags (flags (inflate-state-header state))))
(cond
((logbitp +gzip-flag-extra+ flags)
(error "gzip extra field not supported yet"))
(t
(transition-to gzip-fname)))))
(gzip-fname (state)
(declare (type inflate-state state))
(process-gzip-zero-terminated-field state +gzip-flag-name+
#'filename #'(setf filename)
#'gzip-fcomment))
(gzip-fcomment (state)
(declare (type inflate-state state))
(process-gzip-zero-terminated-field state +gzip-flag-comment+
#'comment #'(setf comment)
#'gzip-crc16))
(process-gzip-zero-terminated-field (state control-bit
slot set-slot
next-state)
(let ((header (inflate-state-header state)))
(cond
((logbitp control-bit (flags header))
(let ((byte (ensure-and-read-bits 8 state)))
(cond
((zerop byte)
;; the end, convert to sane form
(funcall set-slot
(coerce (funcall slot header)
'(vector (unsigned-byte 8)))
header)
(setf (inflate-state-state state) next-state))
(t
;; wish we could use PUSH here
(funcall set-slot
(cons byte (funcall slot header))
header)))))
(t
(setf (inflate-state-state state) next-state)))
(values)))
(gzip-crc16 (state)
(declare (type inflate-state state))
(let ((header (inflate-state-header state)))
(when (logbitp +gzip-flag-crc+ (flags header))
(let ((crc16 (ensure-and-read-bits 16 state)))
;; FIXME: would be good to perform integrity checking here
(declare (ignore crc16))))
(transition-to block-type)))
(gzip-crc32 (state)
(declare (type inflate-state state))
(let ((stored (ensure-and-read-bits 32 state))
(crc32 (copy-crc32 (inflate-state-checksum state))))
(update-crc32 crc32
(inflate-state-output state)
(inflate-state-output-start state)
(inflate-state-output-index state))
(unless (= stored (produce-crc32 crc32))
(error 'invalid-checksum-error
:stored stored
:computed (produce-crc32 crc32)
:kind :crc32))
(transition-to gzip-isize)))
(gzip-isize (state)
(declare (type inflate-state state))
(let ((isize (ensure-and-read-bits 32 state)))
(declare (ignore isize))
(setf (inflate-state-done state) t)
(transition-to done)))
;; ZLIB
(zlib-cmf (state)
(declare (type inflate-state state))
(let ((cmf-byte (ensure-and-read-bits 8 state)))
(setf (inflate-state-header state)
(make-instance 'zlib-header :cmf cmf-byte))
(transition-to zlib-flags)))
(zlib-flags (state)
(declare (type inflate-state state))
(let ((flags-byte (ensure-and-read-bits 8 state))
(header (inflate-state-header state)))
;; check
(unless (zerop (mod (+ (* (cmf header) 256) flags-byte) 31))
(error 'invalid-zlib-header-error))
(setf (flags header) flags-byte)
(transition-to zlib-fdict)))
(zlib-fdict (state)
(declare (type inflate-state state))
(let* ((header (inflate-state-header state))
(flags-byte (flags header)))
(when (logbitp +zlib-flag-fdict+ flags-byte)
(let ((fdict (ensure-and-read-bits 32 state)))
(setf (fdict header) fdict)))
(transition-to block-type)))
(check-zlib-adler32 (state)
(declare (type inflate-state state))
(let ((stored (let ((x (ensure-and-read-bits 32 state)))
(logior (ash (ldb (byte 8 0) x) 24)
(ash (ldb (byte 8 8) x) 16)
(ash (ldb (byte 8 16) x) 8)
(ldb (byte 8 24) x))))
(adler32 (copy-adler32 (inflate-state-checksum state))))
(update-adler32 adler32
(inflate-state-output state)
(inflate-state-output-start state)
(inflate-state-output-index state))
(unless (= stored
(produce-adler32 adler32))
(error 'invalid-checksum-error
:stored stored
:computed (produce-adler32 adler32)
:kind :adler32))
(setf (inflate-state-done state) t)
(transition-to done)))
)
(unless (inflate-state-state state)
(setf (inflate-state-state state)
(ecase (inflate-state-data-format state)
(deflate #'block-type)
(zlib #'zlib-cmf)
(gzip #'gzip-header-id))))
(loop (funcall (inflate-state-state state) state)))))
|