/usr/share/cinnamon/cinnamon-settings/bin/tweenEquations.py is in cinnamon-common 2.8.6-1ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 | """
made with the file cjs/tweener/equations.js
Original copyright notice of the source file:
Copyright 2008 litl, LLC.
Equations
Main equations for the Tweener class
@author Zeh Fernando, Nate Chatellier
@version 1.0.2
Disclaimer for Robert Penner's Easing Equations license:
TERMS OF USE - EASING EQUATIONS
Open source under the BSD License.
Copyright (c) 2001 Robert Penner
All rights reserved.
Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.
* Neither the name of the author nor the names of contributors may be used to endorse or promote products derived from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
TWEENING EQUATIONS functions
(the original equations are Robert Penner's work as mentioned on the disclaimer)
"""
import math
def easeNone(t, b, c, d):
return c * t / d + b
def easeInQuad(t, b, c, d):
t /= d
return c * t * t + b
def easeOutQuad(t, b, c, d):
t /= d
return -c * t * (t - 2) + b
def easeInOutQuad(t, b, c, d):
t /= d / 2
if t < 1:
return c / 2 * t * t + b
t -= 1
return -c / 2 * (t * (t - 2) - 1) + b
def easeOutInQuad(t, b, c, d):
if t < d / 2:
return easeOutQuad(t * 2, b, c / 2, d)
return easeInQuad((t * 2) - d, b + c / 2, c / 2, d)
def easeInCubic(t, b, c, d):
t /= d
return c * t ** 3 + b
def easeOutCubic(t, b, c, d):
t = t / d - 1
return c * (t ** 3 + 1) + b
def easeInOutCubic(t, b, c, d):
t /= d / 2
if t < 1:
return c / 2 * t ** 3 + b
t -= 2
return c / 2 * (t ** 3 + 2) + b
def easeOutInCubic(t, b, c, d):
if t < d / 2:
return easeOutCubic (t * 2, b, c / 2, d)
return easeInCubic((t * 2) - d, b + c / 2, c / 2, d)
def easeInQuart(t, b, c, d):
t /= d
return c * t ** 4 + b
def easeOutQuart(t, b, c, d):
t = t / d - 1
return -c * (t ** 4 - 1) + b
def easeInOutQuart(t, b, c, d):
t /= d / 2
if t < 1:
return c / 2 * t ** 4 + b
t -= 2
return -c / 2 * (t ** 4 - 2) + b
def easeOutInQuart(t, b, c, d):
if t < d / 2:
return easeOutQuart(t * 2, b, c / 2, d)
return easeInQuart((t * 2) - d, b + c / 2, c / 2, d)
def easeInQuint(t, b, c, d):
t /= d
return c * t ** 5 + b
def easeOutQuint(t, b, c, d):
t = t / d - 1
return c * (t ** 5 + 1) + b
def easeInOutQuint(t, b, c, d):
t /= d / 2
if t < 1:
return c / 2 * t ** 5 + b
t -= 2
return c / 2 * (t ** 5 + 2) + b
def easeOutInQuint(t, b, c, d):
if t < d / 2:
return easeOutQuint (t * 2, b, c / 2, d)
return easeInQuint((t * 2) - d, b + c / 2, c / 2, d)
def easeInSine(t, b, c, d):
return -c * math.cos(t / d * (math.pi / 2)) + c + b
def easeOutSine(t, b, c, d):
return c * math.sin(t / d * (math.pi / 2)) + b
def easeInOutSine(t, b, c, d):
return -c / 2 * (math.cos(math.pi * t / d) - 1) + b
def easeOutInSine(t, b, c, d):
if t < d / 2:
return easeOutSine(t * 2, b, c / 2, d)
return easeInSine((t * 2) - d, b + c / 2, c / 2, d)
def easeInExpo(t, b, c, d):
if t <= 0:
return b
return c * pow(2, 10 * (t / d - 1)) + b
def easeOutExpo(t, b, c, d):
if t >= d:
return b + c
return c * (-pow(2, -10 * t / d) + 1) + b
def easeInOutExpo(t, b, c, d):
if t <= 0:
return b
if t >= d:
return b + c
t /= d / 2
if t < 1:
return c / 2 * pow(2, 10 * (t - 1)) + b
return c / 2 * (-pow(2, -10 * (t - 1)) + 2) + b
def easeOutInExpo(t, b, c, d):
if t < d / 2:
return easeOutExpo (t * 2, b, c / 2, d)
return easeInExpo((t * 2) - d, b + c / 2, c / 2, d)
def easeInCirc(t, b, c, d):
t /= d
return -c * (math.sqrt(1 - t * t) - 1) + b
def easeOutCirc(t, b, c, d):
t = t / d - 1
return c * math.sqrt(1 - t * t) + b
def easeInOutCirc(t, b, c, d):
t /= d / 2
if t < 1:
return -c / 2 * (math.sqrt(1 - t * t) - 1) + b
t -= 2
return c / 2 * (math.sqrt(1 - t * t) + 1) + b
def easeOutInCirc(t, b, c, d):
if t < d / 2:
return easeOutCirc(t * 2, b, c / 2, d)
return easeInCirc((t * 2) - d, b + c / 2, c / 2, d)
def easeInElastic(t, b, c, d):
if t <= 0:
return b
t /= d
if t >= 1:
return b + c
p = d * .3
a = c
s = p / 4
t -= 1
return -(a * pow(2, 10 * t) * math.sin((t * d - s) * (2 * math.pi) / p)) + b
def easeOutElastic(t, b, c, d):
if t <= 0:
return b
t /= d
if t >= 1:
return b + c
p = d * .3
a = c
s = p / 4
return (a * pow(2, -10 * t) * math.sin((t * d - s) * 2 * math.pi / p) + c + b)
def easeInOutElastic(t, b, c, d):
if t <= 0:
return b
t /= d / 2
if t >= 2:
return b + c
p = d * (.3 * 1.5)
s = p / 4
a = c
if t < 1:
t -= 1
return -.5 * (a * pow(2, (10 * t)) * math.sin((t * d - s) * 2 * math.pi / p)) + b
t -= 1
return a * pow(2, (-10 * t)) * math.sin((t * d - s) * 2 * math.pi / p) * .5 + c + b
def easeOutInElastic(t, b, c, d):
if t < d / 2:
return easeOutElastic (t * 2, b, c / 2, d)
return easeInElastic((t * 2) - d, b + c / 2, c / 2, d)
def easeInBack(t, b, c, d):
s = 1.70158
t /= d
return c * t * t * ((s + 1) * t - s) + b
def easeOutBack(t, b, c, d):
s = 1.70158
t = t / d - 1
return c * (t * t * ((s + 1) * t + s) + 1) + b
def easeInOutBack(t, b, c, d):
s = 1.70158 * 1.525
t /= d / 2
if t < 1:
return c / 2 * (t * t * ((s + 1) * t - s)) + b
t -= 2
return c / 2 * (t * t * ((s + 1) * t + s) + 2) + b
def easeOutInBack(t, b, c, d):
if t < d / 2:
return easeOutBack (t * 2, b, c / 2, d)
return easeInBack((t * 2) - d, b + c / 2, c / 2, d)
def easeInBounce(t, b, c, d):
return c - easeOutBounce (d - t, 0, c, d) + b
def easeOutBounce(t, b, c, d):
t /= d
if t < (1 / 2.75):
return c * (7.5625 * t * t) + b
elif t < (2 / 2.75):
t -= (1.5 / 2.75)
return c * (7.5625 * t * t + .75) + b
elif t < (2.5 / 2.75):
t -= (2.25 / 2.75)
return c * (7.5625 * t * t + .9375) + b
t -= (2.625 / 2.75)
return c * (7.5625 * t * t + .984375) + b
def easeInOutBounce(t, b, c, d):
if t < d / 2:
return easeInBounce (t * 2, 0, c, d) * .5 + b
return easeOutBounce (t * 2 - d, 0, c, d) * .5 + c*.5 + b
def easeOutInBounce(t, b, c, d):
if t < d / 2:
return easeOutBounce (t * 2, b, c / 2, d)
return easeInBounce((t * 2) - d, b + c / 2, c / 2, d)
|