This file is indexed.

/usr/src/castle-game-engine-5.2.0/x3d/x3dtriangles.pas is in castle-game-engine-src 5.2.0-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
{
  Copyright 2003-2014 Michalis Kamburelis.

  This file is part of "Castle Game Engine".

  "Castle Game Engine" is free software; see the file COPYING.txt,
  included in this distribution, for details about the copyright.

  "Castle Game Engine" is distributed in the hope that it will be useful,
  but WITHOUT ANY WARRANTY; without even the implied warranty of
  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

  ----------------------------------------------------------------------------
}

{ Triangles in VRML/X3D models (TTriangle) and octrees
  that resolve collisions with such triangles (TBaseTrianglesOctree). }
unit X3DTriangles;

{$I octreeconf.inc}

interface

uses CastleVectors, SysUtils, CastleUtils, X3DNodes, Castle3D, CastleBoxes,
  CastleOctree, CastleGenericLists, CastleTriangles;

{ TTriangle  ------------------------------------------------------------ }

type
  { }
  TCollisionCount = Int64;
  TMailboxTag = Int64;

  { Triangle in VRML/X3D model. This is the most basic item for our
    VRML/X3D collision detection routines, returned by octrees descending from
    TBaseTrianglesOctree. }
  TTriangle = object(T3DTriangle)
  public
    { Initialize new triangle.
      Given APosition must satisfy IsValidTriangle. }
    constructor Init(AShape: TObject;
      const APosition: TTriangle3Single;
      const ANormal: TTriangle3Single; const ATexCoord: TTriangle4Single;
      const AFace: TFaceIndex);

    procedure UpdateWorld;
  public
    { See TTriangleEvent for the meaning of these fields. }
    Shape: TObject;

    {$ifndef CONSERVE_TRIANGLE_MEMORY}
    Normal: TTriangle3Single;
    TexCoord: TTriangle4Single;
    Face: TFaceIndex;
    {$else}
    function Face: TFaceIndex;
    {$endif not CONSERVE_TRIANGLE_MEMORY}

    {$ifdef TRIANGLE_OCTREE_USE_MAILBOX}
    { Tag of an object (like a ray or a line segment)
      for which we have saved an
      intersection result. Intersection result is in
      MailboxIsIntersection, MailboxIntersection, MailboxIntersectionDistance.

      To make things correct, we obviously assume that every segment
      and ray have different tags. Also, tag -1 is reserved.
      In practice, we simply initialize MailboxSavedTag to -1,
      and each new segment/ray get consecutive tags starting from 0.

      @italic(History): a naive implementation at the beginning
      was not using tags, instead I had MailboxState (empty, ray or segment)
      and I was storing ray/line vectors (2 TVector3Single values).
      This had much larger size (6 * SizeOf(Single) + SizeOf(enum) = 28 bytes)
      than tag, which is important (3D models have easily thousands of
      TTriangle). And it took longer to compare and assign,
      so it was working much slower.

      @groupBegin }
    MailboxSavedTag: TMailboxTag;
    MailboxIsIntersection: boolean;
    MailboxIntersection: TVector3Single;
    MailboxIntersectionDistance: Single;
    { @groupEnd }
    {$endif}

    { State of this shape, containing various information about 3D shape.
      This is a shortcut of TShape(Shape).State. }
    function State: TX3DGraphTraverseState;

    { Check collisions between TTriangle and ray/segment.

      Always use these routines to check for collisions,
      to use mailboxes if possible. Mailboxes are used only if this was
      compiled with TRIANGLE_OCTREE_USE_MAILBOX defined.

      Increments TriangleCollisionTestsCounter if actual test was done
      (that is, if we couldn't use mailbox to get the result quickier).

      @groupBegin }
    function SegmentDirCollision(
      out Intersection: TVector3Single;
      out IntersectionDistance: Single;
      const Odc0, OdcVector: TVector3Single;
      const SegmentTag: TMailboxTag): boolean;

    function RayCollision(
      out Intersection: TVector3Single;
      out IntersectionDistance: Single;
      const RayOrigin, RayDirection: TVector3Single;
      const RayTag: TMailboxTag): boolean;
    { @groupEnd }

    { Create material information instance for material of this triangle.
      See TX3DMaterialInfoAbstract for usage description.

      Returns @nil when no Material node is defined, this can happen
      only for VRML >= 2.0.

      Returned TX3DMaterialInfoAbstract is valid only as long as the Material
      node (for VRML 1.0 or 2.0) on which it was based. }
    function MaterialInfo: TX3DMaterialInfoAbstract;

    { Return transparency of this triangle's material.
      Equivalent to MaterialInfo.Transparency, although a little faster. }
    function Transparency: Single;

    { Returns @true for triangles that are transparent. }
    function IsTransparent: boolean;

    { Returns @true for triangles that should be ignored by shadow rays.
      Returns @true for transparent triangles
      (with Material.Transparency > 0) and non-shadow-casting triangles
      (with Appearance.shadowCaster = FALSE).

      @seealso TBaseTrianglesOctree.IgnoreForShadowRays }
    function IgnoreForShadowRays: boolean;

    {$ifndef CONSERVE_TRIANGLE_MEMORY}

    { For a given position (in world coordinates), return the texture
      coordinate at this point. It is an interpolated texture coordinate
      from our per-vertex texture coordinates in @link(TexCoord) field.

      This assumes that Position actually lies within the triangle.

      The ITexCoord2D returns the same, but cut to the first 2 texture
      coordinate components. Usable for normal 2D textures.
      @groupBegin }
    function ITexCoord(const Point: TVector3Single): TVector4Single;
    function ITexCoord2D(const Point: TVector3Single): TVector2Single;
    { @groupEnd }

    { For a given position (in world coordinates), return the smooth
      normal vector at this point. It is an interpolated normal
      from our per-vertex normals in @link(Normal) field.
      Like them, it is a normal vector in local coordinates.

      This assumes that Position actally lies within the triangle. }
    function INormal(const Point: TVector3Single): TVector3Single;
    {$endif}
  end;
  PTriangle = ^TTriangle;

  TTriangleList = specialize TGenericStructList<TTriangle>;

{ TBaseTrianglesOctree ----------------------------------------------------------- }

type
  { }
  TBaseTrianglesOctree = class;

  { }
  TBaseTrianglesOctreeNode = class(TOctreeNode)
  protected
    { These realize the common implementation of SphereCollision:
      traversing down the octree nodes. They take care of traversing
      down the non-leaf nodes, you only have to override
      the CommonXxxLeaf versions where you handle the leaves
      (and you have to call CommonXxx from normal Xxx routines). }
    function CommonSphere(const pos: TVector3Single;
      const Radius: Single;
      const TriangleToIgnore: PTriangle;
      const TrianglesToIgnoreFunc: T3DTriangleIgnoreFunc): PTriangle;

    function CommonSphereLeaf(const pos: TVector3Single;
      const Radius: Single;
      const TriangleToIgnore: PTriangle;
      const TrianglesToIgnoreFunc: T3DTriangleIgnoreFunc): PTriangle; virtual; abstract;

    function CommonBox(const ABox: TBox3D;
      const TriangleToIgnore: PTriangle;
      const TrianglesToIgnoreFunc: T3DTriangleIgnoreFunc): PTriangle;

    function CommonBoxLeaf(const ABox: TBox3D;
      const TriangleToIgnore: PTriangle;
      const TrianglesToIgnoreFunc: T3DTriangleIgnoreFunc): PTriangle; virtual; abstract;

    function CommonSegment(
      out Intersection: TVector3Single;
      out IntersectionDistance: Single;
      const pos1, pos2: TVector3Single;
      const Tag: TMailboxTag;
      const ReturnClosestIntersection: boolean;
      const TriangleToIgnore: PTriangle;
      const IgnoreMarginAtStart: boolean;
      const TrianglesToIgnoreFunc: T3DTriangleIgnoreFunc): PTriangle;

    function CommonSegmentLeaf(
      out Intersection: TVector3Single;
      out IntersectionDistance: Single;
      const pos1, pos2: TVector3Single;
      const Tag: TMailboxTag;
      const ReturnClosestIntersection: boolean;
      const TriangleToIgnore: PTriangle;
      const IgnoreMarginAtStart: boolean;
      const TrianglesToIgnoreFunc: T3DTriangleIgnoreFunc): PTriangle; virtual; abstract;

    function CommonRay(
      out Intersection: TVector3Single;
      out IntersectionDistance: Single;
      const RayOrigin, RayDirection: TVector3Single;
      const Tag: TMailboxTag;
      const ReturnClosestIntersection: boolean;
      const TriangleToIgnore: PTriangle;
      const IgnoreMarginAtStart: boolean;
      const TrianglesToIgnoreFunc: T3DTriangleIgnoreFunc): PTriangle;

    function CommonRayLeaf(
      out Intersection: TVector3Single;
      out IntersectionDistance: Single;
      const RayOrigin, RayDirection: TVector3Single;
      const Tag: TMailboxTag;
      const ReturnClosestIntersection: boolean;
      const TriangleToIgnore: PTriangle;
      const IgnoreMarginAtStart: boolean;
      const TrianglesToIgnoreFunc: T3DTriangleIgnoreFunc): PTriangle; virtual; abstract;
  public
    { See TBaseTrianglesOctree for documentation of these routines.

      Note that methods here do not try to limit detected intersections
      to their boxes. If you will insert a large triangle into a node,
      that is partially inside and partially outside of this node,
      the collision methods may find an intersection outside of this node.

      This is not be a problem for a root node, since the root node has
      a box such that every triangle is completely inside.
      But it is important to remember when you implement recursive
      *Collision calls in nodes: if you want to query your subnodes
      in some particular order (for example to honour ReturnClosestIntersection
      = @true), then remember that one subnode may detect a collision
      that in fact happened in other subnode.

      @groupBegin }
    function SphereCollision(const pos: TVector3Single;
      const Radius: Single;
      const TriangleToIgnore: PTriangle;
      const TrianglesToIgnoreFunc: T3DTriangleIgnoreFunc): PTriangle; virtual; abstract;

    function IsSphereCollision(const pos: TVector3Single;
      const Radius: Single;
      const TriangleToIgnore: PTriangle;
      const TrianglesToIgnoreFunc: T3DTriangleIgnoreFunc): boolean; virtual; abstract;

    function BoxCollision(const ABox: TBox3D;
      const TriangleToIgnore: PTriangle;
      const TrianglesToIgnoreFunc: T3DTriangleIgnoreFunc): PTriangle; virtual; abstract;

    function IsBoxCollision(const ABox: TBox3D;
      const TriangleToIgnore: PTriangle;
      const TrianglesToIgnoreFunc: T3DTriangleIgnoreFunc): boolean; virtual; abstract;

    function SegmentCollision(
      out Intersection: TVector3Single;
      out IntersectionDistance: Single;
      const pos1, pos2: TVector3Single;
      const Tag: TMailboxTag;
      const ReturnClosestIntersection: boolean;
      const TriangleToIgnore: PTriangle;
      const IgnoreMarginAtStart: boolean;
      const TrianglesToIgnoreFunc: T3DTriangleIgnoreFunc): PTriangle; virtual; abstract;

    function IsSegmentCollision(
      const pos1, pos2: TVector3Single;
      const Tag: TMailboxTag;
      const TriangleToIgnore: PTriangle;
      const IgnoreMarginAtStart: boolean;
      const TrianglesToIgnoreFunc: T3DTriangleIgnoreFunc): boolean; virtual; abstract;

    function RayCollision(
      out Intersection: TVector3Single;
      out IntersectionDistance: Single;
      const RayOrigin, RayDirection: TVector3Single;
      const Tag: TMailboxTag;
      const ReturnClosestIntersection: boolean;
      const TriangleToIgnore: PTriangle;
      const IgnoreMarginAtStart: boolean;
      const TrianglesToIgnoreFunc: T3DTriangleIgnoreFunc): PTriangle; virtual; abstract;

    function IsRayCollision(
      const RayOrigin, RayDirection: TVector3Single;
      const Tag: TMailboxTag;
      const TriangleToIgnore: PTriangle;
      const IgnoreMarginAtStart: boolean;
      const TrianglesToIgnoreFunc: T3DTriangleIgnoreFunc): boolean; virtual; abstract;
    { @groupEnd }
  end;

  { Callback for @link(TBaseTrianglesOctree.EnumerateTriangles). }
  TEnumerateTriangleFunc = procedure (const Triangle: PTriangle) of object;

  { Abstract class for octrees that can check and return collisions
    with TTriangle.

    Octree node class used by this must be a TBaseTrianglesOctreeNode descendant.

    In a simple case, this is an ancestor of TTriangleOctree,
    that is just an octree storing TTriangle. But it's also an
    ancestor of TShapeOctree, since each shape has also a
    triangle octree. This way, TShapeOctree can calculate collisions
    with TTriangle, even though it doesn't directly store TTriangle items. }
  TBaseTrianglesOctree = class(TOctree)
  private
    { Return NextFreeTag and increment it (for the future AssignNewTag).

      This guarantees that NextFreeTag is incremented immediately,
      so it will not be reused by some other routine. For example
      if your collision query will cause another collision query
      inside, that calls inside another AssignNewTag, everything will work OK. }
    function AssignNewTag: TMailboxTag;
  public
    { Collision checking using the octree.

      SegmentCollision checks for collision between a line segment and tree items.

      SphereCollision checks for collision with a sphere.

      BoxCollision checks for collision with a box (axis-aligned, TBox3D type).

      RayCollision checks for collision with a ray.

      All there methods return nil if there is no collision, or a pointer
      to colliding item.

      @param(ReturnClosestIntersection

        If @false, then any collision detected is returned.
        For routines that don't have ReturnClosestIntersection parameter
        (SphereCollision, BoxCollision) always any collision is returned.

        If this is @true, then the collision closest to RayOrigin (for RayCollision)
        or Pos1 (for SegmentCollision) is returned. This makes the collision
        somewhat slower (as we have to check all collisions, while
        for ReturnClosestIntersection = @false we can terminate at first
        collision found.)

        The versions that return boolean value (IsXxxCollision) don't
        take this parameter, as they are naturally interested in existence
        of @italic(any) intersection.)

      @param(TriangleToIgnore

        If this is non-nil, then Segment/RayCollision assume that there
        is @italic(never) a collision with this octree item.
        It's never returned as collidable item.

        This is useful for recursive ray-tracer, when you start tracing
        from some existing face (octree item). In this case, you don't
        want to "hit" the starting face. So you can pass this face
        as TriangleToIgnore.

        Note that IgnoreMarginAtStart helps with the same problem,
        although a little differently.)

      @param(TrianglesToIgnoreFunc

        If assigned, then items for which TrianglesToIgnoreFunc returns @true
        will be ignored. This is a more general mechanism than
        TriangleToIgnore, as you can ignore many items, you can also
        make some condition to ignore --- for example, you can ignore
        partially transparent items.)

      @param(IgnoreMarginAtStart

        If @true, then collisions that happen very very close to RayOrigin (or Pos1
        for SegmentCollision) will be ignored.

        This is another thing helpful for recursive ray-tracers:
        you don't want to hit the starting face, or any coplanar faces,
        when tracing reflected/refracted/shadow ray.

        Note that if you know actual pointer of your face, it's better to use
        TriangleToIgnore --- TriangleToIgnore is a 100% guaranteed
        stable solution, while IgnoreMarginAtStart necessarily has some
        "epsilon" constant that determines which items are ignored.
        This epsilon may be too large, or too small, in some cases.

        In practice, recursive ray-tracers should use both
        TriangleToIgnore (to avoid collisions with starting face)
        and IgnoreMarginAtStart = @true (to avoid collisions with faces
        coplanar with starting face).)

      @param(IntersectionDistance
        For RayCollision:
        Returned IntersectionDistance is the distance along the RayDirection:
        smaller IntersectionDistance, closer to RayOrigin.
        IntersectionDistance is always >= 0.
        Intersection is always equal to RayOrigin + RayDirection * IntersectionDistance.

        For SegmentCollision: analogously,
        IntersectionDistance is along Pos2 - Pos1.
        IntersectionDistance is always in 0...1.
        Intersectio is always equal to Pos1 + (Pos2 - Pos1) * IntersectionDistance.
      )

      @groupBegin
    }
    function SegmentCollision(
      out Intersection: TVector3Single;
      out IntersectionDistance: Single;
      const pos1, pos2: TVector3Single;
      const ReturnClosestIntersection: boolean;
      const TriangleToIgnore: PTriangle;
      const IgnoreMarginAtStart: boolean;
      const TrianglesToIgnoreFunc: T3DTriangleIgnoreFunc): PTriangle; overload;

    function SegmentCollision(
      out Intersection: TVector3Single;
      const pos1, pos2: TVector3Single;
      const ReturnClosestIntersection: boolean;
      const TriangleToIgnore: PTriangle;
      const IgnoreMarginAtStart: boolean;
      const TrianglesToIgnoreFunc: T3DTriangleIgnoreFunc): PTriangle; overload;

    function SegmentCollision(
      out IntersectionDistance: Single;
      const pos1, pos2: TVector3Single;
      const ReturnClosestIntersection: boolean;
      const TriangleToIgnore: PTriangle;
      const IgnoreMarginAtStart: boolean;
      const TrianglesToIgnoreFunc: T3DTriangleIgnoreFunc): PTriangle; overload;

    function SegmentCollision(
      const pos1, pos2: TVector3Single;
      const ReturnClosestIntersection: boolean;
      const TriangleToIgnore: PTriangle;
      const IgnoreMarginAtStart: boolean;
      const TrianglesToIgnoreFunc: T3DTriangleIgnoreFunc): PTriangle; overload;

    function IsSegmentCollision(
      const pos1, pos2: TVector3Single;
      const TriangleToIgnore: PTriangle;
      const IgnoreMarginAtStart: boolean;
      const TrianglesToIgnoreFunc: T3DTriangleIgnoreFunc): boolean;

    function SphereCollision(const pos: TVector3Single;
      const Radius: Single;
      const TriangleToIgnore: PTriangle;
      const TrianglesToIgnoreFunc: T3DTriangleIgnoreFunc): PTriangle;

    function IsSphereCollision(const pos: TVector3Single;
      const Radius: Single;
      const TriangleToIgnore: PTriangle;
      const TrianglesToIgnoreFunc: T3DTriangleIgnoreFunc): boolean;

    function BoxCollision(const ABox: TBox3D;
      const TriangleToIgnore: PTriangle;
      const TrianglesToIgnoreFunc: T3DTriangleIgnoreFunc): PTriangle;

    function IsBoxCollision(const ABox: TBox3D;
      const TriangleToIgnore: PTriangle;
      const TrianglesToIgnoreFunc: T3DTriangleIgnoreFunc): boolean;

    function RayCollision(
      out Intersection: TVector3Single;
      out IntersectionDistance: Single;
      const RayOrigin, RayDirection: TVector3Single;
      const ReturnClosestIntersection: boolean;
      const TriangleToIgnore: PTriangle;
      const IgnoreMarginAtStart: boolean;
      const TrianglesToIgnoreFunc: T3DTriangleIgnoreFunc): PTriangle; overload;

    function RayCollision(
      out Intersection: TVector3Single;
      const RayOrigin, RayDirection: TVector3Single;
      const ReturnClosestIntersection: boolean;
      const TriangleToIgnore: PTriangle;
      const IgnoreMarginAtStart: boolean;
      const TrianglesToIgnoreFunc: T3DTriangleIgnoreFunc): PTriangle; overload;

    function RayCollision(
      out IntersectionDistance: Single;
      const RayOrigin, RayDirection: TVector3Single;
      const ReturnClosestIntersection: boolean;
      const TriangleToIgnore: PTriangle;
      const IgnoreMarginAtStart: boolean;
      const TrianglesToIgnoreFunc: T3DTriangleIgnoreFunc): PTriangle; overload;

    function RayCollision(const RayOrigin, RayDirection: TVector3Single;
      const ReturnClosestIntersection: boolean;
      const TriangleToIgnore: PTriangle;
      const IgnoreMarginAtStart: boolean;
      const TrianglesToIgnoreFunc: T3DTriangleIgnoreFunc): PTriangle; overload;

    function IsRayCollision(
      const RayOrigin, RayDirection: TVector3Single;
      const TriangleToIgnore: PTriangle;
      const IgnoreMarginAtStart: boolean;
      const TrianglesToIgnoreFunc: T3DTriangleIgnoreFunc): boolean;
    { @groupEnd }

    { Check is move allowed. This is the perfect (precise, using triangle mesh,
      and fast) implementation of T3D.MoveCollision interface.

      TriangleToIgnore and TrianglesToIgnoreFunc meaning
      is just like for RayCollision. This can be used to allow
      camera to walk thorugh some surfaces (e.g. through water
      surface, or to allow player to walk through some "fake wall"
      and discover secret room in game etc.). }
    function MoveCollision(
      const OldPos, NewPos: TVector3Single;
      const IsRadius: boolean; const Radius: Single;
      const OldBox, NewBox: TBox3D;
      const TriangleToIgnore: PTriangle = nil;
      const TrianglesToIgnoreFunc: T3DTriangleIgnoreFunc = nil): boolean;
    function MoveCollision(
      const OldPos, ProposedNewPos: TVector3Single; out NewPos: TVector3Single;
      const IsRadius: boolean; const Radius: Single;
      const OldBox, NewBox: TBox3D;
      const TriangleToIgnore: PTriangle = nil;
      const TrianglesToIgnoreFunc: T3DTriangleIgnoreFunc = nil): boolean;
    { @groupEnd }

    { For given camera position and up vector, calculate camera height
      above the ground. This is comfortable for cooperation with
      TWalkCamera.OnHeight.

      See T3D.Height for specification.

      TriangleToIgnore and TrianglesToIgnoreFunc meaning
      is just like for RayCollision. }
    function HeightCollision(
      const Position, GravityUp: TVector3Single;
      out AboveHeight: Single; out AboveGround: PTriangle;
      const TriangleToIgnore: PTriangle;
      const TrianglesToIgnoreFunc: T3DTriangleIgnoreFunc): boolean;

    { Ignore (return @true) transparent triangles
      (with Material.Transparency > 0).

      This is suitable for T3DTriangleIgnoreFunc function, you can pass
      this to RayCollision and such. }
    class function IgnoreTransparentItem(
      const Sender: TObject;
      const Triangle: P3DTriangle): boolean;

    { Ignore (return @true) transparent triangles
      (with Material.Transparency > 0) and non-shadow-casting triangles
      (with Appearance.shadowCaster = FALSE).

      This is suitable for T3DTriangleIgnoreFunc function, you can pass
      this to RayCollision and such. }
    class function IgnoreForShadowRays(
      const Sender: TObject;
      const Triangle: P3DTriangle): boolean;

    { Checks whether VRML Light (point or directional) lights at scene point
      LightedPoint.

      "Lights at scene" means that the light is turned on
      (field "on" is @true) and between light source and a LightedPoint
      nothing blocks the light (we check it by querying collisions using
      the octree, ignoring transparent and non-shadow-casting triangles),
      and the light source is on the same side of LightedPointPlane as
      RenderDir.

      TriangleToIgnore and IgnoreMarginAtStart work just like for
      SegmentCollision. You should usually set TriangleToIgnore to the
      triangle containing your LightedPoint and IgnoreMarginAtStart to @true,
      to avoid detecting point as shadowing itself. }
    function LightNotBlocked(const Light: TLightInstance;
      const LightedPoint, LightedPointPlane, RenderDir: TVector3Single;
      const TriangleToIgnore: PTriangle;
      const IgnoreMarginAtStart: boolean): boolean;

    { Enumerate every triangle of this octree.

      It passes to EnumerateTriangleFunc callback a Triangle.
      Triangle is passed as a pointer (never @nil) --- these are guaranteed
      to be "stable" pointers stored inside octrees' lists (so they will be valid
      as long as octree (and eventual children octrees for TShapeOctree)).

      Every triangle is guaranteed to have it's World coordinates updated
      (to put it simply, when this is used on TShapeOctree, then we
      call UpdateWorld on each triangle). }
    procedure EnumerateTriangles(EnumerateTriangleFunc: TEnumerateTriangleFunc);
      virtual; abstract;

    { Number of triangles within the octree. This counts all triangles
      returned by EnumerateTriangles. }
    function TrianglesCount: Cardinal; virtual; abstract;
  end;

  { Simple utility class to easily ignore all transparent, non-shadow-casting
    triangles, and, additionally, one chosen triangle.
    Useful for TrianglesToIgnoreFunc parameters of various
    TBaseTrianglesOctree methods. }
  TOctreeIgnoreForShadowRaysAndOneItem = class
  public
    OneItem: PTriangle;
    function IgnoreItem(
      const Sender: TObject;
      const Triangle: P3DTriangle): boolean;
    constructor Create(AOneItem: PTriangle);
  end;

var
  { Counter of collision tests done by TTriangle when the actual collision
    calculation had to be done.
    This counts all calls to TTriangle.SegmentDirCollision and
    TTriangle.RayCollision when the result had to be actually geometrically
    calculated (result was not in the cache aka "mailbox").

    It is especially useful to look at this after using some spatial
    data structure, like an octree. The goal of tree structures is to
    minimize this number.

    It is a global variable, because that's the most comfortable way to use
    it. Triangles are usually wrapped in an octree (like TTriangleOctree),
    or even in an octree of octrees (like TShapeOctree).
    Tracking collisions using the global variable is most comfortable,
    instead of spending time on propagating this (purely debugging) information
    through the octree structures. }
  TriangleCollisionTestsCounter: Cardinal;

implementation

uses CastleStringUtils, CastleShapes;

{ TTriangle  ------------------------------------------------------------- }

constructor TTriangle.Init(AShape: TObject;
  const APosition: TTriangle3Single;
  const ANormal: TTriangle3Single; const ATexCoord: TTriangle4Single;
  const AFace: TFaceIndex);
begin
  inherited Init(APosition);

  Shape := AShape;

  {$ifndef CONSERVE_TRIANGLE_MEMORY}
  Normal := ANormal;
  TexCoord := ATexCoord;
  Face := AFace;
  {$endif not CONSERVE_TRIANGLE_MEMORY}

  {$ifdef TRIANGLE_OCTREE_USE_MAILBOX}
  MailboxSavedTag := -1;
  {$endif}
end;

function TTriangle.State: TX3DGraphTraverseState;
begin
  Result := TShape(Shape).State;
end;

procedure TTriangle.UpdateWorld;
begin
  World.Triangle := TriangleTransform(Local.Triangle, State.Transform);
  World.Plane := TriangleNormPlane(World.Triangle);
  World.Area := CastleTriangles.TriangleArea(World.Triangle);
end;

function TTriangle.SegmentDirCollision(
  out Intersection: TVector3Single;
  out IntersectionDistance: Single;
  const Odc0, OdcVector: TVector3Single;
  const SegmentTag: TMailboxTag): boolean;
begin
  {$ifdef TRIANGLE_OCTREE_USE_MAILBOX}
  if MailboxSavedTag = SegmentTag then
  begin
    result := MailboxIsIntersection;
    if result then
    begin
      Intersection         := MailboxIntersection;
      IntersectionDistance := MailboxIntersectionDistance;
    end;
  end else
  begin
  {$endif}

    Result := TryTriangleSegmentDirCollision(
      Intersection, IntersectionDistance,
      Local.Triangle, Local.Plane,
      Odc0, OdcVector);
    Inc(TriangleCollisionTestsCounter);

  {$ifdef TRIANGLE_OCTREE_USE_MAILBOX}
    { save result to mailbox }
    MailboxSavedTag := SegmentTag;
    MailboxIsIntersection := result;
    if result then
    begin
      MailboxIntersection         := Intersection;
      MailboxIntersectionDistance := IntersectionDistance;
    end;
  end;
  {$endif}
end;

function TTriangle.RayCollision(
  out Intersection: TVector3Single;
  out IntersectionDistance: Single;
  const RayOrigin, RayDirection: TVector3Single;
  const RayTag: TMailboxTag): boolean;
begin
  { uwzgledniam tu fakt ze czesto bedzie wypuszczanych wiele promieni
    z jednego RayOrigin ale z roznym RayDirection (np. w raytracerze). Wiec lepiej
    najpierw porownywac przechowywane w skrzynce RayDirection (niz RayOrigin)
    zeby moc szybciej stwierdzic niezgodnosc. }
  {$ifdef TRIANGLE_OCTREE_USE_MAILBOX}
  if MailboxSavedTag = RayTag then
  begin
    result := MailboxIsIntersection;
    if result then
    begin
      Intersection         := MailboxIntersection;
      IntersectionDistance := MailboxIntersectionDistance;
    end;
  end else
  begin
  {$endif}

    result := TryTriangleRayCollision(
      Intersection, IntersectionDistance,
      Local.Triangle, Local.Plane,
      RayOrigin, RayDirection);
    Inc(TriangleCollisionTestsCounter);

  {$ifdef TRIANGLE_OCTREE_USE_MAILBOX}
    { zapisz wyniki do mailboxa }
    MailboxSavedTag := RayTag;
    MailboxIsIntersection := result;
    if result then
    begin
      MailboxIntersection         := Intersection;
      MailboxIntersectionDistance := IntersectionDistance;
    end;
  end;
  {$endif}
end;

function TTriangle.MaterialInfo: TX3DMaterialInfoAbstract;
var
  M2: TMaterialNode;
begin
  if State.ShapeNode <> nil then
  begin
    M2 := State.ShapeNode.Material;
    if M2 <> nil then
      Result := M2.MaterialInfo else
      Result := nil;
  end else
    Result := State.LastNodes.Material.MaterialInfo(0);
end;

function TTriangle.Transparency: Single;
var
  M2: TMaterialNode;
begin
  if State.ShapeNode <> nil then
  begin
    M2 := State.ShapeNode.Material;
    if M2 <> nil then
      Result := M2.FdTransparency.Value else
      Result := 0;
  end else
    Result := State.LastNodes.Material.Transparency(0);
end;

function TTriangle.IsTransparent: boolean;
begin
  Result := Transparency > SingleEqualityEpsilon;
end;

function TTriangle.IgnoreForShadowRays: boolean;

  function NonShadowCaster(State: TX3DGraphTraverseState): boolean;
  var
    Shape: TAbstractShapeNode;
  begin
    Shape := State.ShapeNode;
    Result :=
      (Shape <> nil) and
      (Shape.FdAppearance.Value <> nil) and
      (Shape.FdAppearance.Value is TAppearanceNode) and
      (not TAppearanceNode(Shape.FdAppearance.Value).FdShadowCaster.Value);
  end;

begin
  Result := ({ IsTransparent } Transparency > SingleEqualityEpsilon) or
    NonShadowCaster(State);
end;

{$ifndef CONSERVE_TRIANGLE_MEMORY}
function TTriangle.ITexCoord(const Point: TVector3Single): TVector4Single;
var
  B: TVector3Single;
begin
  B := Barycentric(World.Triangle, Point);
  Result := TexCoord[0] * B[0] +
            TexCoord[1] * B[1] +
            TexCoord[2] * B[2];
end;

function TTriangle.ITexCoord2D(const Point: TVector3Single): TVector2Single;
var
  V: TVector4Single;
begin
  V := ITexCoord(Point);
  Move(V, Result, SizeOf(TVector2Single));
end;

function TTriangle.INormal(const Point: TVector3Single): TVector3Single;
var
  B: TVector3Single;
begin
  B := Barycentric(World.Triangle, Point);
  Result := Normal[0] * B[0] +
            Normal[1] * B[1] +
            Normal[2] * B[2];
end;

{$else}
function TTriangle.Face: TFaceIndex;
begin
  Result := UnknownFaceIndex;
end;
{$endif not CONSERVE_TRIANGLE_MEMORY}

{ TBaseTrianglesOctreeNode -----------------------------------------------

  Common* (non-leaf nodes) implementations }

function TBaseTrianglesOctreeNode.CommonSphere(const pos: TVector3Single;
  const Radius: Single;
  const TriangleToIgnore: PTriangle;
  const TrianglesToIgnoreFunc: T3DTriangleIgnoreFunc): PTriangle;
var
  BoxLo, BoxHi: TOctreeSubnodeIndex;
  SubnodesBox: TBox3D;
  B0, B1, B2: boolean;
begin
  if not IsLeaf then
  begin
    Result := nil;

    { Visit every subnode containing this sphere, and look for collision there.
      TODO: we take box below, as simply bounding box of the sphere,
      so potentially we visit more nodes than necessary. }
    SubnodesBox.Data[0] := VectorSubtract(pos, Vector3Single(Radius, Radius, Radius) );
    SubnodesBox.Data[1] := VectorAdd(     pos, Vector3Single(Radius, Radius, Radius) );

    SubnodesWithBox(SubnodesBox, BoxLo, BoxHi);

    for B0 := BoxLo[0] to BoxHi[0] do
      for B1 := BoxLo[1] to BoxHi[1] do
        for B2 := BoxLo[2] to BoxHi[2] do
        begin
          Result := TBaseTrianglesOctreeNode(TreeSubNodes[B0, B1, B2]).
            CommonSphere(Pos, Radius, TriangleToIgnore, TrianglesToIgnoreFunc);
          if Result <> nil then Exit;
        end;
  end else
  begin
    Result := CommonSphereLeaf(Pos, Radius, TriangleToIgnore,
      TrianglesToIgnoreFunc);
  end;
end;

function TBaseTrianglesOctreeNode.CommonBox(const ABox: TBox3D;
  const TriangleToIgnore: PTriangle;
  const TrianglesToIgnoreFunc: T3DTriangleIgnoreFunc): PTriangle;
var
  BoxLo, BoxHi: TOctreeSubnodeIndex;
  B0, B1, B2: boolean;
begin
  if not IsLeaf then
  begin
    Result := nil;

    { Visit every subnode containing this box, and look for collision there. }
    SubnodesWithBox(ABox, BoxLo, BoxHi);

    for B0 := BoxLo[0] to BoxHi[0] do
      for B1 := BoxLo[1] to BoxHi[1] do
        for B2 := BoxLo[2] to BoxHi[2] do
        begin
          Result := TBaseTrianglesOctreeNode(TreeSubNodes[B0, B1, B2]).
            BoxCollision(ABox, TriangleToIgnore, TrianglesToIgnoreFunc);
          if Result <> nil then Exit;
        end;
  end else
  begin
    Result := CommonBoxLeaf(ABox, TriangleToIgnore, TrianglesToIgnoreFunc);
  end;
end;

function TBaseTrianglesOctreeNode.CommonSegment(
  out Intersection: TVector3Single;
  out IntersectionDistance: Single;
  const Pos1, Pos2: TVector3Single;
  const Tag: TMailboxTag;
  const ReturnClosestIntersection: boolean;
  const TriangleToIgnore: PTriangle;
  const IgnoreMarginAtStart: boolean;
  const TrianglesToIgnoreFunc: T3DTriangleIgnoreFunc): PTriangle;
{$define SEGMENT_COLLISION}
{$I triangle_raysegment_nonleaf.inc}
{$undef SEGMENT_COLLISION}

function TBaseTrianglesOctreeNode.CommonRay(
  out Intersection: TVector3Single;
  out IntersectionDistance: Single;
  const RayOrigin, RayDirection: TVector3Single;
  const Tag: TMailboxTag;
  const ReturnClosestIntersection: boolean;
  const TriangleToIgnore: PTriangle;
  const IgnoreMarginAtStart: boolean;
  const TrianglesToIgnoreFunc: T3DTriangleIgnoreFunc): PTriangle;
{$I triangle_raysegment_nonleaf.inc}

{ TBaseTrianglesOctree --------------------------------------------------- }

{$define SegmentCollision_CommonParams :=
  const pos1, pos2: TVector3Single;
  const ReturnClosestIntersection: boolean;
  const TriangleToIgnore: PTriangle;
  const IgnoreMarginAtStart: boolean;
  const TrianglesToIgnoreFunc: T3DTriangleIgnoreFunc
}

{$define SegmentCollision_Implementation :=
begin
  Result := TBaseTrianglesOctreeNode(InternalTreeRoot).SegmentCollision(
    Intersection, IntersectionDistance,
    Pos1, Pos2,
    AssignNewTag,
    ReturnClosestIntersection, TriangleToIgnore, IgnoreMarginAtStart,
    TrianglesToIgnoreFunc);
end;}

  function TBaseTrianglesOctree.SegmentCollision(
    out Intersection: TVector3Single;
    out IntersectionDistance: Single;
    SegmentCollision_CommonParams): PTriangle;
  SegmentCollision_Implementation

  function TBaseTrianglesOctree.SegmentCollision(
    out Intersection: TVector3Single;
    SegmentCollision_CommonParams): PTriangle;
  var
    IntersectionDistance: Single;
  SegmentCollision_Implementation

  function TBaseTrianglesOctree.SegmentCollision(
    out IntersectionDistance: Single;
    SegmentCollision_CommonParams): PTriangle;
  var
    Intersection: TVector3Single;
  SegmentCollision_Implementation

  function TBaseTrianglesOctree.SegmentCollision(
    SegmentCollision_CommonParams): PTriangle;
  var
    Intersection: TVector3Single;
    IntersectionDistance: Single;
  SegmentCollision_Implementation

{$undef SegmentCollision_CommonParams}
{$undef SegmentCollision_Implementation}

function TBaseTrianglesOctree.IsSegmentCollision(
  const pos1, pos2: TVector3Single;
  const TriangleToIgnore: PTriangle;
  const IgnoreMarginAtStart: boolean;
  const TrianglesToIgnoreFunc: T3DTriangleIgnoreFunc): boolean;
begin
  Result := TBaseTrianglesOctreeNode(InternalTreeRoot).IsSegmentCollision(
    Pos1, Pos2,
    AssignNewTag,
    TriangleToIgnore, IgnoreMarginAtStart,
    TrianglesToIgnoreFunc);
end;

function TBaseTrianglesOctree.SphereCollision(const pos: TVector3Single;
  const Radius: Single;
  const TriangleToIgnore: PTriangle;
  const TrianglesToIgnoreFunc: T3DTriangleIgnoreFunc): PTriangle;
begin
  Result := TBaseTrianglesOctreeNode(InternalTreeRoot).SphereCollision(
    Pos, Radius, TriangleToIgnore, TrianglesToIgnoreFunc);
end;

function TBaseTrianglesOctree.IsSphereCollision(const pos: TVector3Single;
  const Radius: Single;
  const TriangleToIgnore: PTriangle;
  const TrianglesToIgnoreFunc: T3DTriangleIgnoreFunc): boolean;
begin
  Result := TBaseTrianglesOctreeNode(InternalTreeRoot).IsSphereCollision(
    Pos, Radius, TriangleToIgnore, TrianglesToIgnoreFunc);
end;

function TBaseTrianglesOctree.BoxCollision(const ABox: TBox3D;
  const TriangleToIgnore: PTriangle;
  const TrianglesToIgnoreFunc: T3DTriangleIgnoreFunc): PTriangle;
begin
  Result := TBaseTrianglesOctreeNode(InternalTreeRoot).BoxCollision(
    ABox, TriangleToIgnore, TrianglesToIgnoreFunc);
end;

function TBaseTrianglesOctree.IsBoxCollision(const ABox: TBox3D;
  const TriangleToIgnore: PTriangle;
  const TrianglesToIgnoreFunc: T3DTriangleIgnoreFunc): boolean;
begin
  Result := TBaseTrianglesOctreeNode(InternalTreeRoot).IsBoxCollision(
    ABox, TriangleToIgnore, TrianglesToIgnoreFunc);
end;

{$define RayCollision_CommonParams :=
  const RayOrigin, RayDirection: TVector3Single;
  const ReturnClosestIntersection: boolean;
  const TriangleToIgnore: PTriangle;
  const IgnoreMarginAtStart: boolean;
  const TrianglesToIgnoreFunc: T3DTriangleIgnoreFunc
}

{$define RayCollision_Implementation :=
begin
  Result := TBaseTrianglesOctreeNode(InternalTreeRoot).RayCollision(
    Intersection, IntersectionDistance,
    RayOrigin, RayDirection,
    AssignNewTag,
    ReturnClosestIntersection, TriangleToIgnore, IgnoreMarginAtStart,
    TrianglesToIgnoreFunc);
end;}

  function TBaseTrianglesOctree.RayCollision(
    out Intersection: TVector3Single;
    out IntersectionDistance: Single;
    RayCollision_CommonParams): PTriangle;
  RayCollision_Implementation

  function TBaseTrianglesOctree.RayCollision(
    out Intersection: TVector3Single;
    RayCollision_CommonParams): PTriangle;
  var
    IntersectionDistance: Single;
  RayCollision_Implementation

  function TBaseTrianglesOctree.RayCollision(
    out IntersectionDistance: Single;
    RayCollision_CommonParams): PTriangle;
  var
    Intersection: TVector3Single;
  RayCollision_Implementation

  function TBaseTrianglesOctree.RayCollision(
    RayCollision_CommonParams): PTriangle;
  var
    Intersection: TVector3Single;
    IntersectionDistance: Single;
  RayCollision_Implementation

{$undef RayCollision_CommonParams}
{$undef RayCollision_Implementation}

function TBaseTrianglesOctree.IsRayCollision(
  const RayOrigin, RayDirection: TVector3Single;
  const TriangleToIgnore: PTriangle;
  const IgnoreMarginAtStart: boolean;
  const TrianglesToIgnoreFunc: T3DTriangleIgnoreFunc): boolean;
begin
  Result := TBaseTrianglesOctreeNode(InternalTreeRoot).IsRayCollision(
    RayOrigin, RayDirection,
    AssignNewTag,
    TriangleToIgnore, IgnoreMarginAtStart,
    TrianglesToIgnoreFunc);
end;

{ XxxCollision methods ------------------------------------------------------- }

function TBaseTrianglesOctree.MoveCollision(
  const OldPos, NewPos: TVector3Single;
  const IsRadius: boolean; const Radius: Single;
  const OldBox, NewBox: TBox3D;
  const TriangleToIgnore: PTriangle;
  const TrianglesToIgnoreFunc: T3DTriangleIgnoreFunc): boolean;
begin
  if IsRadius then
    Result :=
      (not IsSegmentCollision(OldPos, NewPos,
        TriangleToIgnore, false, TrianglesToIgnoreFunc)) and
      (not IsSphereCollision(NewPos, Radius,
        TriangleToIgnore, TrianglesToIgnoreFunc)) else
    Result :=
      (not IsSegmentCollision(OldPos, NewPos,
        TriangleToIgnore, false, TrianglesToIgnoreFunc)) and
      (not IsBoxCollision(NewBox,
        TriangleToIgnore, TrianglesToIgnoreFunc));
end;

function TBaseTrianglesOctree.MoveCollision(
  const OldPos, ProposedNewPos: TVector3Single; out NewPos: TVector3Single;
  const IsRadius: boolean; const Radius: Single;
  const OldBox, NewBox: TBox3D;
  const TriangleToIgnore: PTriangle;
  const TrianglesToIgnoreFunc: T3DTriangleIgnoreFunc): boolean;

  { $define DEBUG_WALL_SLIDING}

  const
    { For wall-sliding inside MoveAlongTheBlocker implementations,
      we want to position ourselves slightly farther away than
      Radius. (Exactly on Radius would mean that it's
      sensitive to floating point imprecision, and sometimes the sphere
      could be considered colliding with Blocker anyway, instead
      of sliding along it. And final MoveCollision (without wall-sliding) call
      will then fail, making wall-sliding non-working.)

      So this must be something slightly larger than 1.
      And obviously must be close to 1
      (otherwise NewPos will not be sensible). }
    RadiusEnlarge = 1.01;

  { This is the worse version of wall-sliding:
    we don't know the 3D point of intersection with blocker,
    which means we can't really calculate a vector to make
    proper wall-sliding. We do some tricks to still perform wall-sliding
    in many positions, but it's not perfect. }
  function MoveAlongTheBlocker(Blocker: PTriangle): boolean;
  var
    PlanePtr: PVector4Single;
    PlaneNormalPtr: PVector3Single;
    NewPosShift: TVector3Single;
  begin
    PlanePtr := @(Blocker^.World.Plane);
    PlaneNormalPtr := PVector3Single(PlanePtr);

    { project ProposedNewPos on a plane of blocking object }
    NewPos := PointOnPlaneClosestToPoint(PlanePtr^, ProposedNewPos);

    { now NewPos must be on the same plane side as OldPos is,
      and it must be at the distance slightly larger than Radius from the plane }
    if VectorsSamePlaneDirections(PlaneNormalPtr^,
         VectorSubtract(ProposedNewPos, NewPos), PlanePtr^) then
      NewPosShift := VectorScale(PlaneNormalPtr^,  Radius * RadiusEnlarge) else
      NewPosShift := VectorScale(PlaneNormalPtr^, -Radius * RadiusEnlarge);
    VectorAddTo1st(NewPos, NewPosShift);

    { Even though I calculated NewPos so that it's not blocked by object
      Blocker, I must check whether it's not blocked by something else
      (e.g. if player is trying to walk into the corner (two walls)).
      I can do it by using my simple MoveCollision. }

    Result := MoveCollision(OldPos, NewPos, IsRadius, Radius, OldBox, NewBox,
      TriangleToIgnore, TrianglesToIgnoreFunc);

    {$ifdef DEBUG_WALL_SLIDING}
    Writeln('Wall-sliding: WORSE version without 3d intersection. Blocker ', PointerToStr(Blocker), '.');
    {$endif}
  end;

  { The better wall-sliding implementation, that can calculate
    nice vector along which to slide.

    It requires as input BlockerIntersection, this is the 3D point
    of intersection between player move line (from OldPos to ProposedNewPos)
    and the Blocker.World.Plane.

    SegmentCollision says whether segment OldPos->ProposedNewPos was detected
    as colliding with Blocker.World.Plane (IOW, ProposedNewPos is on the other
    side of the blocker plane) or not (IOW, ProposedNewPos is on the same
    side of the blocker plane). }
  function MoveAlongTheBlocker(
    const BlockerIntersection: TVector3Single;
    SegmentCollision: boolean;
    Blocker: PTriangle): boolean;
  var
    PlanePtr: PVector4Single;
    Slide, Projected: TVector3Single;
    NewBlocker: PTriangle;
    NewBlockerIntersection: TVector3Single;
  begin
    PlanePtr := @(Blocker^.World.Plane);

    {$ifdef DEBUG_WALL_SLIDING}
    Write('Wall-sliding: Better version (with 3d intersection). ');
    if SegmentCollision then
      Write('Segment collided. ') else
      Write('Sphere collided . ');
    Writeln('Blocker ', PointerToStr(Blocker), '.');
    {$endif}

    { Project ProposedNewPos or OldPos on Blocker plane.
      The idea is that knowing this projection, and knowing BlockerIntersection,
      we can calculate Slide (= vector that will move us parallel to
      Blocker plane).

      We could always project ProposedNewPos. But for
      SegmentCollision = @false, OldPos is also good to use,
      and it's farther from BlockerIntersection than ProposedNewPos
      --- this is good, as we want Slide vector to be long, to avoid
      floating point imprecision when Slide is very very short vector. }
    if SegmentCollision then
    begin
      Projected := PointOnPlaneClosestToPoint(PlanePtr^, ProposedNewPos);
      Slide := VectorSubtract(Projected, BlockerIntersection);
    end else
    begin
      Projected := PointOnPlaneClosestToPoint(PlanePtr^, OldPos);
      Slide := VectorSubtract(BlockerIntersection, Projected);
    end;

    if not ZeroVector(Slide) then
    begin
      { Move by Slide.

        Length of Slide is taken from the distance between
        OldPos and ProposedNewPos. This is Ok, as we do not try to
        make perfect wall-sliding (that would first move as close to Blocker
        plane as possible, and then move along the blocker).
        Instead we move all the way along the blocker. This is in practice Ok. }

      VectorAdjustToLengthTo1st(Slide, PointsDistance(OldPos, ProposedNewPos));

      NewPos := VectorAdd(OldPos, Slide);

      { Even though I calculated NewPos so that it's not blocked by object
        Blocker, I must check whether it's not blocked by something else
        (e.g. if player is trying to walk into the corner (two walls)).
        I can do it by using my simple MoveCollision. }

      Result := MoveCollision(OldPos, NewPos,
        IsRadius, Radius, OldBox, NewBox, TriangleToIgnore, TrianglesToIgnoreFunc);

      {$ifdef DEBUG_WALL_SLIDING} Writeln('Wall-sliding: Final check of sliding result: ', Result); {$endif}

      if (not Result) and (not SegmentCollision) then
      begin
        { When going through corners, previous code will not necessarily make
          good wall-sliding, because our Blocker may be taken from sphere
          collision. So it's not really a good plane to slide along.
          Let's try harder to to get a better blocker: use RayCollision
          in the previous Slide direction,
          and check is result still within our sphere.

          We preserve below the old value of Blocker (have our own NewBlocker
          and NewBlockerIntersection), but the rest of variables may be
          mercilessly overriden by code below:
          PlanePtr, Projected, Slide helpers.

          Check that it works: e.g. test beginning of castle_hall_final.wrl,
          new_acts.wrl. }

        NewBlocker := RayCollision(
          OldPos, Slide, true { return closest blocker },
          TriangleToIgnore, false, TrianglesToIgnoreFunc);

        if (NewBlocker <> nil) and
           (NewBlocker <> Blocker) and
           IsTriangleSphereCollision(
             NewBlocker^.World.Triangle,
             NewBlocker^.World.Plane,
             ProposedNewPos,
             { NewBlocker is accepted more generously, within 2 * normal radius. }
             Radius * 2) and
           TryPlaneLineIntersection(NewBlockerIntersection,
             NewBlocker^.World.Plane,
             OldPos, VectorSubtract(ProposedNewPos, OldPos)) then
        begin
          {$ifdef DEBUG_WALL_SLIDING} Writeln('Wall-sliding: Better blocker found: ', PointerToStr(NewBlocker), '.'); {$endif}

          { Below we essentially make the wall-sliding computation again.
            We know that we're in sphere collision case
            (checked above that "not SegmentCollision"). }

          PlanePtr := @(NewBlocker^.World.Plane);
          Projected := PointOnPlaneClosestToPoint(PlanePtr^, OldPos);
          Slide := VectorSubtract(NewBlockerIntersection, Projected);

          if not ZeroVector(Slide) then
          begin
            VectorAdjustToLengthTo1st(Slide, PointsDistance(OldPos, ProposedNewPos));
            NewPos := VectorAdd(OldPos, Slide);
            Result := MoveCollision(OldPos, NewPos,
              IsRadius, Radius, OldBox, NewBox, TriangleToIgnore, TrianglesToIgnoreFunc);

            {$ifdef DEBUG_WALL_SLIDING} Writeln('Wall-sliding: Better blocker final check of sliding result: ', Result); {$endif}
          end;
        end else
        if NewBlocker <> nil then
        begin
          {$ifdef DEBUG_WALL_SLIDING}
          Writeln('Wall-sliding: Better blocker NOT found: ', PointerToStr(NewBlocker), ' ',
            IsTriangleSphereCollision(
              NewBlocker^.World.Triangle,
              NewBlocker^.World.Plane,
              ProposedNewPos, Radius), ' ',
            TryPlaneLineIntersection(NewBlockerIntersection,
              NewBlocker^.World.Plane,
              OldPos, VectorSubtract(ProposedNewPos, OldPos)), '.');
          {$endif}
        end;
      end;
    end else
    begin
      { Fallback to worse wall-sliding version. }
      {$ifdef DEBUG_WALL_SLIDING} Writeln('Wall-sliding: Need to fallback to worse version (Slide = 0)'); {$endif}
      Result := MoveAlongTheBlocker(Blocker);
    end;
  end;

var
  Blocker: PTriangle;
  BlockerIntersection: TVector3Single;
begin
  if not IsRadius then
  begin
    { for IsRadius = false, for now just fallback to simple yes-no check,
      without wall-sliding. We can improve this one day to make wall-sliding
      even in this case (NewBox in this case will be shifted
      like ProposedNewPos->NewPos). }
    Result := MoveCollision(OldPos, ProposedNewPos,
      IsRadius, Radius, OldBox, NewBox, TriangleToIgnore, TrianglesToIgnoreFunc);
    NewPos := ProposedNewPos;
    Exit;
  end;

  Blocker := SegmentCollision(
    BlockerIntersection, OldPos, ProposedNewPos,
    true { return closest blocker },
    TriangleToIgnore, false, TrianglesToIgnoreFunc);
  if Blocker = nil then
  begin
    Blocker := SphereCollision(ProposedNewPos, Radius,
      TriangleToIgnore, TrianglesToIgnoreFunc);
    if Blocker = nil then
    begin
      Result := true;
      NewPos := ProposedNewPos;
    end else
    if TryPlaneLineIntersection(BlockerIntersection, Blocker^.World.Plane,
      OldPos, VectorSubtract(ProposedNewPos, OldPos)) then
      Result := MoveAlongTheBlocker(BlockerIntersection, false, Blocker) else
      Result := MoveAlongTheBlocker(Blocker);
  end else
    Result := MoveAlongTheBlocker(BlockerIntersection, true, Blocker);
end;

function TBaseTrianglesOctree.HeightCollision(
  const Position, GravityUp: TVector3Single;
  out AboveHeight: Single; out AboveGround: PTriangle;
  const TriangleToIgnore: PTriangle;
  const TrianglesToIgnoreFunc: T3DTriangleIgnoreFunc): boolean;
begin
  AboveGround := RayCollision(AboveHeight, Position, VectorNegate(GravityUp),
    true, TriangleToIgnore, false, TrianglesToIgnoreFunc);
  Result := AboveGround <> nil;
  if not Result then
    AboveHeight := MaxSingle;
end;

{ Other TBaseTrianglesOctree utils ----------------------------------------------- }

var
  { Next tag that will be allocated for ray/segment and such by AssignNewTag.
    Can be read/written only by AssignNewTag.

    That's right, this is a global variable. Reason: octree instances
    are sometimes freed / recreated (consider e.g. TShapeOctree
    recreated when Trasform changes). New octree may want to immediately
    do some collision checks. However, records about tags from old octree
    may still be remembered somewhere -- for example, TShape
    remembers MailboxSavedTag (given for Shape.RayCollision from
    TShapeOctreeNode.CommonRayLeaf). So, if this would be a field
    of TBaseTrianglesOctree, then the newly created octree could
    create the same tag, and hit the mailbox mechanism of already existing
    shape.

    This actually happened with SphereSensor tests,
    e.g. on unison.x3dv from
    http://www.web3d.org/x3d/content/examples/Conformance/Sensors/SphereSensor/index.html .
    When you rotate the box, it's Transform.rotation changed, causing
    a rebuild of shapes octree. (But actual TShape and it's local triangles
    octree stay unmodified.) Without moving NextFreeTag to global variable,
    the new created octree would have NextFreeTag that was already recorded.
    In effect, @link(Height) (for camera gravity) were returning a result
    for previous mouse ray pick, temporary showing our "height above the ground"
    even though we were not standing on the ground. }
  NextFreeTag: TMailboxTag;

function TBaseTrianglesOctree.AssignNewTag: TMailboxTag;
begin
 result := NextFreeTag;
 Inc(NextFreeTag);
end;

class function TBaseTrianglesOctree.IgnoreTransparentItem(
  const Sender: TObject;
  const Triangle: P3DTriangle): boolean;
begin
  Result := PTriangle(Triangle)^.IsTransparent;
end;

class function TBaseTrianglesOctree.IgnoreForShadowRays(
  const Sender: TObject;
  const Triangle: P3DTriangle): boolean;
begin
  Result := PTriangle(Triangle)^.IgnoreForShadowRays;
end;

function TBaseTrianglesOctree.LightNotBlocked(const Light: TLightInstance;
  const LightedPoint, LightedPointPlane, RenderDir: TVector3Single;
  const TriangleToIgnore: PTriangle;
  const IgnoreMarginAtStart: boolean): boolean;
var LightPos: TVector3Single;
begin
 if not Light.Node.FdOn.Value then result := false;

 if Light.Node is TAbstractDirectionalLightNode then
  { Swiatlo directional oznacza ze swiatlo polozone jest tak bardzo
    daleko ze wszystkie promienie od swiatla sa rownolegle.

    Od pozycji LightedPoint odejmujemy wydluzone Direction swiatla.

    3 * Box3DMaxSize(Octree.TreeRoot.Box) na pewno jest odlegloscia
    ktora sprawi ze LightPos bedzie poza Octree.TreeRoot.Box
    (bo gdyby nawet Octree.TreeRoot.Box byl szescianem to jego przekatna
    ma dlugosc tylko Sqrt(2) * Sqrt(2) * Box3DMaxSize(Octree.TreeRoot.Box)
    (= 2 * Box3DMaxSize(Octree.TreeRoot.Box))
    W ten sposob otrzymujemy punkt ktory na pewno lezy POZA TreeRoot.Box
    i jezeli nic nie zaslania drogi od Point do tego punktu to
    znaczy ze swiatlo oswietla Intersection. }
  LightPos := VectorSubtract(LightedPoint,
    VectorAdjustToLength(Light.Direction,
      3 * InternalTreeRoot.Box.MaxSize ) ) else
  LightPos := Light.Location;

 Result := (VectorsSamePlaneDirections(
       VectorSubtract(LightPos, LightedPoint),
       RenderDir,
       LightedPointPlane)) and
   (SegmentCollision(LightedPoint, LightPos,
     false, TriangleToIgnore, IgnoreMarginAtStart, @IgnoreForShadowRays)
     = nil);
end;

{ TOctreeIgnoreForShadowRaysAndOneItem -------------------------------------- }

function TOctreeIgnoreForShadowRaysAndOneItem.IgnoreItem(
  const Sender: TObject;
  const Triangle: P3DTriangle): boolean;
begin
  Result := (Triangle = P3DTriangle(OneItem)) or
    PTriangle(Triangle)^.IgnoreForShadowRays;
end;

constructor TOctreeIgnoreForShadowRaysAndOneItem.Create(
  AOneItem: PTriangle);
begin
  inherited Create;
  OneItem := AOneItem;
end;

end.