/usr/src/castle-game-engine-5.2.0/x3d/x3dtriangles.pas is in castle-game-engine-src 5.2.0-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 | {
Copyright 2003-2014 Michalis Kamburelis.
This file is part of "Castle Game Engine".
"Castle Game Engine" is free software; see the file COPYING.txt,
included in this distribution, for details about the copyright.
"Castle Game Engine" is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
----------------------------------------------------------------------------
}
{ Triangles in VRML/X3D models (TTriangle) and octrees
that resolve collisions with such triangles (TBaseTrianglesOctree). }
unit X3DTriangles;
{$I octreeconf.inc}
interface
uses CastleVectors, SysUtils, CastleUtils, X3DNodes, Castle3D, CastleBoxes,
CastleOctree, CastleGenericLists, CastleTriangles;
{ TTriangle ------------------------------------------------------------ }
type
{ }
TCollisionCount = Int64;
TMailboxTag = Int64;
{ Triangle in VRML/X3D model. This is the most basic item for our
VRML/X3D collision detection routines, returned by octrees descending from
TBaseTrianglesOctree. }
TTriangle = object(T3DTriangle)
public
{ Initialize new triangle.
Given APosition must satisfy IsValidTriangle. }
constructor Init(AShape: TObject;
const APosition: TTriangle3Single;
const ANormal: TTriangle3Single; const ATexCoord: TTriangle4Single;
const AFace: TFaceIndex);
procedure UpdateWorld;
public
{ See TTriangleEvent for the meaning of these fields. }
Shape: TObject;
{$ifndef CONSERVE_TRIANGLE_MEMORY}
Normal: TTriangle3Single;
TexCoord: TTriangle4Single;
Face: TFaceIndex;
{$else}
function Face: TFaceIndex;
{$endif not CONSERVE_TRIANGLE_MEMORY}
{$ifdef TRIANGLE_OCTREE_USE_MAILBOX}
{ Tag of an object (like a ray or a line segment)
for which we have saved an
intersection result. Intersection result is in
MailboxIsIntersection, MailboxIntersection, MailboxIntersectionDistance.
To make things correct, we obviously assume that every segment
and ray have different tags. Also, tag -1 is reserved.
In practice, we simply initialize MailboxSavedTag to -1,
and each new segment/ray get consecutive tags starting from 0.
@italic(History): a naive implementation at the beginning
was not using tags, instead I had MailboxState (empty, ray or segment)
and I was storing ray/line vectors (2 TVector3Single values).
This had much larger size (6 * SizeOf(Single) + SizeOf(enum) = 28 bytes)
than tag, which is important (3D models have easily thousands of
TTriangle). And it took longer to compare and assign,
so it was working much slower.
@groupBegin }
MailboxSavedTag: TMailboxTag;
MailboxIsIntersection: boolean;
MailboxIntersection: TVector3Single;
MailboxIntersectionDistance: Single;
{ @groupEnd }
{$endif}
{ State of this shape, containing various information about 3D shape.
This is a shortcut of TShape(Shape).State. }
function State: TX3DGraphTraverseState;
{ Check collisions between TTriangle and ray/segment.
Always use these routines to check for collisions,
to use mailboxes if possible. Mailboxes are used only if this was
compiled with TRIANGLE_OCTREE_USE_MAILBOX defined.
Increments TriangleCollisionTestsCounter if actual test was done
(that is, if we couldn't use mailbox to get the result quickier).
@groupBegin }
function SegmentDirCollision(
out Intersection: TVector3Single;
out IntersectionDistance: Single;
const Odc0, OdcVector: TVector3Single;
const SegmentTag: TMailboxTag): boolean;
function RayCollision(
out Intersection: TVector3Single;
out IntersectionDistance: Single;
const RayOrigin, RayDirection: TVector3Single;
const RayTag: TMailboxTag): boolean;
{ @groupEnd }
{ Create material information instance for material of this triangle.
See TX3DMaterialInfoAbstract for usage description.
Returns @nil when no Material node is defined, this can happen
only for VRML >= 2.0.
Returned TX3DMaterialInfoAbstract is valid only as long as the Material
node (for VRML 1.0 or 2.0) on which it was based. }
function MaterialInfo: TX3DMaterialInfoAbstract;
{ Return transparency of this triangle's material.
Equivalent to MaterialInfo.Transparency, although a little faster. }
function Transparency: Single;
{ Returns @true for triangles that are transparent. }
function IsTransparent: boolean;
{ Returns @true for triangles that should be ignored by shadow rays.
Returns @true for transparent triangles
(with Material.Transparency > 0) and non-shadow-casting triangles
(with Appearance.shadowCaster = FALSE).
@seealso TBaseTrianglesOctree.IgnoreForShadowRays }
function IgnoreForShadowRays: boolean;
{$ifndef CONSERVE_TRIANGLE_MEMORY}
{ For a given position (in world coordinates), return the texture
coordinate at this point. It is an interpolated texture coordinate
from our per-vertex texture coordinates in @link(TexCoord) field.
This assumes that Position actually lies within the triangle.
The ITexCoord2D returns the same, but cut to the first 2 texture
coordinate components. Usable for normal 2D textures.
@groupBegin }
function ITexCoord(const Point: TVector3Single): TVector4Single;
function ITexCoord2D(const Point: TVector3Single): TVector2Single;
{ @groupEnd }
{ For a given position (in world coordinates), return the smooth
normal vector at this point. It is an interpolated normal
from our per-vertex normals in @link(Normal) field.
Like them, it is a normal vector in local coordinates.
This assumes that Position actally lies within the triangle. }
function INormal(const Point: TVector3Single): TVector3Single;
{$endif}
end;
PTriangle = ^TTriangle;
TTriangleList = specialize TGenericStructList<TTriangle>;
{ TBaseTrianglesOctree ----------------------------------------------------------- }
type
{ }
TBaseTrianglesOctree = class;
{ }
TBaseTrianglesOctreeNode = class(TOctreeNode)
protected
{ These realize the common implementation of SphereCollision:
traversing down the octree nodes. They take care of traversing
down the non-leaf nodes, you only have to override
the CommonXxxLeaf versions where you handle the leaves
(and you have to call CommonXxx from normal Xxx routines). }
function CommonSphere(const pos: TVector3Single;
const Radius: Single;
const TriangleToIgnore: PTriangle;
const TrianglesToIgnoreFunc: T3DTriangleIgnoreFunc): PTriangle;
function CommonSphereLeaf(const pos: TVector3Single;
const Radius: Single;
const TriangleToIgnore: PTriangle;
const TrianglesToIgnoreFunc: T3DTriangleIgnoreFunc): PTriangle; virtual; abstract;
function CommonBox(const ABox: TBox3D;
const TriangleToIgnore: PTriangle;
const TrianglesToIgnoreFunc: T3DTriangleIgnoreFunc): PTriangle;
function CommonBoxLeaf(const ABox: TBox3D;
const TriangleToIgnore: PTriangle;
const TrianglesToIgnoreFunc: T3DTriangleIgnoreFunc): PTriangle; virtual; abstract;
function CommonSegment(
out Intersection: TVector3Single;
out IntersectionDistance: Single;
const pos1, pos2: TVector3Single;
const Tag: TMailboxTag;
const ReturnClosestIntersection: boolean;
const TriangleToIgnore: PTriangle;
const IgnoreMarginAtStart: boolean;
const TrianglesToIgnoreFunc: T3DTriangleIgnoreFunc): PTriangle;
function CommonSegmentLeaf(
out Intersection: TVector3Single;
out IntersectionDistance: Single;
const pos1, pos2: TVector3Single;
const Tag: TMailboxTag;
const ReturnClosestIntersection: boolean;
const TriangleToIgnore: PTriangle;
const IgnoreMarginAtStart: boolean;
const TrianglesToIgnoreFunc: T3DTriangleIgnoreFunc): PTriangle; virtual; abstract;
function CommonRay(
out Intersection: TVector3Single;
out IntersectionDistance: Single;
const RayOrigin, RayDirection: TVector3Single;
const Tag: TMailboxTag;
const ReturnClosestIntersection: boolean;
const TriangleToIgnore: PTriangle;
const IgnoreMarginAtStart: boolean;
const TrianglesToIgnoreFunc: T3DTriangleIgnoreFunc): PTriangle;
function CommonRayLeaf(
out Intersection: TVector3Single;
out IntersectionDistance: Single;
const RayOrigin, RayDirection: TVector3Single;
const Tag: TMailboxTag;
const ReturnClosestIntersection: boolean;
const TriangleToIgnore: PTriangle;
const IgnoreMarginAtStart: boolean;
const TrianglesToIgnoreFunc: T3DTriangleIgnoreFunc): PTriangle; virtual; abstract;
public
{ See TBaseTrianglesOctree for documentation of these routines.
Note that methods here do not try to limit detected intersections
to their boxes. If you will insert a large triangle into a node,
that is partially inside and partially outside of this node,
the collision methods may find an intersection outside of this node.
This is not be a problem for a root node, since the root node has
a box such that every triangle is completely inside.
But it is important to remember when you implement recursive
*Collision calls in nodes: if you want to query your subnodes
in some particular order (for example to honour ReturnClosestIntersection
= @true), then remember that one subnode may detect a collision
that in fact happened in other subnode.
@groupBegin }
function SphereCollision(const pos: TVector3Single;
const Radius: Single;
const TriangleToIgnore: PTriangle;
const TrianglesToIgnoreFunc: T3DTriangleIgnoreFunc): PTriangle; virtual; abstract;
function IsSphereCollision(const pos: TVector3Single;
const Radius: Single;
const TriangleToIgnore: PTriangle;
const TrianglesToIgnoreFunc: T3DTriangleIgnoreFunc): boolean; virtual; abstract;
function BoxCollision(const ABox: TBox3D;
const TriangleToIgnore: PTriangle;
const TrianglesToIgnoreFunc: T3DTriangleIgnoreFunc): PTriangle; virtual; abstract;
function IsBoxCollision(const ABox: TBox3D;
const TriangleToIgnore: PTriangle;
const TrianglesToIgnoreFunc: T3DTriangleIgnoreFunc): boolean; virtual; abstract;
function SegmentCollision(
out Intersection: TVector3Single;
out IntersectionDistance: Single;
const pos1, pos2: TVector3Single;
const Tag: TMailboxTag;
const ReturnClosestIntersection: boolean;
const TriangleToIgnore: PTriangle;
const IgnoreMarginAtStart: boolean;
const TrianglesToIgnoreFunc: T3DTriangleIgnoreFunc): PTriangle; virtual; abstract;
function IsSegmentCollision(
const pos1, pos2: TVector3Single;
const Tag: TMailboxTag;
const TriangleToIgnore: PTriangle;
const IgnoreMarginAtStart: boolean;
const TrianglesToIgnoreFunc: T3DTriangleIgnoreFunc): boolean; virtual; abstract;
function RayCollision(
out Intersection: TVector3Single;
out IntersectionDistance: Single;
const RayOrigin, RayDirection: TVector3Single;
const Tag: TMailboxTag;
const ReturnClosestIntersection: boolean;
const TriangleToIgnore: PTriangle;
const IgnoreMarginAtStart: boolean;
const TrianglesToIgnoreFunc: T3DTriangleIgnoreFunc): PTriangle; virtual; abstract;
function IsRayCollision(
const RayOrigin, RayDirection: TVector3Single;
const Tag: TMailboxTag;
const TriangleToIgnore: PTriangle;
const IgnoreMarginAtStart: boolean;
const TrianglesToIgnoreFunc: T3DTriangleIgnoreFunc): boolean; virtual; abstract;
{ @groupEnd }
end;
{ Callback for @link(TBaseTrianglesOctree.EnumerateTriangles). }
TEnumerateTriangleFunc = procedure (const Triangle: PTriangle) of object;
{ Abstract class for octrees that can check and return collisions
with TTriangle.
Octree node class used by this must be a TBaseTrianglesOctreeNode descendant.
In a simple case, this is an ancestor of TTriangleOctree,
that is just an octree storing TTriangle. But it's also an
ancestor of TShapeOctree, since each shape has also a
triangle octree. This way, TShapeOctree can calculate collisions
with TTriangle, even though it doesn't directly store TTriangle items. }
TBaseTrianglesOctree = class(TOctree)
private
{ Return NextFreeTag and increment it (for the future AssignNewTag).
This guarantees that NextFreeTag is incremented immediately,
so it will not be reused by some other routine. For example
if your collision query will cause another collision query
inside, that calls inside another AssignNewTag, everything will work OK. }
function AssignNewTag: TMailboxTag;
public
{ Collision checking using the octree.
SegmentCollision checks for collision between a line segment and tree items.
SphereCollision checks for collision with a sphere.
BoxCollision checks for collision with a box (axis-aligned, TBox3D type).
RayCollision checks for collision with a ray.
All there methods return nil if there is no collision, or a pointer
to colliding item.
@param(ReturnClosestIntersection
If @false, then any collision detected is returned.
For routines that don't have ReturnClosestIntersection parameter
(SphereCollision, BoxCollision) always any collision is returned.
If this is @true, then the collision closest to RayOrigin (for RayCollision)
or Pos1 (for SegmentCollision) is returned. This makes the collision
somewhat slower (as we have to check all collisions, while
for ReturnClosestIntersection = @false we can terminate at first
collision found.)
The versions that return boolean value (IsXxxCollision) don't
take this parameter, as they are naturally interested in existence
of @italic(any) intersection.)
@param(TriangleToIgnore
If this is non-nil, then Segment/RayCollision assume that there
is @italic(never) a collision with this octree item.
It's never returned as collidable item.
This is useful for recursive ray-tracer, when you start tracing
from some existing face (octree item). In this case, you don't
want to "hit" the starting face. So you can pass this face
as TriangleToIgnore.
Note that IgnoreMarginAtStart helps with the same problem,
although a little differently.)
@param(TrianglesToIgnoreFunc
If assigned, then items for which TrianglesToIgnoreFunc returns @true
will be ignored. This is a more general mechanism than
TriangleToIgnore, as you can ignore many items, you can also
make some condition to ignore --- for example, you can ignore
partially transparent items.)
@param(IgnoreMarginAtStart
If @true, then collisions that happen very very close to RayOrigin (or Pos1
for SegmentCollision) will be ignored.
This is another thing helpful for recursive ray-tracers:
you don't want to hit the starting face, or any coplanar faces,
when tracing reflected/refracted/shadow ray.
Note that if you know actual pointer of your face, it's better to use
TriangleToIgnore --- TriangleToIgnore is a 100% guaranteed
stable solution, while IgnoreMarginAtStart necessarily has some
"epsilon" constant that determines which items are ignored.
This epsilon may be too large, or too small, in some cases.
In practice, recursive ray-tracers should use both
TriangleToIgnore (to avoid collisions with starting face)
and IgnoreMarginAtStart = @true (to avoid collisions with faces
coplanar with starting face).)
@param(IntersectionDistance
For RayCollision:
Returned IntersectionDistance is the distance along the RayDirection:
smaller IntersectionDistance, closer to RayOrigin.
IntersectionDistance is always >= 0.
Intersection is always equal to RayOrigin + RayDirection * IntersectionDistance.
For SegmentCollision: analogously,
IntersectionDistance is along Pos2 - Pos1.
IntersectionDistance is always in 0...1.
Intersectio is always equal to Pos1 + (Pos2 - Pos1) * IntersectionDistance.
)
@groupBegin
}
function SegmentCollision(
out Intersection: TVector3Single;
out IntersectionDistance: Single;
const pos1, pos2: TVector3Single;
const ReturnClosestIntersection: boolean;
const TriangleToIgnore: PTriangle;
const IgnoreMarginAtStart: boolean;
const TrianglesToIgnoreFunc: T3DTriangleIgnoreFunc): PTriangle; overload;
function SegmentCollision(
out Intersection: TVector3Single;
const pos1, pos2: TVector3Single;
const ReturnClosestIntersection: boolean;
const TriangleToIgnore: PTriangle;
const IgnoreMarginAtStart: boolean;
const TrianglesToIgnoreFunc: T3DTriangleIgnoreFunc): PTriangle; overload;
function SegmentCollision(
out IntersectionDistance: Single;
const pos1, pos2: TVector3Single;
const ReturnClosestIntersection: boolean;
const TriangleToIgnore: PTriangle;
const IgnoreMarginAtStart: boolean;
const TrianglesToIgnoreFunc: T3DTriangleIgnoreFunc): PTriangle; overload;
function SegmentCollision(
const pos1, pos2: TVector3Single;
const ReturnClosestIntersection: boolean;
const TriangleToIgnore: PTriangle;
const IgnoreMarginAtStart: boolean;
const TrianglesToIgnoreFunc: T3DTriangleIgnoreFunc): PTriangle; overload;
function IsSegmentCollision(
const pos1, pos2: TVector3Single;
const TriangleToIgnore: PTriangle;
const IgnoreMarginAtStart: boolean;
const TrianglesToIgnoreFunc: T3DTriangleIgnoreFunc): boolean;
function SphereCollision(const pos: TVector3Single;
const Radius: Single;
const TriangleToIgnore: PTriangle;
const TrianglesToIgnoreFunc: T3DTriangleIgnoreFunc): PTriangle;
function IsSphereCollision(const pos: TVector3Single;
const Radius: Single;
const TriangleToIgnore: PTriangle;
const TrianglesToIgnoreFunc: T3DTriangleIgnoreFunc): boolean;
function BoxCollision(const ABox: TBox3D;
const TriangleToIgnore: PTriangle;
const TrianglesToIgnoreFunc: T3DTriangleIgnoreFunc): PTriangle;
function IsBoxCollision(const ABox: TBox3D;
const TriangleToIgnore: PTriangle;
const TrianglesToIgnoreFunc: T3DTriangleIgnoreFunc): boolean;
function RayCollision(
out Intersection: TVector3Single;
out IntersectionDistance: Single;
const RayOrigin, RayDirection: TVector3Single;
const ReturnClosestIntersection: boolean;
const TriangleToIgnore: PTriangle;
const IgnoreMarginAtStart: boolean;
const TrianglesToIgnoreFunc: T3DTriangleIgnoreFunc): PTriangle; overload;
function RayCollision(
out Intersection: TVector3Single;
const RayOrigin, RayDirection: TVector3Single;
const ReturnClosestIntersection: boolean;
const TriangleToIgnore: PTriangle;
const IgnoreMarginAtStart: boolean;
const TrianglesToIgnoreFunc: T3DTriangleIgnoreFunc): PTriangle; overload;
function RayCollision(
out IntersectionDistance: Single;
const RayOrigin, RayDirection: TVector3Single;
const ReturnClosestIntersection: boolean;
const TriangleToIgnore: PTriangle;
const IgnoreMarginAtStart: boolean;
const TrianglesToIgnoreFunc: T3DTriangleIgnoreFunc): PTriangle; overload;
function RayCollision(const RayOrigin, RayDirection: TVector3Single;
const ReturnClosestIntersection: boolean;
const TriangleToIgnore: PTriangle;
const IgnoreMarginAtStart: boolean;
const TrianglesToIgnoreFunc: T3DTriangleIgnoreFunc): PTriangle; overload;
function IsRayCollision(
const RayOrigin, RayDirection: TVector3Single;
const TriangleToIgnore: PTriangle;
const IgnoreMarginAtStart: boolean;
const TrianglesToIgnoreFunc: T3DTriangleIgnoreFunc): boolean;
{ @groupEnd }
{ Check is move allowed. This is the perfect (precise, using triangle mesh,
and fast) implementation of T3D.MoveCollision interface.
TriangleToIgnore and TrianglesToIgnoreFunc meaning
is just like for RayCollision. This can be used to allow
camera to walk thorugh some surfaces (e.g. through water
surface, or to allow player to walk through some "fake wall"
and discover secret room in game etc.). }
function MoveCollision(
const OldPos, NewPos: TVector3Single;
const IsRadius: boolean; const Radius: Single;
const OldBox, NewBox: TBox3D;
const TriangleToIgnore: PTriangle = nil;
const TrianglesToIgnoreFunc: T3DTriangleIgnoreFunc = nil): boolean;
function MoveCollision(
const OldPos, ProposedNewPos: TVector3Single; out NewPos: TVector3Single;
const IsRadius: boolean; const Radius: Single;
const OldBox, NewBox: TBox3D;
const TriangleToIgnore: PTriangle = nil;
const TrianglesToIgnoreFunc: T3DTriangleIgnoreFunc = nil): boolean;
{ @groupEnd }
{ For given camera position and up vector, calculate camera height
above the ground. This is comfortable for cooperation with
TWalkCamera.OnHeight.
See T3D.Height for specification.
TriangleToIgnore and TrianglesToIgnoreFunc meaning
is just like for RayCollision. }
function HeightCollision(
const Position, GravityUp: TVector3Single;
out AboveHeight: Single; out AboveGround: PTriangle;
const TriangleToIgnore: PTriangle;
const TrianglesToIgnoreFunc: T3DTriangleIgnoreFunc): boolean;
{ Ignore (return @true) transparent triangles
(with Material.Transparency > 0).
This is suitable for T3DTriangleIgnoreFunc function, you can pass
this to RayCollision and such. }
class function IgnoreTransparentItem(
const Sender: TObject;
const Triangle: P3DTriangle): boolean;
{ Ignore (return @true) transparent triangles
(with Material.Transparency > 0) and non-shadow-casting triangles
(with Appearance.shadowCaster = FALSE).
This is suitable for T3DTriangleIgnoreFunc function, you can pass
this to RayCollision and such. }
class function IgnoreForShadowRays(
const Sender: TObject;
const Triangle: P3DTriangle): boolean;
{ Checks whether VRML Light (point or directional) lights at scene point
LightedPoint.
"Lights at scene" means that the light is turned on
(field "on" is @true) and between light source and a LightedPoint
nothing blocks the light (we check it by querying collisions using
the octree, ignoring transparent and non-shadow-casting triangles),
and the light source is on the same side of LightedPointPlane as
RenderDir.
TriangleToIgnore and IgnoreMarginAtStart work just like for
SegmentCollision. You should usually set TriangleToIgnore to the
triangle containing your LightedPoint and IgnoreMarginAtStart to @true,
to avoid detecting point as shadowing itself. }
function LightNotBlocked(const Light: TLightInstance;
const LightedPoint, LightedPointPlane, RenderDir: TVector3Single;
const TriangleToIgnore: PTriangle;
const IgnoreMarginAtStart: boolean): boolean;
{ Enumerate every triangle of this octree.
It passes to EnumerateTriangleFunc callback a Triangle.
Triangle is passed as a pointer (never @nil) --- these are guaranteed
to be "stable" pointers stored inside octrees' lists (so they will be valid
as long as octree (and eventual children octrees for TShapeOctree)).
Every triangle is guaranteed to have it's World coordinates updated
(to put it simply, when this is used on TShapeOctree, then we
call UpdateWorld on each triangle). }
procedure EnumerateTriangles(EnumerateTriangleFunc: TEnumerateTriangleFunc);
virtual; abstract;
{ Number of triangles within the octree. This counts all triangles
returned by EnumerateTriangles. }
function TrianglesCount: Cardinal; virtual; abstract;
end;
{ Simple utility class to easily ignore all transparent, non-shadow-casting
triangles, and, additionally, one chosen triangle.
Useful for TrianglesToIgnoreFunc parameters of various
TBaseTrianglesOctree methods. }
TOctreeIgnoreForShadowRaysAndOneItem = class
public
OneItem: PTriangle;
function IgnoreItem(
const Sender: TObject;
const Triangle: P3DTriangle): boolean;
constructor Create(AOneItem: PTriangle);
end;
var
{ Counter of collision tests done by TTriangle when the actual collision
calculation had to be done.
This counts all calls to TTriangle.SegmentDirCollision and
TTriangle.RayCollision when the result had to be actually geometrically
calculated (result was not in the cache aka "mailbox").
It is especially useful to look at this after using some spatial
data structure, like an octree. The goal of tree structures is to
minimize this number.
It is a global variable, because that's the most comfortable way to use
it. Triangles are usually wrapped in an octree (like TTriangleOctree),
or even in an octree of octrees (like TShapeOctree).
Tracking collisions using the global variable is most comfortable,
instead of spending time on propagating this (purely debugging) information
through the octree structures. }
TriangleCollisionTestsCounter: Cardinal;
implementation
uses CastleStringUtils, CastleShapes;
{ TTriangle ------------------------------------------------------------- }
constructor TTriangle.Init(AShape: TObject;
const APosition: TTriangle3Single;
const ANormal: TTriangle3Single; const ATexCoord: TTriangle4Single;
const AFace: TFaceIndex);
begin
inherited Init(APosition);
Shape := AShape;
{$ifndef CONSERVE_TRIANGLE_MEMORY}
Normal := ANormal;
TexCoord := ATexCoord;
Face := AFace;
{$endif not CONSERVE_TRIANGLE_MEMORY}
{$ifdef TRIANGLE_OCTREE_USE_MAILBOX}
MailboxSavedTag := -1;
{$endif}
end;
function TTriangle.State: TX3DGraphTraverseState;
begin
Result := TShape(Shape).State;
end;
procedure TTriangle.UpdateWorld;
begin
World.Triangle := TriangleTransform(Local.Triangle, State.Transform);
World.Plane := TriangleNormPlane(World.Triangle);
World.Area := CastleTriangles.TriangleArea(World.Triangle);
end;
function TTriangle.SegmentDirCollision(
out Intersection: TVector3Single;
out IntersectionDistance: Single;
const Odc0, OdcVector: TVector3Single;
const SegmentTag: TMailboxTag): boolean;
begin
{$ifdef TRIANGLE_OCTREE_USE_MAILBOX}
if MailboxSavedTag = SegmentTag then
begin
result := MailboxIsIntersection;
if result then
begin
Intersection := MailboxIntersection;
IntersectionDistance := MailboxIntersectionDistance;
end;
end else
begin
{$endif}
Result := TryTriangleSegmentDirCollision(
Intersection, IntersectionDistance,
Local.Triangle, Local.Plane,
Odc0, OdcVector);
Inc(TriangleCollisionTestsCounter);
{$ifdef TRIANGLE_OCTREE_USE_MAILBOX}
{ save result to mailbox }
MailboxSavedTag := SegmentTag;
MailboxIsIntersection := result;
if result then
begin
MailboxIntersection := Intersection;
MailboxIntersectionDistance := IntersectionDistance;
end;
end;
{$endif}
end;
function TTriangle.RayCollision(
out Intersection: TVector3Single;
out IntersectionDistance: Single;
const RayOrigin, RayDirection: TVector3Single;
const RayTag: TMailboxTag): boolean;
begin
{ uwzgledniam tu fakt ze czesto bedzie wypuszczanych wiele promieni
z jednego RayOrigin ale z roznym RayDirection (np. w raytracerze). Wiec lepiej
najpierw porownywac przechowywane w skrzynce RayDirection (niz RayOrigin)
zeby moc szybciej stwierdzic niezgodnosc. }
{$ifdef TRIANGLE_OCTREE_USE_MAILBOX}
if MailboxSavedTag = RayTag then
begin
result := MailboxIsIntersection;
if result then
begin
Intersection := MailboxIntersection;
IntersectionDistance := MailboxIntersectionDistance;
end;
end else
begin
{$endif}
result := TryTriangleRayCollision(
Intersection, IntersectionDistance,
Local.Triangle, Local.Plane,
RayOrigin, RayDirection);
Inc(TriangleCollisionTestsCounter);
{$ifdef TRIANGLE_OCTREE_USE_MAILBOX}
{ zapisz wyniki do mailboxa }
MailboxSavedTag := RayTag;
MailboxIsIntersection := result;
if result then
begin
MailboxIntersection := Intersection;
MailboxIntersectionDistance := IntersectionDistance;
end;
end;
{$endif}
end;
function TTriangle.MaterialInfo: TX3DMaterialInfoAbstract;
var
M2: TMaterialNode;
begin
if State.ShapeNode <> nil then
begin
M2 := State.ShapeNode.Material;
if M2 <> nil then
Result := M2.MaterialInfo else
Result := nil;
end else
Result := State.LastNodes.Material.MaterialInfo(0);
end;
function TTriangle.Transparency: Single;
var
M2: TMaterialNode;
begin
if State.ShapeNode <> nil then
begin
M2 := State.ShapeNode.Material;
if M2 <> nil then
Result := M2.FdTransparency.Value else
Result := 0;
end else
Result := State.LastNodes.Material.Transparency(0);
end;
function TTriangle.IsTransparent: boolean;
begin
Result := Transparency > SingleEqualityEpsilon;
end;
function TTriangle.IgnoreForShadowRays: boolean;
function NonShadowCaster(State: TX3DGraphTraverseState): boolean;
var
Shape: TAbstractShapeNode;
begin
Shape := State.ShapeNode;
Result :=
(Shape <> nil) and
(Shape.FdAppearance.Value <> nil) and
(Shape.FdAppearance.Value is TAppearanceNode) and
(not TAppearanceNode(Shape.FdAppearance.Value).FdShadowCaster.Value);
end;
begin
Result := ({ IsTransparent } Transparency > SingleEqualityEpsilon) or
NonShadowCaster(State);
end;
{$ifndef CONSERVE_TRIANGLE_MEMORY}
function TTriangle.ITexCoord(const Point: TVector3Single): TVector4Single;
var
B: TVector3Single;
begin
B := Barycentric(World.Triangle, Point);
Result := TexCoord[0] * B[0] +
TexCoord[1] * B[1] +
TexCoord[2] * B[2];
end;
function TTriangle.ITexCoord2D(const Point: TVector3Single): TVector2Single;
var
V: TVector4Single;
begin
V := ITexCoord(Point);
Move(V, Result, SizeOf(TVector2Single));
end;
function TTriangle.INormal(const Point: TVector3Single): TVector3Single;
var
B: TVector3Single;
begin
B := Barycentric(World.Triangle, Point);
Result := Normal[0] * B[0] +
Normal[1] * B[1] +
Normal[2] * B[2];
end;
{$else}
function TTriangle.Face: TFaceIndex;
begin
Result := UnknownFaceIndex;
end;
{$endif not CONSERVE_TRIANGLE_MEMORY}
{ TBaseTrianglesOctreeNode -----------------------------------------------
Common* (non-leaf nodes) implementations }
function TBaseTrianglesOctreeNode.CommonSphere(const pos: TVector3Single;
const Radius: Single;
const TriangleToIgnore: PTriangle;
const TrianglesToIgnoreFunc: T3DTriangleIgnoreFunc): PTriangle;
var
BoxLo, BoxHi: TOctreeSubnodeIndex;
SubnodesBox: TBox3D;
B0, B1, B2: boolean;
begin
if not IsLeaf then
begin
Result := nil;
{ Visit every subnode containing this sphere, and look for collision there.
TODO: we take box below, as simply bounding box of the sphere,
so potentially we visit more nodes than necessary. }
SubnodesBox.Data[0] := VectorSubtract(pos, Vector3Single(Radius, Radius, Radius) );
SubnodesBox.Data[1] := VectorAdd( pos, Vector3Single(Radius, Radius, Radius) );
SubnodesWithBox(SubnodesBox, BoxLo, BoxHi);
for B0 := BoxLo[0] to BoxHi[0] do
for B1 := BoxLo[1] to BoxHi[1] do
for B2 := BoxLo[2] to BoxHi[2] do
begin
Result := TBaseTrianglesOctreeNode(TreeSubNodes[B0, B1, B2]).
CommonSphere(Pos, Radius, TriangleToIgnore, TrianglesToIgnoreFunc);
if Result <> nil then Exit;
end;
end else
begin
Result := CommonSphereLeaf(Pos, Radius, TriangleToIgnore,
TrianglesToIgnoreFunc);
end;
end;
function TBaseTrianglesOctreeNode.CommonBox(const ABox: TBox3D;
const TriangleToIgnore: PTriangle;
const TrianglesToIgnoreFunc: T3DTriangleIgnoreFunc): PTriangle;
var
BoxLo, BoxHi: TOctreeSubnodeIndex;
B0, B1, B2: boolean;
begin
if not IsLeaf then
begin
Result := nil;
{ Visit every subnode containing this box, and look for collision there. }
SubnodesWithBox(ABox, BoxLo, BoxHi);
for B0 := BoxLo[0] to BoxHi[0] do
for B1 := BoxLo[1] to BoxHi[1] do
for B2 := BoxLo[2] to BoxHi[2] do
begin
Result := TBaseTrianglesOctreeNode(TreeSubNodes[B0, B1, B2]).
BoxCollision(ABox, TriangleToIgnore, TrianglesToIgnoreFunc);
if Result <> nil then Exit;
end;
end else
begin
Result := CommonBoxLeaf(ABox, TriangleToIgnore, TrianglesToIgnoreFunc);
end;
end;
function TBaseTrianglesOctreeNode.CommonSegment(
out Intersection: TVector3Single;
out IntersectionDistance: Single;
const Pos1, Pos2: TVector3Single;
const Tag: TMailboxTag;
const ReturnClosestIntersection: boolean;
const TriangleToIgnore: PTriangle;
const IgnoreMarginAtStart: boolean;
const TrianglesToIgnoreFunc: T3DTriangleIgnoreFunc): PTriangle;
{$define SEGMENT_COLLISION}
{$I triangle_raysegment_nonleaf.inc}
{$undef SEGMENT_COLLISION}
function TBaseTrianglesOctreeNode.CommonRay(
out Intersection: TVector3Single;
out IntersectionDistance: Single;
const RayOrigin, RayDirection: TVector3Single;
const Tag: TMailboxTag;
const ReturnClosestIntersection: boolean;
const TriangleToIgnore: PTriangle;
const IgnoreMarginAtStart: boolean;
const TrianglesToIgnoreFunc: T3DTriangleIgnoreFunc): PTriangle;
{$I triangle_raysegment_nonleaf.inc}
{ TBaseTrianglesOctree --------------------------------------------------- }
{$define SegmentCollision_CommonParams :=
const pos1, pos2: TVector3Single;
const ReturnClosestIntersection: boolean;
const TriangleToIgnore: PTriangle;
const IgnoreMarginAtStart: boolean;
const TrianglesToIgnoreFunc: T3DTriangleIgnoreFunc
}
{$define SegmentCollision_Implementation :=
begin
Result := TBaseTrianglesOctreeNode(InternalTreeRoot).SegmentCollision(
Intersection, IntersectionDistance,
Pos1, Pos2,
AssignNewTag,
ReturnClosestIntersection, TriangleToIgnore, IgnoreMarginAtStart,
TrianglesToIgnoreFunc);
end;}
function TBaseTrianglesOctree.SegmentCollision(
out Intersection: TVector3Single;
out IntersectionDistance: Single;
SegmentCollision_CommonParams): PTriangle;
SegmentCollision_Implementation
function TBaseTrianglesOctree.SegmentCollision(
out Intersection: TVector3Single;
SegmentCollision_CommonParams): PTriangle;
var
IntersectionDistance: Single;
SegmentCollision_Implementation
function TBaseTrianglesOctree.SegmentCollision(
out IntersectionDistance: Single;
SegmentCollision_CommonParams): PTriangle;
var
Intersection: TVector3Single;
SegmentCollision_Implementation
function TBaseTrianglesOctree.SegmentCollision(
SegmentCollision_CommonParams): PTriangle;
var
Intersection: TVector3Single;
IntersectionDistance: Single;
SegmentCollision_Implementation
{$undef SegmentCollision_CommonParams}
{$undef SegmentCollision_Implementation}
function TBaseTrianglesOctree.IsSegmentCollision(
const pos1, pos2: TVector3Single;
const TriangleToIgnore: PTriangle;
const IgnoreMarginAtStart: boolean;
const TrianglesToIgnoreFunc: T3DTriangleIgnoreFunc): boolean;
begin
Result := TBaseTrianglesOctreeNode(InternalTreeRoot).IsSegmentCollision(
Pos1, Pos2,
AssignNewTag,
TriangleToIgnore, IgnoreMarginAtStart,
TrianglesToIgnoreFunc);
end;
function TBaseTrianglesOctree.SphereCollision(const pos: TVector3Single;
const Radius: Single;
const TriangleToIgnore: PTriangle;
const TrianglesToIgnoreFunc: T3DTriangleIgnoreFunc): PTriangle;
begin
Result := TBaseTrianglesOctreeNode(InternalTreeRoot).SphereCollision(
Pos, Radius, TriangleToIgnore, TrianglesToIgnoreFunc);
end;
function TBaseTrianglesOctree.IsSphereCollision(const pos: TVector3Single;
const Radius: Single;
const TriangleToIgnore: PTriangle;
const TrianglesToIgnoreFunc: T3DTriangleIgnoreFunc): boolean;
begin
Result := TBaseTrianglesOctreeNode(InternalTreeRoot).IsSphereCollision(
Pos, Radius, TriangleToIgnore, TrianglesToIgnoreFunc);
end;
function TBaseTrianglesOctree.BoxCollision(const ABox: TBox3D;
const TriangleToIgnore: PTriangle;
const TrianglesToIgnoreFunc: T3DTriangleIgnoreFunc): PTriangle;
begin
Result := TBaseTrianglesOctreeNode(InternalTreeRoot).BoxCollision(
ABox, TriangleToIgnore, TrianglesToIgnoreFunc);
end;
function TBaseTrianglesOctree.IsBoxCollision(const ABox: TBox3D;
const TriangleToIgnore: PTriangle;
const TrianglesToIgnoreFunc: T3DTriangleIgnoreFunc): boolean;
begin
Result := TBaseTrianglesOctreeNode(InternalTreeRoot).IsBoxCollision(
ABox, TriangleToIgnore, TrianglesToIgnoreFunc);
end;
{$define RayCollision_CommonParams :=
const RayOrigin, RayDirection: TVector3Single;
const ReturnClosestIntersection: boolean;
const TriangleToIgnore: PTriangle;
const IgnoreMarginAtStart: boolean;
const TrianglesToIgnoreFunc: T3DTriangleIgnoreFunc
}
{$define RayCollision_Implementation :=
begin
Result := TBaseTrianglesOctreeNode(InternalTreeRoot).RayCollision(
Intersection, IntersectionDistance,
RayOrigin, RayDirection,
AssignNewTag,
ReturnClosestIntersection, TriangleToIgnore, IgnoreMarginAtStart,
TrianglesToIgnoreFunc);
end;}
function TBaseTrianglesOctree.RayCollision(
out Intersection: TVector3Single;
out IntersectionDistance: Single;
RayCollision_CommonParams): PTriangle;
RayCollision_Implementation
function TBaseTrianglesOctree.RayCollision(
out Intersection: TVector3Single;
RayCollision_CommonParams): PTriangle;
var
IntersectionDistance: Single;
RayCollision_Implementation
function TBaseTrianglesOctree.RayCollision(
out IntersectionDistance: Single;
RayCollision_CommonParams): PTriangle;
var
Intersection: TVector3Single;
RayCollision_Implementation
function TBaseTrianglesOctree.RayCollision(
RayCollision_CommonParams): PTriangle;
var
Intersection: TVector3Single;
IntersectionDistance: Single;
RayCollision_Implementation
{$undef RayCollision_CommonParams}
{$undef RayCollision_Implementation}
function TBaseTrianglesOctree.IsRayCollision(
const RayOrigin, RayDirection: TVector3Single;
const TriangleToIgnore: PTriangle;
const IgnoreMarginAtStart: boolean;
const TrianglesToIgnoreFunc: T3DTriangleIgnoreFunc): boolean;
begin
Result := TBaseTrianglesOctreeNode(InternalTreeRoot).IsRayCollision(
RayOrigin, RayDirection,
AssignNewTag,
TriangleToIgnore, IgnoreMarginAtStart,
TrianglesToIgnoreFunc);
end;
{ XxxCollision methods ------------------------------------------------------- }
function TBaseTrianglesOctree.MoveCollision(
const OldPos, NewPos: TVector3Single;
const IsRadius: boolean; const Radius: Single;
const OldBox, NewBox: TBox3D;
const TriangleToIgnore: PTriangle;
const TrianglesToIgnoreFunc: T3DTriangleIgnoreFunc): boolean;
begin
if IsRadius then
Result :=
(not IsSegmentCollision(OldPos, NewPos,
TriangleToIgnore, false, TrianglesToIgnoreFunc)) and
(not IsSphereCollision(NewPos, Radius,
TriangleToIgnore, TrianglesToIgnoreFunc)) else
Result :=
(not IsSegmentCollision(OldPos, NewPos,
TriangleToIgnore, false, TrianglesToIgnoreFunc)) and
(not IsBoxCollision(NewBox,
TriangleToIgnore, TrianglesToIgnoreFunc));
end;
function TBaseTrianglesOctree.MoveCollision(
const OldPos, ProposedNewPos: TVector3Single; out NewPos: TVector3Single;
const IsRadius: boolean; const Radius: Single;
const OldBox, NewBox: TBox3D;
const TriangleToIgnore: PTriangle;
const TrianglesToIgnoreFunc: T3DTriangleIgnoreFunc): boolean;
{ $define DEBUG_WALL_SLIDING}
const
{ For wall-sliding inside MoveAlongTheBlocker implementations,
we want to position ourselves slightly farther away than
Radius. (Exactly on Radius would mean that it's
sensitive to floating point imprecision, and sometimes the sphere
could be considered colliding with Blocker anyway, instead
of sliding along it. And final MoveCollision (without wall-sliding) call
will then fail, making wall-sliding non-working.)
So this must be something slightly larger than 1.
And obviously must be close to 1
(otherwise NewPos will not be sensible). }
RadiusEnlarge = 1.01;
{ This is the worse version of wall-sliding:
we don't know the 3D point of intersection with blocker,
which means we can't really calculate a vector to make
proper wall-sliding. We do some tricks to still perform wall-sliding
in many positions, but it's not perfect. }
function MoveAlongTheBlocker(Blocker: PTriangle): boolean;
var
PlanePtr: PVector4Single;
PlaneNormalPtr: PVector3Single;
NewPosShift: TVector3Single;
begin
PlanePtr := @(Blocker^.World.Plane);
PlaneNormalPtr := PVector3Single(PlanePtr);
{ project ProposedNewPos on a plane of blocking object }
NewPos := PointOnPlaneClosestToPoint(PlanePtr^, ProposedNewPos);
{ now NewPos must be on the same plane side as OldPos is,
and it must be at the distance slightly larger than Radius from the plane }
if VectorsSamePlaneDirections(PlaneNormalPtr^,
VectorSubtract(ProposedNewPos, NewPos), PlanePtr^) then
NewPosShift := VectorScale(PlaneNormalPtr^, Radius * RadiusEnlarge) else
NewPosShift := VectorScale(PlaneNormalPtr^, -Radius * RadiusEnlarge);
VectorAddTo1st(NewPos, NewPosShift);
{ Even though I calculated NewPos so that it's not blocked by object
Blocker, I must check whether it's not blocked by something else
(e.g. if player is trying to walk into the corner (two walls)).
I can do it by using my simple MoveCollision. }
Result := MoveCollision(OldPos, NewPos, IsRadius, Radius, OldBox, NewBox,
TriangleToIgnore, TrianglesToIgnoreFunc);
{$ifdef DEBUG_WALL_SLIDING}
Writeln('Wall-sliding: WORSE version without 3d intersection. Blocker ', PointerToStr(Blocker), '.');
{$endif}
end;
{ The better wall-sliding implementation, that can calculate
nice vector along which to slide.
It requires as input BlockerIntersection, this is the 3D point
of intersection between player move line (from OldPos to ProposedNewPos)
and the Blocker.World.Plane.
SegmentCollision says whether segment OldPos->ProposedNewPos was detected
as colliding with Blocker.World.Plane (IOW, ProposedNewPos is on the other
side of the blocker plane) or not (IOW, ProposedNewPos is on the same
side of the blocker plane). }
function MoveAlongTheBlocker(
const BlockerIntersection: TVector3Single;
SegmentCollision: boolean;
Blocker: PTriangle): boolean;
var
PlanePtr: PVector4Single;
Slide, Projected: TVector3Single;
NewBlocker: PTriangle;
NewBlockerIntersection: TVector3Single;
begin
PlanePtr := @(Blocker^.World.Plane);
{$ifdef DEBUG_WALL_SLIDING}
Write('Wall-sliding: Better version (with 3d intersection). ');
if SegmentCollision then
Write('Segment collided. ') else
Write('Sphere collided . ');
Writeln('Blocker ', PointerToStr(Blocker), '.');
{$endif}
{ Project ProposedNewPos or OldPos on Blocker plane.
The idea is that knowing this projection, and knowing BlockerIntersection,
we can calculate Slide (= vector that will move us parallel to
Blocker plane).
We could always project ProposedNewPos. But for
SegmentCollision = @false, OldPos is also good to use,
and it's farther from BlockerIntersection than ProposedNewPos
--- this is good, as we want Slide vector to be long, to avoid
floating point imprecision when Slide is very very short vector. }
if SegmentCollision then
begin
Projected := PointOnPlaneClosestToPoint(PlanePtr^, ProposedNewPos);
Slide := VectorSubtract(Projected, BlockerIntersection);
end else
begin
Projected := PointOnPlaneClosestToPoint(PlanePtr^, OldPos);
Slide := VectorSubtract(BlockerIntersection, Projected);
end;
if not ZeroVector(Slide) then
begin
{ Move by Slide.
Length of Slide is taken from the distance between
OldPos and ProposedNewPos. This is Ok, as we do not try to
make perfect wall-sliding (that would first move as close to Blocker
plane as possible, and then move along the blocker).
Instead we move all the way along the blocker. This is in practice Ok. }
VectorAdjustToLengthTo1st(Slide, PointsDistance(OldPos, ProposedNewPos));
NewPos := VectorAdd(OldPos, Slide);
{ Even though I calculated NewPos so that it's not blocked by object
Blocker, I must check whether it's not blocked by something else
(e.g. if player is trying to walk into the corner (two walls)).
I can do it by using my simple MoveCollision. }
Result := MoveCollision(OldPos, NewPos,
IsRadius, Radius, OldBox, NewBox, TriangleToIgnore, TrianglesToIgnoreFunc);
{$ifdef DEBUG_WALL_SLIDING} Writeln('Wall-sliding: Final check of sliding result: ', Result); {$endif}
if (not Result) and (not SegmentCollision) then
begin
{ When going through corners, previous code will not necessarily make
good wall-sliding, because our Blocker may be taken from sphere
collision. So it's not really a good plane to slide along.
Let's try harder to to get a better blocker: use RayCollision
in the previous Slide direction,
and check is result still within our sphere.
We preserve below the old value of Blocker (have our own NewBlocker
and NewBlockerIntersection), but the rest of variables may be
mercilessly overriden by code below:
PlanePtr, Projected, Slide helpers.
Check that it works: e.g. test beginning of castle_hall_final.wrl,
new_acts.wrl. }
NewBlocker := RayCollision(
OldPos, Slide, true { return closest blocker },
TriangleToIgnore, false, TrianglesToIgnoreFunc);
if (NewBlocker <> nil) and
(NewBlocker <> Blocker) and
IsTriangleSphereCollision(
NewBlocker^.World.Triangle,
NewBlocker^.World.Plane,
ProposedNewPos,
{ NewBlocker is accepted more generously, within 2 * normal radius. }
Radius * 2) and
TryPlaneLineIntersection(NewBlockerIntersection,
NewBlocker^.World.Plane,
OldPos, VectorSubtract(ProposedNewPos, OldPos)) then
begin
{$ifdef DEBUG_WALL_SLIDING} Writeln('Wall-sliding: Better blocker found: ', PointerToStr(NewBlocker), '.'); {$endif}
{ Below we essentially make the wall-sliding computation again.
We know that we're in sphere collision case
(checked above that "not SegmentCollision"). }
PlanePtr := @(NewBlocker^.World.Plane);
Projected := PointOnPlaneClosestToPoint(PlanePtr^, OldPos);
Slide := VectorSubtract(NewBlockerIntersection, Projected);
if not ZeroVector(Slide) then
begin
VectorAdjustToLengthTo1st(Slide, PointsDistance(OldPos, ProposedNewPos));
NewPos := VectorAdd(OldPos, Slide);
Result := MoveCollision(OldPos, NewPos,
IsRadius, Radius, OldBox, NewBox, TriangleToIgnore, TrianglesToIgnoreFunc);
{$ifdef DEBUG_WALL_SLIDING} Writeln('Wall-sliding: Better blocker final check of sliding result: ', Result); {$endif}
end;
end else
if NewBlocker <> nil then
begin
{$ifdef DEBUG_WALL_SLIDING}
Writeln('Wall-sliding: Better blocker NOT found: ', PointerToStr(NewBlocker), ' ',
IsTriangleSphereCollision(
NewBlocker^.World.Triangle,
NewBlocker^.World.Plane,
ProposedNewPos, Radius), ' ',
TryPlaneLineIntersection(NewBlockerIntersection,
NewBlocker^.World.Plane,
OldPos, VectorSubtract(ProposedNewPos, OldPos)), '.');
{$endif}
end;
end;
end else
begin
{ Fallback to worse wall-sliding version. }
{$ifdef DEBUG_WALL_SLIDING} Writeln('Wall-sliding: Need to fallback to worse version (Slide = 0)'); {$endif}
Result := MoveAlongTheBlocker(Blocker);
end;
end;
var
Blocker: PTriangle;
BlockerIntersection: TVector3Single;
begin
if not IsRadius then
begin
{ for IsRadius = false, for now just fallback to simple yes-no check,
without wall-sliding. We can improve this one day to make wall-sliding
even in this case (NewBox in this case will be shifted
like ProposedNewPos->NewPos). }
Result := MoveCollision(OldPos, ProposedNewPos,
IsRadius, Radius, OldBox, NewBox, TriangleToIgnore, TrianglesToIgnoreFunc);
NewPos := ProposedNewPos;
Exit;
end;
Blocker := SegmentCollision(
BlockerIntersection, OldPos, ProposedNewPos,
true { return closest blocker },
TriangleToIgnore, false, TrianglesToIgnoreFunc);
if Blocker = nil then
begin
Blocker := SphereCollision(ProposedNewPos, Radius,
TriangleToIgnore, TrianglesToIgnoreFunc);
if Blocker = nil then
begin
Result := true;
NewPos := ProposedNewPos;
end else
if TryPlaneLineIntersection(BlockerIntersection, Blocker^.World.Plane,
OldPos, VectorSubtract(ProposedNewPos, OldPos)) then
Result := MoveAlongTheBlocker(BlockerIntersection, false, Blocker) else
Result := MoveAlongTheBlocker(Blocker);
end else
Result := MoveAlongTheBlocker(BlockerIntersection, true, Blocker);
end;
function TBaseTrianglesOctree.HeightCollision(
const Position, GravityUp: TVector3Single;
out AboveHeight: Single; out AboveGround: PTriangle;
const TriangleToIgnore: PTriangle;
const TrianglesToIgnoreFunc: T3DTriangleIgnoreFunc): boolean;
begin
AboveGround := RayCollision(AboveHeight, Position, VectorNegate(GravityUp),
true, TriangleToIgnore, false, TrianglesToIgnoreFunc);
Result := AboveGround <> nil;
if not Result then
AboveHeight := MaxSingle;
end;
{ Other TBaseTrianglesOctree utils ----------------------------------------------- }
var
{ Next tag that will be allocated for ray/segment and such by AssignNewTag.
Can be read/written only by AssignNewTag.
That's right, this is a global variable. Reason: octree instances
are sometimes freed / recreated (consider e.g. TShapeOctree
recreated when Trasform changes). New octree may want to immediately
do some collision checks. However, records about tags from old octree
may still be remembered somewhere -- for example, TShape
remembers MailboxSavedTag (given for Shape.RayCollision from
TShapeOctreeNode.CommonRayLeaf). So, if this would be a field
of TBaseTrianglesOctree, then the newly created octree could
create the same tag, and hit the mailbox mechanism of already existing
shape.
This actually happened with SphereSensor tests,
e.g. on unison.x3dv from
http://www.web3d.org/x3d/content/examples/Conformance/Sensors/SphereSensor/index.html .
When you rotate the box, it's Transform.rotation changed, causing
a rebuild of shapes octree. (But actual TShape and it's local triangles
octree stay unmodified.) Without moving NextFreeTag to global variable,
the new created octree would have NextFreeTag that was already recorded.
In effect, @link(Height) (for camera gravity) were returning a result
for previous mouse ray pick, temporary showing our "height above the ground"
even though we were not standing on the ground. }
NextFreeTag: TMailboxTag;
function TBaseTrianglesOctree.AssignNewTag: TMailboxTag;
begin
result := NextFreeTag;
Inc(NextFreeTag);
end;
class function TBaseTrianglesOctree.IgnoreTransparentItem(
const Sender: TObject;
const Triangle: P3DTriangle): boolean;
begin
Result := PTriangle(Triangle)^.IsTransparent;
end;
class function TBaseTrianglesOctree.IgnoreForShadowRays(
const Sender: TObject;
const Triangle: P3DTriangle): boolean;
begin
Result := PTriangle(Triangle)^.IgnoreForShadowRays;
end;
function TBaseTrianglesOctree.LightNotBlocked(const Light: TLightInstance;
const LightedPoint, LightedPointPlane, RenderDir: TVector3Single;
const TriangleToIgnore: PTriangle;
const IgnoreMarginAtStart: boolean): boolean;
var LightPos: TVector3Single;
begin
if not Light.Node.FdOn.Value then result := false;
if Light.Node is TAbstractDirectionalLightNode then
{ Swiatlo directional oznacza ze swiatlo polozone jest tak bardzo
daleko ze wszystkie promienie od swiatla sa rownolegle.
Od pozycji LightedPoint odejmujemy wydluzone Direction swiatla.
3 * Box3DMaxSize(Octree.TreeRoot.Box) na pewno jest odlegloscia
ktora sprawi ze LightPos bedzie poza Octree.TreeRoot.Box
(bo gdyby nawet Octree.TreeRoot.Box byl szescianem to jego przekatna
ma dlugosc tylko Sqrt(2) * Sqrt(2) * Box3DMaxSize(Octree.TreeRoot.Box)
(= 2 * Box3DMaxSize(Octree.TreeRoot.Box))
W ten sposob otrzymujemy punkt ktory na pewno lezy POZA TreeRoot.Box
i jezeli nic nie zaslania drogi od Point do tego punktu to
znaczy ze swiatlo oswietla Intersection. }
LightPos := VectorSubtract(LightedPoint,
VectorAdjustToLength(Light.Direction,
3 * InternalTreeRoot.Box.MaxSize ) ) else
LightPos := Light.Location;
Result := (VectorsSamePlaneDirections(
VectorSubtract(LightPos, LightedPoint),
RenderDir,
LightedPointPlane)) and
(SegmentCollision(LightedPoint, LightPos,
false, TriangleToIgnore, IgnoreMarginAtStart, @IgnoreForShadowRays)
= nil);
end;
{ TOctreeIgnoreForShadowRaysAndOneItem -------------------------------------- }
function TOctreeIgnoreForShadowRaysAndOneItem.IgnoreItem(
const Sender: TObject;
const Triangle: P3DTriangle): boolean;
begin
Result := (Triangle = P3DTriangle(OneItem)) or
PTriangle(Triangle)^.IgnoreForShadowRays;
end;
constructor TOctreeIgnoreForShadowRaysAndOneItem.Create(
AOneItem: PTriangle);
begin
inherited Create;
OneItem := AOneItem;
end;
end.
|